37 research outputs found

    On the Capacity of the Discrete-Time Poisson Channel

    Full text link

    Coding against synchronisation and related errors

    Get PDF
    In this thesis, we study aspects of coding against synchronisation errors, such as deletions and replications, and related errors. Synchronisation errors are a source of fundamental open problems in information theory, because they introduce correlations between output symbols even when input symbols are independently distributed. We focus on random errors, and consider two complementary problems: We study the optimal rate of reliable information transmission through channels with synchronisation and related errors (the channel capacity). Unlike simpler error models, the capacity of such channels is unknown. We first consider the geometric sticky channel, which replicates input bits according to a geometric distribution. Previously, bounds on its capacity were known only via numerical methods, which do not aid our conceptual understanding of this quantity. We derive sharp analytical capacity upper bounds which approach, and sometimes surpass, numerical bounds. This opens the door to a mathematical treatment of its capacity. We consider also the geometric deletion channel, combining deletions and geometric replications. We derive analytical capacity upper bounds, and notably prove that the capacity is bounded away from the maximum when the deletion probability is small, meaning that this channel behaves differently than related well-studied channels in this regime. Finally, we adapt techniques developed to handle synchronisation errors to derive improved upper bounds and structural results on the capacity of the discrete-time Poisson channel, a model of optical communication. Motivated by portable DNA-based storage and trace reconstruction, we introduce and study the coded trace reconstruction problem, where the goal is to design efficiently encodable high-rate codes whose codewords can be efficiently reconstructed from few reads corrupted by deletions. Remarkably, we design such n-bit codes with rate 1-O(1/log n) that require exponentially fewer reads than average-case trace reconstruction algorithms.Open Acces

    Sharp Bounds on the Entropy of the Poisson Law and Related Quantities

    Full text link
    One of the difficulties in calculating the capacity of certain Poisson channels is that H(lambda), the entropy of the Poisson distribution with mean lambda, is not available in a simple form. In this work we derive upper and lower bounds for H(lambda) that are asymptotically tight and easy to compute. The derivation of such bounds involves only simple probabilistic and analytic tools. This complements the asymptotic expansions of Knessl (1998), Jacquet and Szpankowski (1999), and Flajolet (1999). The same method yields tight bounds on the relative entropy D(n, p) between a binomial and a Poisson, thus refining the work of Harremoes and Ruzankin (2004). Bounds on the entropy of the binomial also follow easily.Comment: To appear, IEEE Trans. Inform. Theor

    A refined analysis of the Poisson channel in the high-photon-efficiency regime

    Get PDF
    We study the discrete-time Poisson channel under the constraint that its average input power (in photons per channel use) must not exceed some constant E. We consider the wideband, high-photon-efficiency extreme where E approaches zero, and where the channel's "dark current" approaches zero proportionally with E. Improving over a previously obtained first-order capacity approximation, we derive a refined approximation, which includes the exact characterization of the second-order term, as well as an asymptotic characterization of the third-order term with respect to the dark current. We also show that pulse-position modulation is nearly optimal in this regime.Comment: Revised version to appear in IEEE Transactions on Information Theor

    Poisson noise channel with dark current: Numerical computation of the optimal input distribution

    Get PDF
    This paper considers a discrete time-Poisson noise channel which is used to model pulse-amplitude modulated optical communication with a direct-detection receiver. The goal of this paper is to obtain insights into the capacity and the structure of the capacity-achieving distribution for the channel under the amplitude constraint A\mathsf{A} and in the presence of dark current λ\lambda. Using recent theoretical progress on the structure of the capacity-achieving distribution, this paper develops a numerical algorithm, based on the gradient ascent and Blahut-Arimoto algorithms, for computing the capacity and the capacity-achieving distribution. The algorithm is used to perform extensive numerical simulations for various regimes of A\mathsf{A} and λ\lambda.Comment: Submitted to IEEE ICC 2022. This is a companion paper of: A. Dytso, L. Barletta and S. Shamai Shitz, "Properties of the Support of the Capacity-Achieving Distribution of the Amplitude-Constrained Poisson Noise Channel," in IEEE Transactions on Information Theory, vol. 67, no. 11, pp. 7050-7066, Nov. 202
    corecore