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Abstract

In this thesis, we study aspects of coding against synchronisation errors, such as deletions and repli-

cations, and related errors. Synchronisation errors are a source of fundamental open problems in

information theory, because they introduce correlations between output symbols even when input

symbols are independently distributed. We focus on random errors, and consider two complementary

problems:

• We study the optimal rate of reliable information transmission through channels with synchro-

nisation and related errors (the channel capacity). Unlike simpler error models, the capacity of

such channels is unknown. We first consider the geometric sticky channel, which replicates input

bits according to a geometric distribution. Previously, bounds on its capacity were known only

via numerical methods, which do not aid our conceptual understanding of this quantity. We de-

rive sharp analytical capacity upper bounds which approach, and sometimes surpass, numerical

bounds. This opens the door to a mathematical treatment of its capacity. We consider also the

geometric deletion channel, combining deletions and geometric replications. We derive analytical

capacity upper bounds, and notably prove that the capacity is bounded away from the maxi-

mum when the deletion probability is small, meaning that this channel behaves differently than

related well-studied channels in this regime. Finally, we adapt techniques developed to handle

synchronisation errors to derive improved upper bounds and structural results on the capacity

of the discrete-time Poisson channel, a model of optical communication.

• Motivated by portable DNA-based storage and trace reconstruction, we introduce and study the

coded trace reconstruction problem, where the goal is to design efficiently encodable high-rate

codes whose codewords can be efficiently reconstructed from few reads corrupted by deletions.

Remarkably, we design such n-bit codes with rate 1−O(1/ log n) that require exponentially fewer

reads than average-case trace reconstruction algorithms.
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Basic notation

R the set of real numbers

R+
0 the set of non-negative real numbers

C the set of complex numbers

N the set of natural numbers {1, 2, 3, . . . }

N0 the set {0} ∪ N

[n] the set {1, 2, . . . , n}

Z the set of integers

log the base-2 logarithm

ln the natural logarithm

⌈x⌉ the ceiling of a real number x

⌊x⌋ the floor of a real number x

⌈x⌋ the closest integer to a real number x, with ties broken by

rounding down

S a set

ε the empty string (when clear from context)

Sn the n-fold cartesian product of S, with S0 = {ε}

S∗ the set
⋃︁∞

i=0 Si

X a random variable

X(x) the probability that a discrete random variable X equals x

1{E} the indicator random variable of event E

FX the cumulative distribution function ofX (most relevant when

X is not discrete)

E[X] the expected value of X

Var[X] the variance of X

Cov[X,Y ] the covariance between X and Y

X ∼ P random variable X follows distribution P
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x ∼ X when x is sampled according to X

x← S when x is sampled uniformly at random from the set S

Pr[E] the probability of an event E

Pr[E,E′] the probability of events E and E′ occurring simultaneously

Pr[E|E′] the conditional probability of event E given E′

supp(X) the support of X. In general, this is the smallest closed set

such that Pr[X ∈ S] = 1

poly(n) some fixed polynomial of the parameter n

|x| the length of vector x

∥x∥p the p-norm of vector x

x⊕ y bitwise XOR between bitstrings x and y

wgt(x) the Hamming weight of vector x

x∥y the concatenation of vectors x and y

xℓ the vector x concatenated ℓ times with itself (when clear from

context)

x[i, j) the substring (xi, xi+1, . . . , xj−1)

x[i :] the substring (xi, xi+1, . . . , xn) if |x| = n

x[: i] the substring (x1, x2, . . . , xi)

y is subsequence of x if there exist i1 < i2 < · · · < i|y| such that xij = yj

a run of x a substring of x of the form sℓ for some symbol s
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Chapter 1

Introduction

Over the past few decades, data has become one of the most valuable resources in the world, and we

have experienced an extreme increase in its usage and storage requirements. However, data storage

technologies are naturally susceptible to errors that affect the integrity of stored data or the process

of reading it. Therefore, it is imperative to encode data so that it can be reliably recovered from such

errors.

Synchronisation errors, such as deletions and replications of data symbols or insertions of random

symbols, occur when one attempts to read data off many data storage media. As mentioned in [6],

examples include digital magnetic and optical storage systems [7, 8, 9, 10, 11], racetrack memories [12,

13, 14], and, most relevant to our motivation, latest generation portable DNA-based data storage

systems [15, 16]. This type of errors also has intimate connections to other problems, such as multiple

sequence alignment in computational biology [17], file synchronisation [18, 19, 20], and the behaviour

of the length of the longest common subsequence between two strings [21, 22, 23].

At a high level, synchronisation errors cause a loss of synchronisation between the sender and receiver

of a message, which makes them extremely difficult to analyse. While this is a general statement, a

particularly instructive example of this phenomenon can be found in Figure 1.1. Note that the receiver,

upon observing the output of the deletion process, is not sure which output bits correspond to which

input bits. This is because several different deletion patterns on the same input string may lead to

the same output string. In fact, there are three different ways of producing the string 010 by deleting

three bits of the string 010101. On the other hand, this is not a problem if bits are erased instead of

deleted: There is only one way of erasing three bits of the string 010101 to obtain the string ??010?.

27



28 Chapter 1. Introduction

In the case of erasures, the receiver knows that the i-th output symbol is always a possibly corrupted

version of the i-th input symbol, and so there is no loss of synchronisation.

Figure 1.1: Comparison between deletions and erasures of the underlined bits.

A better understanding of the effect of synchronisation errors is key for designing improved data storage

systems. With this in mind, it is natural to start by studying a simplified model. Since the errors

introduced by the read process are non-adversarial, a good starting point is to study channels which

on input an n-bit string x ∈ {0, 1}n output a string Y obtained by independently corrupting each

bit xi according to a relevant probabilistic error model. Writing and reading data on/from a storage

system is an instance of communication through an error-prone channel: The person who stores the

data communicates it to the person retrieving it, and the data may be corrupted along the way. We

are then interested in two fundamental information-theoretic problems in this model:

Question 1.1. How efficiently can we communicate through such a channel? In other words, how

much redundancy must be added to a message before sending it through the channel so that every

message can be recovered with high probability from its corresponding channel output? This is the

same as asking for the capacity of the channel, a fundamental quantity in information theory first

introduced and studied rigorously by Shannon [24, 25].

Note that Question 1.1 asks only to show whether a given redundancy is achievable, and the usual tech-

niques exploited to derive achievability results yield only computationally intractable coding methods.

This leads us to consider the following complementary problem.

Question 1.2. Can we design coding schemes for reliable information transmission under random

synchronisation errors with redundancy as low as possible that also support efficient data encoding

and decoding procedures?

These problems appear much harder to tackle for synchronisation errors than for other more common
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types of errors considered in information theory, such as erasures and bit-flips. While the analogous

problems for erasures and bit-flips are largely understood, the questions above remain open even for

simple models of synchronisation errors.

We present a telling example of this dichotomy. A basic channel in information theory is the Binary

Erasure Channel (BEC), which independently erases each input bit with probability d. We have seen

an example of this channel’s behaviour in Figure 1.1. Shannon [24] showed that the capacity of the

BEC is 1−d, which means that it is both necessary and sufficient to encode a message of approximately

(1−d)n bits into n bits (i.e., add approximately dn bits of redundancy to the message) so that reliable

information transmission is possible. The BEC falls within the general class of Discrete Memoryless

Channels (DMCs), which on input x = (x1, x2, . . . , xn) output

Y = Y1∥Y2∥ · · · ∥Yn,

where ∥ denotes string concatenation, and each Yi is composed of a single symbol and is conditionally

independent of (Yj)j ̸=i given xi. The receiver, observing Y , knows that the i-th symbol of Y corresponds

to Yi, and hence to xi. A large range of techniques have been developed over the past 70 years to

study such channels, and we now have a great understanding of a large fraction of DMCs (for a good

introduction to this topic, see [26, Section 7]).

Making a parallel with the above, one of the simplest channels with synchronisation errors (in short,

a synchronisation channel) that is also practically motivated is the deletion channel, which indepen-

dently deletes each input bit with probability d. Figure 1.1 showcases the behaviour of this channel.

Surprisingly, although the deletion channel is simple to describe and is closely related to the BEC,

determining its capacity is still a major open problem in information theory. Despite many efforts over

the past decades, we still only have a rudimentary understanding of the capacity of the deletion channel

and all other non-trivial synchronisation channels (see the surveys [27, 6] for exhaustive accounts of

these efforts). As an example, we still do not even know whether the capacity curve of the deletion

channel is a convex function of d [28]. One of the reasons for this bleak state of affairs is that most

of the techniques in information theory are tailored to DMCs, and do not extend beyond this class of

channels. The deletion channel is not a DMC, but falls within the class of what we may call Discrete

Memoryless Synchronisation Channels (DMSCs). These are channels which on input x = (x1, . . . , xn)

output

Y = Y1∥Y2∥ · · · ∥Yn,
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where, as before, each Yi is conditionally independent of (Yj)j ̸=i given xi, but each Yi may be composed

of a different number of symbols. Therefore, as was the case with the deletion channel, it may happen

that someone observing Y output by a DMSC cannot tell which part of Y corresponds to Yi, because

it is not clear how many symbols of Y have been contributed by each Yj . This is the main source of

difficulty when analysing synchronisation channels compared to DMCs.

This thesis is divided into two parts, depending on whether we focus on Question 1.1 or 1.2. In the

remainder of this chapter, we proceed to describe the concrete problems we study and our contributions.

1.1 Capacity upper bounds for the geometric sticky and geometric

deletion channels

In the first part of this thesis, we study the capacity of a subset of so-called repeat channels, which

are DMSCs that generalise the deletion channel. More precisely, on input x ∈ {0, 1}n, a repeat

channel replaces each input bit xi by Ri copies of it (with 0 copies meaning that xi is deleted),

where R1, R2, . . . , Rn are independent and identically distributed (i.i.d.) over the non-negative integers.

A deletion channel with deletion probability d can be seen as a repeat channel where the Ri’s are

independent Bernoulli random variables with success probability 1− d.

As a starting point, we consider sticky channels, first introduced by Drinea, Kirsch, and Mitzen-

macher [29, 30, 31, 32]. These are special repeat channels where Ri ≥ 1 with probability 1, meaning

that no input bit ever gets deleted. Figure 1.2 illustrates the behaviour of such channels. Besides

being natural information-theoretic objects, sticky channels have also been used to model nanopore-

based DNA sequencing [33] (which is a key part of the read process of portable DNA-based storage

systems [15, 16]) and small-sample distribution estimation problems in biology [34], and there has

been work on codes correcting a limited number of sticky errors, such as duplications of input bits,

with connections to communication chip design [35, 36] (see [37, Section III.F] for a more complete

overview of works on coding against the more general notion of weak synchronisation errors).

Sticky channels are thought to be more tractable than channels with deletions, and understanding

their behaviour may lead to insights about more general types of synchronisation channels [32]. The

main reason for this belief is that their capacity is equivalent to the capacity per unit cost [38] of

certain DMCs, which, as we have discussed before, are significantly more approachable in principle.
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Figure 1.2: Behaviour of a sticky channel. Note that no input bits are deleted.

This connection between sticky channels and DMCs has been exploited in a series of works [32, 1, 39],

and has led to tight numerical bounds on the capacity of two staple sticky channels: The elementary

duplication channel, which independently replaces each input bit with two copies with probability p,

and the geometric sticky channel, which independently replaces each input bit with a number of copies

following a geometric distribution with support {1, 2, . . . } and success probability p.

Although the numerical bounds above give an excellent computer-assisted estimate of the capacity of

these channels for a given replication parameter p, i.e., the optimal redundancy required for reliable

coding, they do not improve our conceptual understanding of the capacity curve of these channels

as a function of p. Ideally, we would like to undertake a computer-unaided analysis of the capacity

curve. Moreover, the numerical upper bounds above are obtained by combining a general convex

optimisation-based framework with numerical analysis of a finite version of the channel in question

obtained by providing extra information to the receiver, which strictly increases the capacity. Therefore,

one cannot obtain an exact characterisation of the channel capacity via this approach. This means we

require a different approach to move towards a deeper analysis of the capacity curve without computer

assistance.

1.1.1 Contributions of this thesis

In this thesis, we undertake a different approach towards upper bounding the capacity of sticky channels

using a different general framework based on convex optimisation originally developed in [40] to study

channels with deletions. Surprisingly, we show that techniques which do not work for channels with

deletions can be applied to yield sharp analytical upper bounds on the capacity of the geometric sticky

channel for a large range of the replication parameter p. Here, by analytical we mean that our upper



32 Chapter 1. Introduction

bounds are given by the supremum of an analytic function (which depends on p) over (0, 1), and which

can be easily approximated to the desired accuracy. These new upper bounds are an important step

towards a mathematical, computer-unaided, treatment of these channels. Moreover, they improve

upon previous numerical upper bounds for some values of p.

We continue to study the capacity of repeat channels by considering the capacity of a natural extension

of the geometric sticky channel, called the geometric deletion channel, which independently replicates

each input bit according to a geometric distribution with support on {0, 1, 2, . . . } and parameter p. We

begin by adapting the blueprint of [40] to obtain preliminary analytical capacity upper bounds for this

channel. Then, we present a technique for generically improving these upper bounds by exploiting key

properties of the geometric deletion channel. We numerically show that, under a plausible conjecture

supported by numerical evidence and asymptotic results, our modified analytical bounds improve

significantly on the initial bounds over a large range of p, and thus deserve further study. Notably,

combining the technique above with surprising connections between the deletion and geometric deletion

channels (without assuming any conjecture) also allows us to give a simple proof without computer

assistance that the capacity of the geometric deletion channel is at most 0.73 bits/channel use when

p→ 1 (equivalently, when the deletion probability d = 1− p→ 0), which we call the large replication

regime. This shows that the geometric deletion channel behaves differently than other well-studied

repeat channels with deletions, such as the deletion channel and the Poisson-repeat channel [41, 40]

(which replicates each bit according to a Poisson distribution with mean λ), whose capacities approach

1 bit/channel use in the large replication regime.

More details can be found in Chapter 3, which is based on [2, 6].

1.2 From synchronisation errors to the discrete-time Poisson channel

The strategy we use for upper bounding the capacity of a repeat channel starts by reducing this task

to that of upper bounding the capacity of an associated mean-limited DMC (in the case of sticky

channels, this reduction is lossless). Roughly speaking, a µ-mean-limited DMC is a DMC which only

accepts input random variables X whose associated channel output Y satisfies E[Y ] = µ, where E[Y ]

denotes the expected value of Y (we refer the interested reader to Section 2.5.1 for a more detailed

discussion of the techniques in question). When studying the Poisson-repeat channel with mean λ = 1,

the associated DMC is the channel which on input an integer x ≥ 0 outputs a sample from the Poisson
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distribution with mean x, which we denote by Poix, with some output mean constraint µ. It is then

natural to consider a continuous analogue of this channel where the input x is now allowed to be

any non-negative real number, as opposed to a non-negative integer, since we hope that techniques

developed to study the capacity of either of the two channels may be translated back and forth.

Remarkably, the continuous analogue of the DMC in question corresponds to the Discrete-Time Pois-

son (DTP) channel without dark current, a well-studied model of optical communication [42]. This

channel can also be obtained from the well-known continuous-time Poisson channel model of optical

communication by restricting the sender to more realistic transmission techniques. The input x to

the DTP channel can be thought of as controlling the intensity of a photon-emitting source. The

receiver then observes a probabilistic photon count induced by the intensity x, modelled by the Poix

distribution. This model can be extended by considering the role of background interference on the

photon count that the receiver observes, which is modelled as an additive dark current parameter

λ ≥ 0 to the mean photon count. Therefore, the DTP channel with dark current λ outputs a sample

of Poiλ+x on input x. A diagram of this model can be found in Figure 1.3. For practical reasons, one

imposes constraints on the input X to the DTP channel: An average-power constraint µ, meaning

that E[X] ≤ µ, and possibly also a peak-power constraint A, meaning that Pr[X ≤ A] = 1. The DTP

channel with an average-power constraint can then be seen as a natural continuous analogue of the

mean-limited DMC associated with the Poisson-repeat channel.

Figure 1.3: The DTP channel model of optical communication. The intensity of the sender’s photon-
emitting source is controlled by the channel input x, while the background intereference is controlled
by the dark current parameter λ. The receiver observes a photon count following a Poisson distribution
with mean λ+ x.

Surprisingly, although the capacity of the continuous-time Poisson channel has been well-understood

under different constraints for several decades [43, 44, 45, 46], the exact capacity of the DTP channel,

both with and without dark current, under an average- and/or peak-power constraint is still unknown.
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We only have a good grasp of its behaviour in asymptotic settings where the average-power constraint

µ is either small [47, 48, 49] or large [50, 47, 51], with only loose upper bounds known in non-asymptotic

regimes [47].

1.2.1 Contributions of this thesis

We focus on the DTP channel with arbitrary dark current λ ≥ 0 and an average-power constraint µ

only, and show that techniques used to study the capacity of the Poisson-repeat and geometric deletion

channels can be adapted to make progress on our understanding of the capacity of the DTP channel.

First, we study capacity upper bounds for the DTP channel. In a setting without dark current (λ = 0),

we show that techniques from [40], combined with a careful choice of parameters, lead to improved

upper bounds on the capacity of the DTP channel with average-power constraint µ whenever µ is not

tiny. To handle the case of arbitrary dark current λ > 0, we additionally employ techniques that we

used to improve capacity upper bounds for the geometric deletion channel. Consequently, we are able

to obtain improved upper bounds on the capacity of the DTP channel with dark current λ > 0. In

both cases, the bounds have elementary expressions.

Afterwards, we turn to structural results on the capacity of the DTP channel. More precisely, we are in-

terested in properties of the capacity-achieving distribution under given dark current and average/peak-

power constraints. This is the input distribution satisfying the constraints that maximises the mutual

information with its associated channel output distribution (we refer the interested reader to Sec-

tion 2.4 for an introduction to basic information-theoretic concepts). One of the most basic properties

of interest about capacity-achieving distributions is whether their support is discrete (finite or count-

ably infinite). This property has been studied for several different channels, going back to the work

of Smith [52] on the Additive White Gaussian Noise (AWGN) channel, and it is well-understood for

noise-additive channels [53], of which the AWGN channel is an example. Shamai [42] showed that the

capacity-achieving distribution of the DTP channel under a finite peak-power constraint has finite sup-

port, leaving open the case in which no peak-power constraint is present, where it is only known that

the support is unbounded [54]. Using a different approach, we show that the support of the capacity-

achieving distribution is countably infinite in this case, with only a finite number of mass points in

every bounded interval, and we also recover the previous result for finite peak-power constraint with

an alternative proof.
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More details can be found in Chapter 4, which is based on [4, 55].

1.3 Coded trace reconstruction

In the second part of this thesis, we study Question 1.2 and construct low-redundancy coding schemes

with efficient encoding and decoding procedures for a setting with random deletions motivated by the

read process of recent portable DNA-based data storage systems [15, 16]. When we attempt to read

data off such systems, we can obtain several copies of the data corrupted by deletions, replications,

and insertions. Figure 1.4 schematises the writing and reading process of these DNA-based storage

systems (for a detailed exposition of DNA-based data storage, see [56, 15, 16]). Therefore, it is of

interest to design coding schemes with good tradeoffs between the redundancy that must be added

and the number of copies (traces) required to reliably reconstruct the encoded data.

Figure 1.4: A diagram of the data writing and reading process in DNA-based data storage with
nanopore-based sequencing.

We introduce the setting of coded trace reconstruction, a simplification of the scenario above where an

encoded message is sent through several independent deletion channels with some deletion probability

d. Figure 1.5 illustrates the trace reconstruction setting.

The goal is to design coding schemes with efficient encoding and decoding procedures with a good

tradeoff between redundancy and number of traces required for reliable reconstruction. This setting

already captures many of the difficulties of the real scenario, and is a first step towards obtaining

efficient coding schemes with provable guarantees and scalability for such DNA-based storage systems.

In contrast, the coding schemes used in [15, 16] are based on heuristics and designed for fixed system
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Figure 1.5: The trace reconstruction setting with three traces.

parameters, and have no provable guarantees.

We note that, similarly to previous questions about the channel capacity, the problem of reconstructing

an input from several independent channel outputs also appears to be much more challenging for

synchronisation channels than for DMCs. The analogous problem to coded trace reconstruction where

we replace the deletion channel by a BEC with erasure probability d is trivial, in the sense that t

independent BECs with erasure probability d are equivalent to a single BEC with erasure probability

dt.

The coded trace reconstruction problem is closely related to the well-studied trace reconstruction prob-

lem introduced in [17], originally motivated by applications in computational biology. The difference

between the two settings is that in the original trace reconstruction problem the input string is not al-

lowed to be encoded. There, the goal is to design reconstruction algorithms that either recover all input

strings with high probability (worst-case trace reconstruction), or recover the input string with high

probability on average over a uniform choice of the input string (average-case trace reconstruction). A

bound of t = t(n) traces for average-case trace reconstruction of n-bit strings can also be interpreted

from the perspective of coded trace reconstruction: It states that there exist n-bit binary codes with

1 bit of redundancy whose codewords can be reconstructed from t traces. However, a key difference

with respect to our goal in coded trace reconstruction is that the codes provided by average-case trace

reconstruction are not known to be efficiently encodable. Nevertheless, as an intermediate goal towards

obtaining the best tradeoff between redundancy and number of traces required for reconstruction, we

aim to design efficiently encodable codes with as little redundancy as possible that can be reconstructed

with significantly fewer traces than the best average-case trace reconstruction algorithms.
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1.3.1 Contributions of this thesis

We present various efficiently encodable binary coding schemes with many desirable properties in

the coded trace reconstruction setting with constant deletion probability by showing how to leverage

results from uncoded trace reconstruction. We begin by combining a marker-based construction with

worst-case trace reconstruction. This leads to efficiently encodable coding schemes with O
(︂

n
logn

)︂
bits of redundancy which can be efficiently reconstructed from exp(O(log2/3 n)) traces. Although this

construction does not beat the best algorithms for average-case trace reconstruction, which require

exp(O(log1/3 n)) traces [57], it is interesting due to its flexibility. Motivated by applications in DNA-

based storage, we show how to adapt it to obtain an efficiently encodable code over the alphabet

{A,C,G, T} (each letter denoting a nucleotide in the DNA strand) which has balanced GC-content,

an important property for DNA-based storage [58] which enforces that half of the symbols of each

codeword must be either G or C, while the redundancy and number of traces required for efficient

reconstruction remain the same (up to constant factors).

Subsequently, we leverage average-case trace reconstruction results to improve exponentially on the

number of traces required by the previous construction, with the same redundancy. More precisely, by

combining the average-case trace reconstruction algorithm from [59] with derandomisation techniques

and a marker-based construction, we obtain efficiently encodable binary coding schemes still with

O
(︂

n
logn

)︂
bits of redundancy which can be efficiently reconstructed from poly(log n) traces, provided

the deletion probability is smaller than some absolute constant. In particular, our result shows that by

increasing the allowed redundancy from 1 bit to O
(︂

n
logn

)︂
bits, we can improve exponentially on the

best known upper bound for average-case trace reconstruction while ensuring efficient encoding and

reconstruction.

Finally, we also extend known techniques for analysing mean-based algorithms for worst-case trace

reconstruction [59, 60, 61] to handle errors introduced by general repeat channels. In particular, this

result allows us to extend some of our results on coded trace reconstruction over the deletion channel

to coded trace reconstruction over other repeat channels.

More details can be found in Chapter 5, which is based on [5].
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Chapter 2

General Background

The problem of determining the optimal rate of reliable information transmission in noisy regimes was

first studied rigorously in the seminal work of Shannon [24, 25]. Shannon connected this optimal rate,

the so-called channel capacity, to fundamental quantities in information theory such as the (Shannon)

entropy and the mutual information. This connection allowed the computation of the exact capacity

for several natural communication channels, and spurred more than 70 years of steady, fundamental

developments in information theory (the book of Cover and Thomas [26] provides an excellent broad

overview of the discipline). However, knowing the exact channel capacity, or a lower bound on this

quantity, generally implies only that there exists some coding scheme with that given rate that can

be used to reliably transmit information through the channel, and encoding and decoding messages

through this coding scheme may be computationally intractable. Therefore, in parallel with the study

of the capacity of several different channels, there has also been tremendous interest (both theoretical

and practical) on the design of coding schemes for reliable information transmission through different

channels, introducing as little redundancy as possible into the message, and supporting computationally

efficient encoding and decoding procedures.

The goal of this chapter is to introduce common basic concepts and results that will be useful through-

out the rest of this thesis, and to cover prior work related to the topics considered here. We begin by

presenting some basic facts from probability theory, combinatorics, and the theory of special functions.

This is followed by an introduction to information theory and related concepts that we will focus on

in this thesis. This includes a comparison between synchronisation errors and other types of errors,

such as erasures and substitutions. Finally, we present a detailed survey of the historical background

39
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of the problems studied in this thesis: Capacity bounds and efficient coding schemes for channels with

synchronisation errors.

Mathematical background. Throughout this thesis, we assume the reader is familiar with discrete

probability, as it will be the main focus of all remaining chapters. Moreover, some basic familiarity

with measure-theoretic probability is required only for the proof of Theorem 4.1 in Appendix B. We

note that Theorem 4.1 is a natural extension of previous results proved for other classes of channels,

and its proof follows previous standard approaches with minor modifications only. We include an

introductory section in Appendix B discussing the required concepts, in order to make the exposition

as self-contained as possible.

2.1 Useful concepts from probability theory and combinatorics

In this section, we present some facts from discrete probability and combinatorics that will be useful

throughout this thesis. We will often be dealing with a small number of important discrete probability

distributions. These distributions and the corresponding notation are defined, along with some useful

properties, in Table 2.1. A fundamental concept that can be associated to every discrete distribution1

X over N0 is its probability generating function gX , given by

gX(z) =
∞∑︂
i=0

X(i) · zi

for every z ∈ C whenever the infinite series on the right-hand side converges. Such probability gener-

ating functions will make a key appearance in all later chapters. For a complete treatment of discrete

distributions and their properties, the book of Johnson, Kemp, and Kotz [62] is recommended.

We will need the following notion of distance between distributions with strong properties.

Definition 2.1 (Statistical distance). Given distributions X and Y over a finite set S, the statistical

distance between X and Y , denoted by ∆(X;Y ), is given by

∆(X;Y ) = max
T ⊆S
|Pr[X ∈ T ]− Pr[Y ∈ T ]| = 1

2

∑︂
s∈S
|X(s)− Y (s)|.

1We identify random variables with their distributions and let X(x) stand for Pr[X = x] when X is a discrete random
variable.
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Distributions PMF Expected value PGF

(Bernoulli) Berp Berp(y) = py(1− p)1−y, y = 0, 1 p 1− p+ pz

(Binomial) Binn,p Binn,p(y) =
(︁
n
y

)︁
py(1− p)n−y, y ≥ 0 np (1− p+ pz)n

(Geometric) Geom0,p Geom0,p(y) = (1− p)py, y ≥ 0 p
1−p

1−p
1−pz

(Geometric) Geom1,p Geom1,p(y) = (1− p)py−1, y ≥ 1 1
1−p

z(1−p)
1−pz

(Negative binomial) NBr,p NBr,p(y) =
(︁
y+r−1

y

)︁
(1− p)rpy, y ≥ 0 rp

1−p

(︂
1−p
1−pz

)︂r
(Poisson) Poiλ Poiλ(y) = e−λ λy

y! , y ≥ 0 λ eλ(z−1)

Table 2.1: Properties of some distributions over the integers. PMF stands for “Probability Mass
Function”, PGF stands for “Probability Generating Function”, and we assume y ∈ Z.

The statistical distance ∆ is a metric on the space of distributions above. In particular, it satisfies the

triangle inequality. Its definition also implies that for any (deterministic or randomised) algorithm A

we have ∆(A(X);A(Y )) ≤ ∆(X;Y ).

At certain points we will need to lower bound the expectation of a function of a random variable. This

is especially approachable if the function is convex via Jensen’s inequality. We present a special case

here (it holds in significantly more general settings, e.g., [63]).

Lemma 2.1 (Jensen’s inequality). Let I ⊆ R be an interval and f : I → R a convex function on I.2

Suppose X satisfies supp(X) ⊆ I and E[|X|] <∞. Then, we have

E[f(X)] ≥ f(E[X]).

We now present concentration bounds for some of the distributions described in Table 2.1, starting

with the Hoeffding bound.

Lemma 2.2 (Hoeffding bound [64, Theorem 2.2.6]). Suppose that Z =
∑︁n

i=1Xi for Xi ∈ [0, 1] inde-

pendent random variables. Letting µ = E[Z], for every α ≥ 0 it holds that

Pr[Z ≥ µ+ α] ≤ exp

(︃
−2α2

n

)︃

and

Pr[Z ≤ µ− α] ≤ exp

(︃
−2α2

n

)︃
.

2A function f : I → R is convex on I ⊆ R if for any x, y ∈ I and λ ∈ [0, 1] we have f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y).
A function f is said to be concave if −f is convex.
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We will need concentration bounds for the negative binomial distribution. We follow the reasoning of

Brown [65], who proved a similar bound.

Lemma 2.3. Suppose Z ∼ NBr,p for r ∈ N and p ∈ [0, 1). If µ = E[Z] = rp
1−p , it holds that

Pr[Z > ⌈µ+ α⌉] ≤ exp

(︃
− 2α2(1− p)3

r + (α+ 1)(1− p)

)︃

and

Pr[Z < ⌊µ− α⌋] ≤ exp

(︃
−2α2(1− p)2

r

)︃
for all α ≥ 0.

Proof. Letting W = r + Z and µ′ = E[W ] = r
1−p , it is enough to prove that

Pr[W > ⌈µ′ + α⌉] ≤ exp

(︃
− 2α2(1− p)3

r + (α+ 1)(1− p)

)︃
(2.1)

and

Pr[W < ⌊µ′ − α⌋] ≤ exp

(︃
−2α2(1− p)2

r

)︃
(2.2)

for all α ≥ 0. We begin by proving (2.1). Since W > n is equivalent to having fewer than r successes

in n independent Ber1−p trials, we have

Pr[W > ⌈µ′ + α⌉] = Pr[Bin⌈µ′+α⌉,1−p < r].

Setting V ∼ Bin⌈µ′+α⌉,1−p, we have E[V ] ≥ (1− p)(µ′+α) = r+α(1− p). Therefore, by the Hoeffding

bound it follows that

Pr[V < r] ≤ Pr[V < E[V ]− α(1− p)] ≤ exp

(︃
−2α2(1− p)2

⌈µ′ + α⌉

)︃
≤ exp

(︃
− 2α2(1− p)3

r + (α+ 1)(1− p)

)︃

for all α ≥ 0. To prove (2.2), we assume without loss of generality that α ≤ µ = rp
1−p and observe that

Pr[W ≤ ⌊µ′ − α⌋] = 1− Pr[W > ⌊µ′ − α⌋] = 1− Pr[Bin⌊µ′−α⌋,1−p < r] = Pr[Bin⌊µ′−α⌋,1−p ≥ r].

Setting V ′ ∼ Bin⌊µ′−α⌋,1−p, we have E[V ′] ≤ r−α(1− p). Therefore, the Hoeffding bound implies that

Pr[V ′ ≥ r] ≤ Pr[V ′ ≥ E[V ′] + α(1− p)] ≤ exp

(︃
−2α2(1− p)2

⌊µ′ − α⌋

)︃
≤ exp

(︃
−2α2(1− p)2

r

)︃
.
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Next, we present a concentration bound for the Poisson distribution [66].

Lemma 2.4 ([66, Theorem 1]). Let Z ∼ Poiλ. Then, for every α > 0 it holds that

Pr[|Z − λ| ≥ α] ≤ 2 · exp
(︃
− α2

2(λ+ α)

)︃
.

Moving in another direction, we discuss the concept of almost k-wise independence, which is central to

the fields of pseudorandomness and derandomisation.

Definition 2.2 (ε-almost k-wise independent random variable). A random variable X over {0, 1}m is

said to be ε-almost k-wise independent if for all sets of k distinct indices i1, i2, . . . , ik ∈ [m] we have

|Pr[Xi1 = x1, . . . , Xik = xk]− 2−k| ≤ ε

for all (x1, . . . , xk) ∈ {0, 1}k.

Alon, Goldreich, Håstad, and Peralta [67] gave various elegant and efficient ways of generating ε-almost

k-wise independent random variables from few uniformly random bits. We present a particularly clean

version of their results that is appropriate for our derandomisation applications in Chapter 5, following

their exposition. The starting point is a version of Vazirani’s XOR lemma, stating that small bias

against linear tests suffices for almost k-wise independence. For a detailed exposition of different

versions of the XOR lemma, including the one below, see [68].

Lemma 2.5 ([67, Corollary 1 and Appendix]). If X ∈ {0, 1}m is δ-biased with respect to linear tests3,

then X is δ-almost k-wise independent for every k ≤ m.

Although Lemma 2.5 is stated for random variables uniformly distributed over subsets of {0, 1}m in [67,

Corollary 1], it applies to arbitrary distributions [68, Section 1.5]. We obtain the desired generator by

combining Lemma 2.5 with the following construction from [67].

Lemma 2.6 ([67, Proposition 3]). For every m and ℓ, there is a function g : {0, 1}2ℓ → {0, 1}m

computable in time m · poly(ℓ) such that g(U2ℓ) is δ-biased with respect to linear tests for δ = m−1
2ℓ

,

where U2ℓ is uniformly distributed over {0, 1}2ℓ.

Combining Lemmas 2.5 and 2.6 leads to the following corollary.
3A random variable X over {0, 1}m is δ-biased with respect to linear tests if for every nonempty S ⊆ [m] it holds that⃓⃓

Pr
[︁⨁︁

i∈S Xi = 0
]︁
− Pr

[︁⨁︁
i∈S Xi = 1

]︁⃓⃓
≤ δ.
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Corollary 2.1. For every m, ε > 0 there is a function g : {0, 1}t → {0, 1}m with t = 2⌈log(1/ε) +

logm⌉ computable in time m · poly(t) such that g(Ut) is ε-almost k-wise independent for every k ≤ m.

The construction from [67] used to prove Lemma 2.6 assumes knowledge of an irreducible polynomial of

degree ℓ over the finite field of order two, F2. Shoup [69] gave a deterministic algorithm running in time

poly(t) for finding irreducible degree-ℓ polynomials over F2. Therefore, even with this preprocessing

step, computing g still takes overall time m · poly(ℓ). As noted in [67, Section 8], such a polynomial

could also be naively preprocessed in time 2O(ℓ) by iterating over all monic polynomials of that degree

and discarding those with nontrivial divisors. Since we will choose ε = 1/poly(m) in our applications,

this naive procedure suffices for our needs.

2.2 Special functions

In this section, we introduce some well-known special functions that will be useful in Chapters 3 and 4.

A detailed treatment of special functions and their properties can be found in the book of Abramowitz

and Stegun [70].

The first function we discuss is the gamma function Γ, defined as

Γ(z) =

∫︂ ∞

0
tz−1e−tdt

for all real numbers z > 0. Outside this region, the gamma function is defined by analytic continuation

to all real z except the non-positive integers, where it is not defined. Notably, the gamma function

satisfies Γ(1) = 1 and the recurrence relation Γ(1 + z) = zΓ(z). As a result, for every n ∈ N0 it holds

that Γ(1 + n) = n!.

In view of the properties of the gamma function above, for real numbers x and y we define the binomial

coefficient
(︁
x
y

)︁
in terms of the gamma function as

(︃
x

y

)︃
=

Γ(1 + x)

Γ(1 + x− y)Γ(1 + y)

whenever the gamma function is well-defined (this being exactly when its argument is not a non-positive
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integer). When y ∈ N0, the expression above simplifies to

(︃
x

y

)︃
=

∏︁y−1
i=0 (x− i)

y!
,

which can be extended to all x ∈ R. In particular, we have
(︁
x
0

)︁
= 1 for all x ∈ R.

Another special function of interest related to the gamma function is the log gamma function ln Γ.

Similarly to the gamma function, the log gamma function also has an integral representation which

will prove useful in Chapter 3.

Lemma 2.7 ([40, Expression (100)]). We have

ln Γ(1 + z) =

∫︂ 1

0

1− tz − (1− t)z

t ln(1− t)
dt

for all z > −1.

Moreover, a sharp asymptotic expansion is known for the log gamma function, as detailed in the

following lemma.

Lemma 2.8 ([70, Sections 6.1.41 and 6.1.42]). We have

ln Γ(z) =

(︃
z − 1

2

)︃
ln z − z + 1

2
ln(2π) + r(z)

for all z > 0, where r(z) satisfies 0 ≤ r(z) ≤ 1
12z .

The derivative of the log gamma function, called the digamma function, is also a well studied special

function, and it will make an important appearance in Chapter 4. The digamma function ψ is defined

as

ψ(z) =
Γ′(z)

Γ(z)
,

where Γ′ denotes the first derivative of the gamma function, for all real z except non-positive integers.

Notably, when the argument z is a positive integer, the digamma function takes on a simple form in

terms of the harmonic numbers,

ψ(z) = −γ +
z−1∑︂
i=1

1

i
,

where γ ≈ 0.5772 is the Euler-Mascheroni constant and
∑︁z−1

i=1
1
i is the (z − 1)-th harmonic number.
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Another special function whose properties will be of interest in Chapter 4 is the exponential integral

function E1, defined as

E1(z) =

∫︂ ∞

1

e−tz

t
dt

for z > 0. This function has two properties that will prove useful to us. First, the derivative of E1(z) is

E′
1(z) = − e−z

z . Second, the exponential integral function enjoys sharp bounds in terms of elementary

functions, as made precise in the following lemma.

Lemma 2.9 ([70, Section 5.1.20], [71, Theorem 2]). For every z > 0 it holds that

max

(︃
1

2
ln(1 + 2/z),−ez ln

(︁
1− e−zeγ

)︁)︃
< ezE1(z) < ln(1 + 1/z),

where γ ≈ 0.5772 is the Euler-Mascheroni constant.

To conclude, we define the logarithmic integral li(z), one more well known special function that will

make an appearance in Chapter 3, which is given by

li(z) =
∫︂ z

0

1

ln t
dt

for all real numbers z ∈ [0, 1).

We note that the gamma and logarithmic integral functions accept complex arguments. However, in

this thesis we will only consider real-valued arguments for such special functions.

2.3 Channels

Before we proceed, we need to define what we mean by a channel. In the most general setting, a

channel with input alphabet X and output alphabet Y receives as input x ∈ X ∗ and outputs a random

variable Yx supported in Y∗. Here, we are interested in the class of memoryless channels. Roughly

speaking, such channels receive an ordered sequence of symbols as input, and do not keep state when

processing the different symbols. This section is a close adaptation of material from [6].

The simplest family of memoryless channels are the Discrete Memoryless Channels (DMCs), which

were first studied by Shannon [24].
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Definition 2.3 (Discrete memoryless channel). A channel Ch is said to be a discrete memoryless

channel with discrete input alphabet X and discrete output alphabet Y if it acts on the input x ∈ X ∗ as

follows: If x ∈ X , then Ch outputs a discrete random variable Yx supported in Y. If x = (x1, . . . , xn) ∈

X n, then Ch outputs Yx satisfying

Yx = Yx1∥Yx2∥ · · · ∥Yxn

supported in Yn, where Yx1 , Yx2 , . . . , Yxn are all independent.

The fact that DMCs map single input symbols to single output symbols means they satisfy the useful

property that, for x ∈ X n, the product decomposition

Yx(y) =
n∏︂

i=1

Yxi(yi) (2.3)

holds, where Yxi(yi) denotes the probability that the channel outputs yi on input xi. As we shall see,

this implies that in order to study a DMC it is enough to study its behaviour on a single input symbol.

Two well-studied examples of DMCs are the Binary Symmetric Channel (BSC) and the Binary Erasure

Channel (BEC), the latter of which we have already discussed in Chapter 1. The BSC receives bits as

input, and independently flips each bit with some error probability d. According to Definition 2.3, we

can define the channel BSCd as the DMC with input and output alphabets X = Y = {0, 1} and Yb for

b ∈ {0, 1} satisfying

Yb(y) =

⎧⎪⎪⎨⎪⎪⎩
1− d, if y = b,

d, if y = 1− b.

The BEC receives bits as input, and independently erases each bit with probability d. We can define

the channel BECd as the DMC with input alphabet X = {0, 1} and output alphabet Y = {0, 1, ?} and

Yb for b ∈ {0, 1} satisfying

Yb(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1− d, if y = b,

d, if y =?,

0, otherwise.

In this thesis, we are interested in studying channels which are not DMCs, but rather belong to the more

general class of what we call Discrete Memoryless Synchronisation Channels (DMSCs). Nevertheless,

we shall see that our analysis of DMSCs will naturally require us to study some associated DMCs. The
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general definition of DMSCs we present here is due to Dobrushin [72].

Definition 2.4 (Discrete memoryless synchronisation channel). A channel Ch is said to be a discrete

memoryless synchronisation channel with discrete input alphabet X and discrete output alphabet Y if it

acts as follows: If x ∈ X , then Ch outputs a random variable Yx supported in Y∗. If x = (x1, . . . , xn) ∈

X n, then Ch outputs Yx satisfying

Yx = Yx1∥Yx2∥ · · · ∥Yxn

supported in Y∗, where Yx1 , Yx2 , . . . , Yxn are all independent.

Arguably the most well-known DMSC is the deletion channel, which independently deletes input bits

with deletion probability d. According to Definition 2.4, we can define this deletion channel as the

DMSC denoted by BDCd with input and output alphabets X = Y = {0, 1} and Yb for b ∈ {0, 1}

satisfying

Yb(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1− d, if y = b,

d, if y = ε,

0, otherwise,

recalling that ε denotes the empty string. We are interested in a natural generalisation of the deletion

channel, which we call repeat channels. A deletion channel independently replaces each input bit with

either 0 or 1 copies in the output. In general, a repeat channel independently replaces each input

bit xi with Ri copies, where the Ri’s are i.i.d. according to some replication rule R. Thus, a repeat

channel with replication rule R is a DMSC with input and output alphabets X = Y = {0, 1} and Yb

for b ∈ {0, 1} satisfying

Yb(y) =

⎧⎪⎪⎨⎪⎪⎩
R(r), if y = br,

0, otherwise.

In particular, the deletion channel with deletion probability d is a repeat channel with replication

rule R satisfying R(0) = d and R(1) = 1 − d. As already discussed in Chapter 1, these channels are

natural models of errors caused by physical processes corrupting data in modern data storage systems.

Throughout this thesis, we focus on repeat channels induced by replication rules R with finite expected

value, and assume that this holds always.

The definitions of DMCs and DMSCs above are similar, the only difference being that for DMSCs

a single input symbol may lead to the output of a variable number of output symbols. As already
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discussed informally in Chapter 1, this leads to a loss of synchronisation between the sender and

receiver, since the receiver is not sure which parts of the output correspond to each input symbol.

Notably, this means that the product decomposition described in (2.3) does not apply in general to

DMSCs, although it applies to all DMCs. For this reason, unlike the case for DMCs, we cannot hope

to characterise the properties of a DMSC simply by looking at its behaviour on a single input symbol,

which makes their analysis significantly more complicated.

2.4 Reliable information transmission

Suppose that we are allowed to send n symbols over a certain DMC or DMSC (in other words, we are

allowed n uses of the channel). In this section, we are interested in the question of how many different

messages we can reliably transmit through the channel as a function of the n uses of the channel, when

n goes to infinity. This section is a close adaptation of material from [6].

We wish to transmit an arbitrary message m belonging to a message set M through n uses of a

memoryless channel Ch. First, we encode m into some x ∈ X n, which is then transmitted through

Ch. The receiver observes Yx and wishes to recover x, and hence the message m, with small error

probability. We formalise the notion of a coding scheme below.

Definition 2.5 (Coding scheme). A pair of functions Enc :M→ X n and Dec : Yn →M such that

Enc is deterministic and injective and Dec is deterministic is said to be an (n,R, λ)-coding scheme for

Ch if |M| =
⌈︁
2Rn

⌉︁
and for every m ∈M and x = Enc(m) it holds that

Pr[Dec(Yx) = m] ≥ 1− λ.

Interchangeably, we may instead work with the associated code C = Enc(M) ⊆ X n, where n is called

the blocklength of C, and its encoding and decoding procedures (Enc,Dec). We say that R is the rate

of the coding scheme (Enc,Dec), or of the code C, and λ is the decoding error probability. Moreover,

if Enc : X ℓ → X n, we define the redundancy of C in bits as (n− ℓ) log |X |.

Recall that we are aiming for reliable information transmission. We define this as being able to transmit

messages through the channel with decoding error probability approaching 0 when the number of

channel uses n grows. More precisely, we have the following definition.
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Definition 2.6 (Achievable rate). A non-negative real number R is said to be an achievable rate for

the channel Ch if there exists a family of (n,Rn, λn)-coding schemes for Ch such that limn→∞Rn ≥ R

and limn→∞ λn = 0.

We are now ready to define the capacity of a channel, which is the optimal transmission rate we can

achieve with vanishing decoding error probability as the number of channel uses grows.

Definition 2.7 (Channel capacity). The capacity of the channel Ch, denoted by Cap(Ch), is defined

as

Cap(Ch) = sup{R ≥ 0 : R is an achievable rate for Ch}.

Shannon’s noisy channel coding theorem [24] is a fundamental early result in information theory which

characterises the capacity of a DMC in terms of the mutual information between the channel input

and output. Before we can state this result, we need to define some information-theoretic concepts.

Definition 2.8 (Entropy). The (Shannon) entropy of a discrete random variable X, denoted by H(X),

is defined as

H(X) = −Ex∼X [logX(x)] = −
∑︂

x∈supp(X)

X(x) logX(x).

Moreover, for discrete random variables X and Y and event E, we define the conditional entropy of

X given Y and E, denoted by H(X|Y,E), as

H(X|Y,E) =
∑︂

y∈supp(Y |E)

YE(y)H(X|Y = y,E),

where YE denotes Y conditioned on event E.

Definition 2.9 (Kullback-Leibler divergence). The Kullback-Leibler divergence between discrete ran-

dom variables X and X ′, denoted by DKL(X∥X ′), is defined as

DKL(X∥X ′) =
∑︂

x∈supp(X)

X(x) log

(︃
X(x)

X ′(x)

)︃

provided X(x) = 0 whenever X ′(x) = 0 (i.e., X is absolutely continuous with respect to X ′). If this

does not hold, we set DKL(X∥X ′) =∞.

In full generality, we define the mutual information betweenX and Y as the Kullback-Leibler divergence

between their joint and product distributions.
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Definition 2.10 (Mutual information). The mutual information between discrete random variables

X and Y , denoted by I(X;Y ), is defined as

I(X;Y ) = DKL(XY ∥X ⊗ Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X),

where (XY )(x, y) = Pr[X = x, Y = y] and (X ⊗ Y )(x, y) = Pr[X = x] · Pr[Y = y], and the last two

equalities hold if H(X) and H(Y ) are finite, respectively. For discrete random variables X, Y , and Z,

the conditional mutual information between X and Y given Z, denoted by I(X;Y |Z), is defined as

I(X;Y |Z) =
∑︂

z∈supp(Z)

Z(z) · I(X;Y |Z = z),

where I(X;Y |Z = z) = I((X|Z = z); (Y |Z = z)).

The mutual information enjoys several useful properties via its connection to the Kullback-Leibler

divergence. For example, we always have I(X;Y ) ≥ 0 with equality if and only if X and Y are

independent. Furthermore, it satisfies the chain rule I(X;Y,Z) = I(X;Z) + I(X;Y |Z), and, if Y is

conditionally independent of X given Z, the data processing inequality I(X;Y ) ≤ I(Z;Y ).

We are now ready to state the noisy channel coding theorem.

Theorem 2.1 ([24]). If Ch is a DMC with input alphabet X , then it holds that

Cap(Ch) = lim
n→∞

1

n
sup
X(n)

I(X(n);YX(n)) = sup
X
I(X;YX), (2.4)

where in the middle term the supremum is taken over all distributions X(n) supported in X n, and in

the right-hand term the supremum is taken over all distributions X supported in X . Moreover, YX(n)

and YX denote the outputs of Ch on input X(n) and X, respectively.

The rightmost equality in (2.4) simplifies the computation of the channel capacity considerably, and

is due to the product decomposition formula in (2.3) which holds for DMCs: It suffices to consider

X(n) = (X
(n)
1 , X

(n)
2 , . . . , X

(n)
n ) where the X(n)

i are i.i.d. according to some X over X . If X achieves the

supremum on the right-hand side, we call it capacity-achieving.
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Using Theorem 2.1, Shannon [24] showed that

Cap(BSCd) = 1− h(d),

where h(d) = −d log d− (1− d) log(1− d) is the binary entropy function, and

Cap(BECd) = 1− d.

In both cases, the capacity-achieving distribution is uniform over {0, 1}.

Shannon’s noisy channel coding theorem did not apply to DMSCs. The analogous result for DMSCs

satisfying a mild assumption was proved later by Dobrushin [72], with subsequent extensions in [73,

74, 75, 76, 77].

Theorem 2.2 ([72]). If Ch is a DMSC with finite input alphabet X and there exist constants c2 > c1 > 0

such that c1 < E[|Yx|] < c2 for all x ∈ X , then it holds that

Cap(Ch) = lim
n→∞

1

n
sup
X(n)

I(X(n);YX(n)),

where the supremum is taken over all distributions X(n) supported in X n and YX(n) denotes the output

of Ch on input X(n).

In contrast with Theorem 2.1, there is no clear way of simplifying the computation of the capacity of

a DMSC in Theorem 2.2. This is because (2.3) does not hold for DMSCs in general, and in particular

it does not hold for any non-trivial repeat channel. As a result, Theorem 2.2 does not seem to provide

a useful way of determining the capacity of a DMSC, although it can be used to obtain bounds on

the capacity of DMSCs. For example, in view of Theorem 2.2, we can define the achievable rate of a

specific family of input distributions (X(n))n∈N as

lim inf
n→∞

1

n
I(X(n);YX(n)).

Analysing this quantity for well-chosen input distributions yields lower bounds on Cap(Ch). Moreover,

as we shall see in Section 2.5.1.1, Theorem 2.2 can be used to obtain a computationally intractable

procedure for deriving capacity upper bounds for DMSCs.

Given the fact that a uniform input distribution achieves the capacity of the BSC and BEC, which are
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similar to the deletion channel, one could hope that an i.i.d. uniform input X(n) would yield a good

lower bound on the capacity of the deletion channel, and maybe even other repeat channels. However,

this is only the case for the deletion channel when the deletion probability d is small [78, 79]. As we

shall see, input distributions with memory achieve much better rates for repeat channels. This is a

telling example of the difficulty of studying the capacity of even simple DMSCs compared to DMCs.

2.5 Historical background

In this section, we first discuss previous work on obtaining improved bounds on the capacity of DMSCs.

Such capacity bounds show the existence (in the case of lower bounds) or the inexistence (in the case

of upper bounds) of coding schemes with a certain rate for such DMSCs, without regard for whether

these schemes support efficient encoding and decoding procedures. Afterwards, we discuss parallel

progress made on the design of efficient coding schemes in several relevant models featuring deletions

and replications, and on trace reconstruction under synchronisation errors.

2.5.1 Capacity bounds for synchronisation channels

This section is a close adaptation of material from [6]. The study of the capacity of DMSCs was ignited

by Gallager [80], who showed, using convolutional coding techniques, that the capacity of the deletion

channel with deletion probability d, which we denote by C(d), satisfies

C(d) ≥ 1− h(d) (2.5)

for all d ≤ 1/2. This result was also independently obtained by Zigangirov [81]. Therefore, curiously,

it is possible to transmit at higher rates through a deletion channel than through a BSC. The lower

bound in (2.5) can also be proved by studying the rate achievable by codes with i.i.d. uniform codewords

under an explicit sub-optimal decoder [82]. Kalai, Mitzenmacher, and Sudan [78] and Kanoria and

Montanari [79] concurrently showed that this lower bound is tight in the asymptotic regime d → 0.

They proved that

C(d) = 1− h(d) +O(d) = 1− d log(1/d) +O(d).

It is known that the lower bound in (2.5) is loose whenever d is not small. Therefore, one natural
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way of improving on (2.5) is to study rates achievable by codes whose codewords are i.i.d. according

to some distribution X with memory, in particular X = (X1, X2, . . . , Xn) where the Xi are generated

according to some Markov chain. Vvedenskaya and Dobrushin [83] were the first to consider this setting

with low-order Markov chains, and presented some numerical estimates of the achievable rates for the

deletion channel. More recently, Diggavi and Grossglauser [82] obtained the improved lower bound

C(d) ≥ 1

ln 2
· sup
γ>0,p∈(0,1)

[−(1− d) ln((1− q)A+ qB)− γ], (2.6)

where q = 1− 1−p
1+d(1−2p) , A = (1−p)e−γ

1−pe−γ , and B = (1−p)2e−2γ

1−pe−γ +pe−γ , which is derived by studying the rate

achieved by codes generated by order-1 Markov chains over {0, 1} with transition probability 1−p from

0 to 1 and vice-versa under an explicit decoder. The lower bound in (2.6) was subsequently improved

and the reasoning extended to more general repeat channels by Drinea and Mitzenmacher [84, 29] via

an explicit improved decoding procedure they termed jigsaw decoding for codes generated by X with

i.i.d. runs according to some distribution P with a geometrically decreasing tail (if P is geometric, then

this coincides with the distributions considered by Diggavi and Grossglauser). Remarkably, such lower

bounds on the capacity of the Poisson-repeat channel, a repeat channel with replication rule R ∼ Poiλ,

were used by Mitzenmacher and Drinea [41] to show that

C(d) ≥ 0.1185(1− d) > 1− d
9

for all d ∈ [0, 1]. This lower bound is still the state-of-the-art for the deletion channel when d is

close to 1, and it shows that communicating through the deletion channel is never much worse than

communicating through the BEC (recall that the capacity of BECd is 1−d, which is also a trivial upper

bound on C(d)). Subsequently, a series of works has focused on deriving improved lower bounds on

the capacity of the deletion channel and related repeat channels using inputs generated by low-order

Markov chains or with i.i.d. runs [85, 31, 1, 86, 87, 39].

In the first part of Chapter 3, we study sticky channels, which are a subclass of repeat channels with

replication rule R satisfying R(0) = 0, meaning that no input bit is ever deleted. Two well-studied

examples of sticky channels are the elementary duplication channel, which duplicates each input bit

with some probability p and hence has replication rule satisfying R(1) = 1− p and R(2) = p, and the

geometric sticky channel, which replicates each input bit according to a geometric distribution with
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success probability p, meaning that the replication rule R satisfies

R(r) = (1− p)pr−1, r = 1, 2, . . . .

We shall focus on the geometric sticky channel, and we call p the replication parameter. Lower bounds

for such channels (among others) were first studied by Drinea, Kirsch, and Mitzenmacher [29, 30, 31].

Subsequently, Mitzenmacher [32] studied these channels directly and obtained improved numerical

lower bounds which are close to the true capacity of these channels for all values of the replication

parameter p. Because of their structure, sticky channels are amenable to relatively simple lower bound

techniques that do not work for channels with deletions. Moreover, Mercier, Tarokh, and Labeau [1]

showed that inputs generated by low-order Markov chains already achieve rates close to the true

capacity of the geometric sticky channel, and both Drinea and Mitzenmacher [29] and Iyengar, Siegel,

and Wolf [39] derived analytical expressions for the achievable rates of such input distributions as a

function of the replication parameter p, for Markov chains of arbitrary order. Iyengar, Siegel, and

Wolf [39] then used these analytical lower bounds to show that the capacity of the geometric sticky

channel with replication parameter p, which we denote by Cap(Geom1,p), satisfies

Cap(Geom1,p) ≥ 1− p log(1/p) + cp−O(p2) (2.7)

for p small enough, where c ≈ 0.8458 is an explicit constant, achieved by an i.i.d. uniform input

distribution. Ramezani and Ardakani [88] showed that the capacity of the elementary duplication

channel with replication parameter p, which we denote by Cap(Dp), satisfies

Cap(Dp) = 1− p log(1/p) + cp+O(p3/2−ε)

for any constant ε > 0 as p → 0, where, as in (2.7), we also have c ≈ 0.8458. Remarkably, both of

these results are out of reach of purely numerical methods.

True upper bounds on the capacity of repeat channels appeared much later than the first capacity

lower bounds. The first capacity upper bounds were obtained for the deletion channel by Diggavi,

Mitzenmacher, and Pfister [89]. Subsequently, other works obtained improved capacity upper bounds

for the deletion channel [85, 3, 40]. Regarding sticky channels, Mitzenmacher [32] obtained tight

capacity upper bounds for the elementary duplication channel. However, he was unable to achieve the

same for the geometric sticky channel, mostly due to the fact that the replication rule for this channel
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has unbounded support. Later, Mercier, Tarokh, and Labeau [1] were able to obtain tight capacity

upper bounds for the geometric sticky channel. Overall, the works mentioned above follow similar

high-level approaches. They obtain numerical capacity upper bounds that require significant computer

assistance in order to be computed for a given deletion probability d or replication parameter p, and

cannot provide an exact characterisation of the capacity.

The only work that does not fit into this group is that of Cheraghchi [40], which focused on deriving

analytical capacity upper bounds for the deletion and Poisson-repeat channels, given by the supremum

over (0, 1) of an analytic function which can be easily approximated to the desired accuracy. The

goal of this approach is to enable a better conceptual, and eventually exact, understanding of the

capacity of DMSCs with the help of such upper bounds. Thus, not only is one interested in obtaining

easier-to-compute and potentially improved capacity upper bounds, but also in deriving results about

the capacity curve without computer assistance. For example, using an analytical upper bound, Cher-

aghchi [40] was able to improve on the previous best capacity upper bounds on C(d) for d ≤ 0.02 and

also to give closed-form capacity upper bounds on C(d), including a proof without computer assistance

that C(1/2) ≤ logφ
2 , where φ ≈ 1.618 is the golden ratio.

We discuss frameworks for obtaining the upper bounds mentioned above in more detail in Sec-

tion 2.5.1.1.

In Chapter 3, we also study capacity upper bounds for a channel closely related to the geometric sticky

channel, which we call the geometric deletion channel. This is a repeat channel that replicates bits

according to a geometric distribution with support starting at 0. In other words, the geometric deletion

channel with replication parameter p has replication rule R ∼ Geom0,p satisfying

R(r) = (1− p)pr, r = 0, 1, . . . .

Therefore, a geometric deletion channel combines geometric replications with deletions. Comparatively

to other channels already discussed in this section, much less is known about this channel. The

only known general upper bounds on the capacity of the geometric deletion channel with replication

parameter p, which we denote by Cap(Geom0,p), are obtained by observing that

Cap(Geom0,p) ≤ C(1− p)
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and

Cap(Geom0,p) ≤ Cap(Geom1,p),

as we show in Chapter 3. We may call d = 1 − p the deletion probability of the geometric deletion

channel.

For the special case p = 1/2, the geometric deletion channel corresponds to the binary deletion-

duplication channel studied by Mercier, Tarokh, and Labeau [1] and Iyengar, Siegel, and Wolf [39]

with pd = 1− pt, for which non-trivial numerical capacity upper bounds are known when pd = pt [1],

as well as estimates of the rate achievable by low-order Markov chains [39] (in particular, these two

regimes coincide when pd = pt = 1/2). This is a DMSC with input alphabet {0, 1} parameterised by

pd, pt ∈ [0, 1] which on input a bit xi behaves as follows:

1. With probability pd, delete xi and stop;

2. With probability 1− pd − pt, append xi to the output and stop;

3. With probability pt, append one copy of xi to the output and return to Step 1.

We may see the channel above as a repeat channel with replication rule satisfying

R(r) =

⎧⎪⎪⎨⎪⎪⎩
pd, if r = 0,

pd · prt + (1− pd − pt)pr−1
t , if r ≥ 1.

Therefore, if p = pt = 1− pd, the binary deletion-duplication channel from [1, 39] corresponds exactly

to the geometric deletion channel with replication parameter p.

2.5.1.1 Frameworks for capacity upper bounds

As one of the main goals in this thesis is the derivation of improved capacity upper bounds for repeat

channels, we discuss here prior frameworks in more detail, including the general framework of Cher-

aghchi [40] that will form the basis for our approach in Chapters 3 and 4. The material in this section

is based on [2, 6].

The most direct way of obtaining capacity upper bounds for repeat channels is by exploiting Theo-
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rem 2.2 jointly with special properties of the sequence

(︄
sup
X(n)

1

n
I(X(n);YX(n))

)︄
n∈N

,

where the supremum is taken over all input distributions X(n) over X n. Setting

fCapn(Ch) = sup
X(n)

1

n
I(X(n);YX(n)),

it can be shown that

(n+m)fCapn+m(Ch) ≤ n · fCapn(Ch) +m · fCapm(Ch)

for all n and m. This means that the sequence (n · fCapn) is subadditive, and so Fekete’s lemma [90]

ensures that in this case we have

Cap(Ch) = lim
n→∞

fCapn(Ch) = inf
n≥1

fCapn(Ch)

for every DMSC Ch satisfying the hypotheses of Theorem 2.2. In particular, we have Cap(Ch) ≤

fCapn(Ch) for all n ≥ 1, and it was also shown by Dobrushin [72] that

fCapn(Ch)−
log(n+ 1)

n
≤ Cap(Ch) ≤ fCapn(Ch) (2.8)

for all such DMSCs, which is tight [74]. If the replication ruleR has finite support, computing fCapn(Ch)

for a fixed n is a finite-dimensional convex optimisation problem which can be solved numerically using

well-known procedures such as the Blahut-Arimoto algorithm [91, 92]. Combining this with (2.8),

we have a direct strategy for bounding Cap(Ch). However, there are two main drawbacks: First,

numerically computing fCapn(Ch) is computationally intractable whenever n is not small. Second,

even if we succeed in computing fCapn(Ch) for larger n, this approach does not improve our conceptual

understanding of the capacity curve of the DMSC. Fertonani and Duman [85] evaluated fCapn(BDCd)

for n ≤ 17 with the help of the Blahut-Arimoto algorithm, and obtained improved capacity upper

bounds for the deletion channel when d ∈ [0.1, 0.8]. The current best capacity upper bounds for all d ≥

0.1 are obtained by combining these bounds with a “convexification” result of Rahmati and Duman [3],

which in particular states that C(d) ≤ (1−d)C(d′)
1−d′ for any d ≥ d′. This yields C(d) ≤ 0.4143(1− d) for

all d ≥ d′ = 0.65 by considering the best numerical upper bound on C(0.65) from [85]. Remarkably,
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this generalises an approach of Dalai [28] showing that limd→1
C(d)
1−d = infd∈(0,1)

C(d)
1−d ≤ 0.4143.

In Chapter 3, we are mainly interested in deriving analytical capacity upper bounds for repeat channels

as a step towards a deeper, computer-unaided study of their capacity. This means the direct approach

detailed above is not viable for us. Instead, the basis for our results, and in fact for most previously

known capacity upper bounds for repeat channels, is the following high-level strategy:

1. Reduce upper bounding the capacity of the repeat channel to upper bounding the capacity

per unit cost of an associated DMC. This is done by carefully modifying the output of the

original repeat channel so that it reveals more information about the input (which only increases

capacity);

2. Derive upper bounds on the capacity per unit cost of the associated DMC.

The capacity per unit cost of a channel is a generalisation of the channel capacity to account for po-

tential costs associated with transmitting a given symbol through the channel. We present a definition

below. For a more detailed discussion on the capacity per unit cost, see [38].

Definition 2.11 (Capacity per unit cost). Given a DMC Ch with input and output alphabets X and

Y, respectively, its capacity per unit cost with cost function c : X → R+, denoted by Capc(Ch), is given

by

Capc(Ch) = sup
X:E[c(X)]<∞

I(X;YX)

E[c(X)]
,

where the supremum is over all possible input distributions X supported in X such that E[c(X)] <∞,

and YX denotes the associated channel output.

If X ⊆ R and c(x) = x for all x ∈ X , we simply write Cap(Ch) for the capacity per unit cost of Ch.

Remark 2.1. Note that the original definition of channel capacity corresponds to the capacity per unit

cost with cost function c(x) = 1 for all x ∈ X , i.e., all symbols cost the same to be transmitted.

For the purpose of deriving capacity upper bounds, it is useful to represent the input to a repeat

channel by its runlength encoding. More precisely, suppose our input string for the repeat channel is

x = 0ℓ11ℓ20ℓ3 . . . ,
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where the different 0ℓi and 1ℓj are called runs of x. Then, the runlength encoding of x is

(0, ℓ1, ℓ2, ℓ3, . . . ).

For the particular application of studying the capacity of repeat channels, we may without loss of

generality assume that every input string x starts with a 0. This does not affect the capacity of the

channel, and allows us to use the simpler runlength encoding

(ℓ1, ℓ2, ℓ3, . . . )

for x, with the understanding that odd numbered runs correspond to 0s and even numbered runs

correspond to 1s. For example, the runlength encoding of the bitstring 001000110 is (2, 1, 3, 2, 1).

The behaviour of repeat channels under runlength encoding is easy to describe. Each input run of

length ℓ ≥ 1 is independently mapped to an output run of length

R(ℓ) =
ℓ∑︂

i=1

Ri,

where the Ri are i.i.d. according to the replication rule R of the repeat channel. Output runs of length

zero are simply omitted from the output.

Using the runlength encoding perspective allows us to see that Step 1 in the high-level approach above

does not incur any loss for sticky channels. Suppose Ch is a sticky channel with replication rule R,

and let ChR denote the DMC with input alphabet X = {1, 2, . . . } such that Yℓ ∼ R(ℓ) for all ℓ ≥ 1. It

was noted by Mitzenmacher [32] that the capacity of the sticky channel, which we denote by Cap(R),

equals the capacity per unit cost of ChR with cost function c(ℓ) = ℓ: Under the runlength encoding,

the sticky channel Ch behaves exactly like the DMC ChR, with the only difference being that sending ℓ

through ChR corresponds to sending a run of ℓ bits through Ch, and hence ℓ uses of Ch. More formally,

we have the following theorem.

Theorem 2.3 ([32, Theorem 2.1]). For any replication rule R satisfying R(0) = 0 it holds that

Cap(R) = Cap(ChR).

Given Theorem 2.3, all that is left to do is to upper bound Cap(ChR). This is accomplished in [32, 1]
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by relying on the following result of Abdel-Ghaffar [93].

Theorem 2.4 ([93]). Consider a DMC Ch with input and output alphabets X and Y, respectively. Let

Y be any distribution over Y. Then,

Capc(Ch) ≤ sup
x∈X

DKL(Yx||Y )

c(x)
.

Moreover, an input distribution X is capacity-achieving if and only if there is λ ∈ R such that
DKL(Yx||YX)

c(x) ≤ λ for all x ∈ X with equality for x ∈ supp(X), in which case we have Capc(Ch) = λ.

Analytically designing good candidate distributions Y to be used in Theorem 2.4, and hence obtaining

good analytical capacity upper bounds via this approach, turns out to be complex even for simple

cost functions like c(x) = x. Instead, previous works, including those on sticky channels [32, 1], use

a numerical approach for designing Y . We describe the approach from [1] for the geometric sticky

channel in more detail, which is similar to previous approaches for other repeat channels [89, 32]. The

first step is to obtain from the DMC ChR a modified DMC Ch′R with finite input and output alphabets

by truncating the input and output alphabets of ChR appropriately to imax and omax, thus lowering

the capacity. The fact that Ch′R now has finite input and output alphabets allows one to use a Blahut-

Arimoto-type algorithm for the capacity per unit cost, such as the Jimbo-Kunisawa algorithm [94],

to numerically obtain a strict lower bound C on Cap(Ch′R), and hence on Cap(ChR), along with an

associated input distribution X with achievable rate C. If imax and omax are large enough, then we

expect X to be also a nearly-optimal input distribution for ChR. However, plugging the corresponding

output distribution YX of X over ChR into Theorem 2.4 leads to an unmanageable infinite optimisation

problem. In order to avoid this, Mercier, Tarokh, and Labeau replace this infinite optimisation problem

by a finite one that can be solved numerically. This is accomplished in two steps: First, one considers

another version of ChR with larger capacity, which we call Ch′′R, with genie-aided decoding. More

precisely, an input x to Ch′′R is revealed to the receiver (using a special symbol to distinguish it from

a normal output of the channel) if either x > imax or x is mapped to some y > omax. Otherwise, the

channel Ch′′R behaves exactly like ChR. Second, one adds a suitable geometrically decaying tail to X

based on the lower bound C given by the Jimbo-Kunisawa algorithm and renormalises the distribution,

leading to a new input distribution X ′′ with output distribution Y ′′ over Ch′′R. This is done to ensure

that, if Y ′′
x denotes the output distribution of Ch′′R on input x, we have

DKL(Y
′′
x ∥Y ′′)

x
= C < Cap(ChR) < Cap(Ch′′R).



62 Chapter 2. General Background

for all x > imax. Given the above and invoking Theorem 2.4 with Y ′′ means that in order to derive

an upper bound on Cap(Ch′′R), and hence on Cap(ChR), it is now enough to compute DKL(Y
′′
x ∥Y ′′)
x for

all x ≤ imax. Due to genie-aided decoding and the fact that the channel is sticky, the terms Y ′′(y)

are given by finite sums and the support of Y ′′
x is also finite, allowing one to compute DKL(Y

′′
x ∥Y ′′)

exactly.

Although the approach described in the previous paragraph yields tight capacity upper bounds for

the geometric sticky channel, one cannot avoid heavy numerical computations for each fixing of the

replication parameter p, which, as discussed before, severely limits our conceptual understanding of

the channel behaviour. Moreover, the use of the truncated channel Ch′R and the modified channel Ch′′R

with extra information at the receiver, required for the numerical methods to work in [1], immediately

preclude an exact characterisation of Cap(ChR) via Theorem 2.4 for any replication parameter p. As

a step towards a (potentially exact) analysis of DMSCs without computer assistance, Cheraghchi [40]

considered a different general framework for deriving good analytical upper bounds on Cap(ChR), which

may be seen as a “mean-constrained” variant of Theorem 2.4. Before we proceed, we must define the

concept of the mean-limited capacity of a DMC Ch.

Definition 2.12 (Mean-limited capacity). Given a DMC Ch with input and output alphabets X ,Y ⊆ R

and a parameter µ > 0, we define the µ-limited capacity of Ch, denoted by Capµ(Ch), as

Capµ(Ch) = sup
X:E[YX ]=µ

I(X;YX),

where the supremum is taken over all input distributions X supported in X .

Cheraghchi [40] proved the following theorem by casting the maximisation problem of Capµ(Ch) as a

convex program and applying the Karush-Kuhn-Tucker conditions to the dual program. This result

can be seen as a special case of a more general framework handling a broad class of channels with

discrete and continuous input alphabets which we discuss in Appendix B.3.

Theorem 2.5 ([40, Theorem 1], adapted). Fix a replication rule R, its associated DMC ChR, and

µ > E[R]. If there exist constants a ∈ R+
0 and b ∈ R and a distribution Y over N0 such that

DKL(Yx∥Y ) ≤ aE[Yx] + b

for all x ∈ N, then Capµ(ChR) ≤ aµ + b. Moreover, an input distribution X is capacity-achieving if
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and only if E[YX ] = µ and there exist constants a ∈ R+
0 , b ∈ R such that

DKL(Yx∥YX) ≤ aE[Yx] + b

for all x ∈ N, with equality when x ∈ supp(X). In this case, we have Capµ(ChR) = aµ+ b.

The relevance of Theorem 2.5 to sticky channels comes from the fact that, taking into account Theo-

rem 2.3, if we define λ = E[R], then we can write

Cap(ChR) = sup
L:E[L]<∞

I(L;YL)

E[L]

= sup
µ′≥1

sup
L:E[L]=µ′

I(L;YL)

µ′

= λ sup
µ≥λ

sup
L:E[YL]=µ

I(L;YL)

µ

= λ sup
µ≥λ

Capµ(ChR)

µ
.

The second equality holds because E[L] ≥ 1, since L is supported in {1, 2, . . . }. The third equality

follows from the fact that µ = E[YL] = E[R] · E[L] = λ · µ′ under the constraint that E[L] = µ′, and

the fact that we take the supremum over µ′ ≥ 1, which is equivalent to µ/λ ≥ 1. The fourth equality

follows directly from the definition of µ-limited capacity. Therefore, we have the following result.

Theorem 2.6. For any replication rule satisfying R(0) = 0 and λ = E[R] it holds that

Cap(R) = λ sup
µ≥λ

Capµ(ChR)

µ
.

Note that both Theorem 2.4 and Theorem 2.5 present conditions to verify the optimality of the can-

didate distribution Y . In the case of Theorem 2.5, if Y is the output distribution of the DMC ChR on

input some distribution X and DKL(Yx∥Y ) ≤ aE[Yx] + b with equality for all x ∈ supp(X), then we

recover the exact capacity of Capµ(ChR) for µ = E[Y ]. In general, we call the quantity

∆(x) = aE[Yx] + b−DKL(Yx∥Y )

the KL-gap of Y with respect to the line aE[Yx] + b (the line with respect to which we compute the

KL-gap will always be clear from context, so we refrain from explicitly adding it to the notation). We

may then rewrite one of the optimality conditions above as requiring that ∆(x) ≥ 0 for all x with
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equality for all x ∈ supp(X). This is an important quantity because, from experience, it appears that

candidate distributions with smaller KL-gaps lead to better capacity upper bounds [40, 2].

As we shall see in Chapter 3, we are able to analytically design for the first time candidate distributions

Y satisfying ∆(x) = 0 for all x, i.e., distributions with zero KL-gap everywhere. This means that these

distributions satisfy one of the optimality conditions of Theorem 2.5, analogous to the optimality

conditions of Theorem 2.4. Remarkably, these distributions lead to great analytical capacity upper

bounds on Capµ(ChR), and hence tight upper bounds on the capacity Cap(R) of the sticky channel via

Theorem 2.6, even improving on the previous numerical capacity upper bounds discussed above for

some parameters. Therefore, further study of these explicit distributions is a viable approach towards

a sharp analysis of the corresponding capacity without computer assistance (we discuss some concrete

next steps in Chapter 6).

Although Theorem 2.3 does not apply to general repeat channels, one can still use the frameworks

described above to derive capacity upper bounds for such channels. Perhaps the most basic way of

doing this is by modifying the repeat channel into an associated sticky-like channel with larger capacity,

which can be accomplished by marking deleted runs, and upper bounding the capacity of the latter.

This was the approach originally undertaken by Diggavi, Mitzenmacher, and Pfister [89] to derive

numerical capacity upper bounds for the deletion channel. From the perspective of the runlength

encoding, the deletion channel BDCd independently maps runs of length ℓ ≥ 1 into runs of binomial

length R(ℓ) ∼ Binℓ,1−d, outputting the empty string ε when R(ℓ) = 0. They consider the modified

deletion channel which behaves exactly like the deletion channel above, but does not omit deleted

runs, i.e., it always outputs R(ℓ) even when R(ℓ) = 0. Figure 2.1 illustrates the differences between the

two channels.

The capacity of the modified deletion channel is at least as large as that of the deletion channel, since

one can remove the 0s from the runlength encoding of the output of the modified deletion channel and

sum adjacent runlengths with the same bit value to obtain the output of the true deletion channel.

Moreover, as was the case for sticky channels, the capacity of the modified deletion channel equals

Cap(ChR), where, as before, ChR is the DMC with input alphabet N, output alphabet N0, and output

Yℓ ∼ R(ℓ) on input ℓ ∈ {1, 2, . . . }. In fact, this holds for any repeat channel, and we obtain the general

inequality

Cap(R) ≤ Cap(ChR)
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Figure 2.1: Comparison between the deletion channel and the modified deletion channel with marked
deleted runs. The underlined run of two 0s is deleted.

for all replication rules R. One could make use of either Theorem 2.4 or Theorem 2.5 to derive upper

bounds on Cap(ChR) with the help of the Jimbo-Kunisawa algorithm, similarly to what was described

for sticky channels in [32, 1].

The approach above is already good enough to derive non-trivial capacity upper bounds for the deletion

channel, and in the meantime other approaches have surfaced which lead to even better capacity upper

bounds [85, 3, 40]. In order to analyse the capacity of the geometric deletion channel, we make use

of the following tighter connection between the capacity of a repeat channel with replication rule R

and the µ-limited capacity of another associated DMC Ch′R. We then connect Ch′R to ChR and exploit

Theorem 2.5 with carefully designed candidate distributions Y to derive good analytical capacity upper

bounds on the geometric deletion channel. Notably, we obtain a proof without computer assistance

that the capacity of the geometric deletion channel is at most 0.73 bits/channel use when p is close

enough to 1.

Theorem 2.7 ([40, Theorem 4]). Fix a distribution R over N0, and let R denote R conditioned on the

event R ̸= 0. Let Ch′R denote the channel which on input 1+ ℓ for ℓ ∈ {0, 1, . . . } outputs R+
∑︁ℓ

i=1Ri,

where R and the Ri are independent and furthermore the Ri are i.i.d. according to R. Then,

Cap(R) ≤ sup
µ≥λ

Capµ(Ch
′
R)

1/α+ (µ− λ)/λ
, (2.9)

where λ = E[R], λ = E[R], and α = 1−R(0).
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In particular, we can recover the upper bound in Theorem 2.6 via Theorem 2.7 by noting that when

R(0) = 0 we have R ∼ R, λ = λ, and α = 1. We discuss the reduction used to prove Theorem 2.7,

following [40, Section 4]. The key to deriving the relevant upper bound is to interpret the behaviour

of the repeat channel as a two-stage process. Intuitively, the first stage applies only certain deletions

caused by the repeat channel. Its outcome is an intermediate string Z with the special property that

the first bit of each run is not deleted by the repeat channel. Under this conditioning, the repeat

channel behaves like the DMC Ch′R on each run of Z, which makes up the second stage. Let X denote

the input n-bit string, and X(1), X(2), . . . , X(m) denote its runs. We may assume that the repeat

channel does not delete the first input bit X(1)
1 , as this does not change its capacity. Consider the

following two stages:

1. First stage: We begin by sending X(2) through a channel which iteratively and independently

deletes each bit of X(2) with probability d = R(0). If X(2)
i is the first bit not deleted by the

channel, we let X(2)
= X(2)[i :]. Provided X(2) is completely deleted, we send next X(4) (the run

with the same bit value) through the channel above and set X(3)
= X(3). Otherwise, we send

X(3) through the channel (the run with the opposite bit value). More generally, if the i-th run

X(i) was last sent through the channel above, then we send X(i+2) next and set X(i+1) = X(i+1)

if X(i) was completely deleted, and send X(i+1) otherwise, provided they exist. After this process

is completed, we obtain a string Z = X(1)∥X(2)∥ · · · ∥X(m) with runs Z(1), Z(2), . . . , Z(M), where

M is a random variable, and corresponding runlength encoding (L1, L2, . . . , LM ).

Crucially, after this stage we may now condition the behaviour of the repeat channel on the event

that the first bit of each run Z(i) is not deleted, meaning that the repeat channel now behaves

like the DMC Ch′R on the runlength encoding of Z.

2. In the second stage, we send (L1, L2, . . . , LM ) through the DMC Ch′R. This leads to output

(L′
1, L

′
2, . . . , L

′
M ), which is distributed exactly like the runlength encoding of the output Y of the

repeat channel on input X.

To derive (2.9), one can employ Theorem 2.2 and, via the reduction above, observe that I(X;Y ) ≤

I(Z;Y ), the latter quantity being easier to upper bound (up to o(n) terms) when n→∞.
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2.5.2 Efficient coding against synchronisation errors

In the previous section, we discussed past work on deriving better bounds on the capacity of DMSCs.

Although capacity lower bounds show the existence of a coding scheme with vanishing decoding error

probability for a DMSC with a given rate, these results do not give coding schemes with efficient

encoding and decoding procedures. To complement this, a parallel line of work has focused on the

design of coding schemes with polynomial-time (in the blocklength of the code) encoding and decoding

procedures for various communication models with deletions, insertions, and replications, including

certain DMSCs. First, we make precise what we mean by an efficiently encodable and decodable

family of codes.

Definition 2.13 (Efficiently encodable and decodable code). We say a family of codes Cn ⊆ X n is

efficiently encodable if there is a constant c > 0 such that for every n the code Cn has an associated

encoding procedure Encn such that Encn(·) can be computed in time O(nc). Moreover, we say the family

of codes is efficiently decodable if there is a constant c > 0 such that every associated decoding procedure

Decn(·) can be computed in time O(nc). If a family of codes is both efficiently encodable and decodable,

we say that the family of codes is efficient.

Throughout this thesis, for the sake of convenience, we may ignore the parameterisation in the block-

length n, and simply write C to implicitly refer to all codes in the family (Cn)n∈N. The parameterisation

will be clear from context.

The study of efficient codes for correcting synchronisation errors was initiated by Sellers [95], who

studied some marker-based constructions, and Levenshtein [96], who showed that the Varshamov-

Tenengolts (VT) code [97] is able to correct one worst-case deletion or insertion of a bit. Put differently,

the binary VT code C ⊆ {0, 1}n with associated encoding/decoding procedures (Enc,Dec) has the

property that if c ∈ C with c = Enc(m) and c′ is obtained from c by either deleting one bit of c or

inserting an arbitrary bit at an arbitrary position, then it holds that Dec(c′) = m. This notion can be

generalised to multiple worst-case synchronisation errors. We begin with an auxiliary definition.

Definition 2.14 (Longest common subsequence distance). Given two strings x, y ∈ S∗, the Longest

Common Subsequence (LCS) distance between x and y, denoted by dLCS(x, y), is the minimum number

of insertions and deletions required to transform x into y.

The LCS distance between x and y can be written in terms of the longest common subsequence between
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x and y, which we denote by LCS(x, y). In general, we have

dLCS(x, y) = (|x| − |LCS(x, y)|) + (|y| − |LCS(x, y)|) = |x|+ |y| − 2|LCS(x, y)|.

We are now ready to define d-insdel correcting codes, which can correct a combination of up to d

worst-case deletions and insertions.

Definition 2.15 (Insdel correcting code). We say a code C ⊆ X n with encoding/decoding procedures

(Enc,Dec) is a d-insdel correcting code if for every c ∈ C with c = Enc(m) for some m and c′ such

that dLCS(c, c′) ≤ d, we have Dec(c′) = m.

By Definition 2.15, VT codes are efficient 1-insdel correcting codes with about log n bits of redundancy,

where n denotes the blocklength of the code, which is nearly optimal [96]. Surprisingly, the generalisa-

tion of Levenshtein’s result to a larger number of worst-case deletions and insertions with similarly low

redundancy remained elusive for several decades. Brakensiek, Guruswami, and Zbarsky [98] were the

first to construct efficient binary d-insdel correcting codes for d ≥ 2 with redundancy o(n). Their codes

have redundancy O(d2 log d · log n), while it is known that the redundancy must be Ω(d log n). This

result was subsequently improved for d = 2 by Gabrys and Sala [99] and Sima, Raviv, and Bruck [100],

achieving redundancy 8 log n+ O(log log n) and 7 log n+ o(log n), respectively, and for arbitrary con-

stant d by Sima and Bruck [101], achieving redundancy 8d log n+o(log n), with efficient decoding from

worst-case deletions only.4 Recently, Guruswami and Håstad [102] gave improved efficiently encodable

codes with redundancy approximately 4 log n when d = 2, again with efficient decoding from worst-case

deletions.

For the general case where d is an arbitrary function of the blocklength n, with particular interest given

to the setting where d = cn for some constant c > 0, there are also some known results. Schulman and

Zuckerman [103] constructed efficient binary d-insdel correcting codes with positive rate when d ≤ cn

for a small enough constant c > 0. This was later improved by Guruswami and Wang [104], with an

efficient decoder for worst-case deletions only. They constructed efficient codes with rate 1−O(
√
c·log c)

correcting d = cn worst-case deletions for a small enough constant c > 0. In particular, the rate of these

codes approaches 1 as the fraction of errors c approaches 0. This result was subsequently extended

to the setting with d worst-case deletions and insertions by Guruswami and Li [105]. Nearly-optimal

4A code whose codewords can be recovered from up to d worst-case deletions is also d-insdel correcting. However,
an efficient decoder for up to d worst-case deletions does not immediately translate to an efficient decoder from any
combination of up to d worst-case deletions and insertions.
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efficient binary d-insdel-correcting codes for general d were obtained concurrently by Cheng, Jin, Li,

and Wu [19] and Haeupler [20] via connections to deterministic document exchange protocols. We

state one of their results below.

Theorem 2.8 ([20, Theorem II.3], adapted). For every m and d < m there exists an efficient binary

systematic5 d-insdel correcting code with message size m and blocklength n = m + r with redundancy

r = Θ
(︁
d log2 (m/d) + d

)︁
.

A related fundamental question is determining the largest constant c⋆ > 0 such that there exist positive

rate binary (d = c⋆n)-insdel correcting codes with blocklength n. First, we must have c⋆ < 1/2, since

otherwise we can delete either all 0s or all 1s of a given codeword. On the opposite end, the code of

Schulman and Zuckerman [103] implies that c⋆ > 0. This lower bound was later improved by Kash,

Mitzenmacher, Thaler, and Ullman [106] and Bukh, Guruswami, and Håstad [107]. The latter work

showed that
√
2− 1 < c⋆ < 1/2, and gave an efficient binary code with positive rate that can correct

a fraction of worst-case deletions arbitrarily close to
√
2− 1.

Although the focus of this thesis related to this topic lies in efficient binary codes, we remark that

several interesting results regarding efficient d-insdel correcting codes are also known over larger (both

constant and non-constant) alphabet sizes. For example, Guruswami and Wang [104] showed that by

increasing the alphabet size to poly(1/c) it is possible to construct efficient codes correcting d = (1−c)n

worst-case deletions with rate poly(c), and Guruswami and Li [105] extended this result to worst-case

deletions and insertions. The state-of-the-art results in the large-alphabet setting were obtained via

the introduction of synchronisation strings by Haeupler and Shahrasbi [108], along with a series of

subsequent works [109, 110, 111, 112] (see also the survey [113]). Besides the results covered here, there

is a large amount of literature on several types of efficient codes appropriate for different practically-

motivated models with synchronisation errors. The survey of Mercier, Bhargava, and Tarokh [37]

contains a detailed account of this line of work.

In Chapter 5, we will be interested in the problem of designing efficient codes that can correct a

constant rate of i.i.d. random deletions with high probability. Making a bridge between worst-case and

random deletions, Guruswami and Li [114] studied the existence of (not necessarily efficient) codes

with positive rate correcting large fractions of oblivious and online deletions. In the model of oblivious

deletions, an n-bit codeword is corrupted by dn deletions for some constant d > 0, and the positions of

5A code C is said to be systematic if its encoding procedure Enc satisfies Enc(s) = s∥Enc′(s) for some function Enc′.
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the deletions are oblivious to the codeword itself. Online deletions correspond to the setting where an

adversary is allowed to decide whether the i-th bit ci of the codeword c is deleted (up to a budget of dn

deletions) based only on the values of c1, c2, . . . , ci. With respect to random deletions, Guruswami and

Li [115] complemented the result of Mitzenmacher and Drinea [41], which states that C(d) ≥ 1−d
9 for

all d ∈ [0, 1], by constructing efficient binary codes for the BDCd with rate 1−d
120 and vanishing decoding

error probability. This was subsequently improved by Con and Shpilka [116], who designed efficient

binary codes for the BDCd with rate 1−d
16 . Moreover, they also designed the first efficient binary codes

for the Poisson-repeat channel, which, as we have seen, is closely connected to the deletion channel.

On a related note, polar codes have been constructed for the deletion channel with constant deletion

probability under a Markov input source [117], which have been shown to achieve the capacity of

the deletion channel [77]. Furthermore, some works have proposed practical codes for DMSCs whose

performance is evaluated empirically (see [37, Section III.J] for a detailed account).

2.5.3 Coding with multiple traces and trace reconstruction

In the previous sections, we have focused almost entirely on settings where a (usually coded) string

x is sent through a channel, and the receiver must recover x with high probability from the channel

output. On the other hand, recent developments in DNA-based data storage with nanopore-based

sequencing [15, 16] provide practical motivation for the rigorous study of an extension of the setting

above where the receiver has access to t ≥ 1 outputs of the channel on the same input x. The process

for reading data in such storage systems is illustrated in Figure 1.4, and the goal is to obtain a good

tradeoff between the rate of the coding scheme used to encode the data in the system and the number

of traces required to reconstruct the input with high probability (with higher rate and fewer traces

being more desirable). Some coding schemes were proposed in [15, 16]. However, they are designed

for fixed parameters only, and their decoding procedures and the corresponding analysis are heavily

based on heuristics and experimental evidence, meaning that these coding schemes have no provable

guarantees even in simplified error models (e.g., where the DNA sequencing process corrupts each

read with i.i.d. deletions). The decoding procedure from [15] is based on multiple sequence alignment

algorithms, which are notoriously difficult to analyse rigorously, and the decoding procedure from [16]

uses a heuristic variant of a well-known trace reconstruction algorithm (which we shall discuss below)

that is only guaranteed to work when the error rate vanishes as the input blocklength increases.
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This situation naturally leads us to consider the problem of designing efficient, high-rate coding schemes

with provable guarantees regarding reliable decoding with access to multiple, but relatively few, channel

outputs corrupted by a constant rate of i.i.d. synchronisation errors, which we introduce and study

in Chapter 5. Compared with the single-channel output setting discussed in Sections 2.5.1 and 2.5.2,

much less is known about coding schemes in the multi-trace setting. However, several related problems

have been studied, and we survey them below. Some results will be discussed in detail, as they will be

useful in Chapter 5. This section is an expansion of material from [5].

The problem above fits into the more general framework of what we may call multi-trace problems. In

a general t-trace model, an input string x is transformed into t traces

Y (1), Y (2), . . . , Y (t)

according to some combinatorial or probabilistic rule. Several realisations of this general setting have

been studied in the literature. For example, the traces may be obtained by sending x through a

DMSC, in which case the Y (i) are i.i.d. according to the channel output distribution Yx. Alternatively,

one may take a combinatorial viewpoint, and assume that the t traces are obtained by corrupting x

with t different worst-case error patterns (with a bounded number of errors). Additionally, we may

distinguish the cases where the number of available traces t is fixed and where t may vary, say with the

length of x. These settings were first studied by Levenshtein [118, 119], who was mostly interested in

the problem of determining the minimum number of traces t = t(n) required to reconstruct the length

n input string x either exactly (in the combinatorial setting), or with a given error probability (when

x is sent through a memoryless channel).

In the combinatorial setting, Levenshtein considered the case where the traces (Y (i))i∈[t] are obtained

by corrupting x with t arbitrary, but different, patterns of at most d errors, including substitutions,

deletions, and insertions. For example, in the case of substitutions it was shown in [118] that every

x ∈ {0, 1}n can be recovered exactly from any set of t(n) different error patterns for

t(n) = 1 + 2

d−1∑︂
i=0

(︃
n− 1

i

)︃
,
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while in the case of deletions it was shown that every x ∈ {0, 1}n can be recovered exactly from

t(n) = 1 + 2
d−1∑︂
i=0

(︃
n− d− 1

i

)︃

traces. These results were also generalised for strings over any finite alphabet, and simple reconstruction

algorithms using the optimal number of traces were described in [119] for deletions and insertions of

arbitrary symbols. In the case of worst-case insertions, the problem above was generalised by Sala,

Gabrys, Schoeny, and Dolecek [120]. More precisely, they consider a coded version of Levenshtein’s

problem, where it is now assumed that a length n string x is a codeword of an (ℓ−1)-insdel-correcting q-

ary code, and, as before, the main goal is to determine the minimum number of traces t(n, ℓ) required to

recover x exactly, where the traces are obtained by corrupting x with arbitrary, but different, patterns

of at most d insertions. One can recover Levenshtein’s original problem (for the case of insertions)

from the formulation above by setting ℓ = 1. They succeed in giving an upper bound for t(n, ℓ) that is

tight when the underlying code is arbitrary. Gabrys and Yaakobi [121] studied the analogous problem

in the case of deletions, where x is assumed to belong to a 1-insdel-correcting code. Horovitz and

Yaakobi [122] focused on a more general setting where some of the traces may be affected by more

errors than others. Similarly to previous works, they begin by studying the minimum number of traces

required to exactly recover the input string x when it is assumed that x is a codeword of a code

with minimum distance α, where the notion of distance depends on the type of errors6. Furthermore,

they also study a variant of the problem above in the case where the number of traces t is fixed.

Namely, for a fixed number of traces t, they are interested in the smallest minimum distance α of the

code which ensures that every codeword can be exactly recovered from t traces. Finally, orthogonal

generalisations of Levenshtein’s model have also been studied: Yaakobi and Bruck [123] consider a

generalisation under worst-case substitutions in connection to information retrieval, and the problem

of reading data in racetrack memories has been modelled as trace reconstruction under worst-case

deletions and insertions with certain correlations between traces [12, 13, 14].

As mentioned above, the probabilistic setting where the t traces (Y (i))i∈[t] of x are i.i.d. according

to the output distribution Yx of some channel Ch on input x was first studied by Levenshtein [118],

who focused on the case where Ch is a DMC. There, the goal was to determine, given targets ε and

δ, the minimum number of traces t(n, ε, δ) required to obtain x′ such that dH(x, x′) ≤ δ, where dH

denotes the Hamming distance, with probability at least 1 − ε. This generalises the notion of exact

6We say a code C has minimum distance α according to some distance function ρ(·, ·) if minc,c′∈C:c̸=c′ ρ(c, c
′) = α.
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(probabilistic) recovery, which corresponds to the case where δ = 0. Later, Batu, Kannan, Khanna,

and McGregor [17], motivated by applications in computational biology, considered a similar problem,

called trace reconstruction, where Ch is the deletion channel. Similarly to the work of Levenshtein, the

goal is to design (preferably efficient) reconstruction algorithms which recover the input string x from

as few traces as possible with high probability according to some meaningful notion of reconstruction.

They considered two main settings: Worst-case trace reconstruction, where the error probability of

the reconstruction algorithm must be small for every input x, and average-case trace reconstruction,

where the error probability of the reconstruction algorithm must be small on average over all inputs

x. We formally define these two notions below. Note that although we only provide definitions for the

case of binary strings, these can be immediately generalised to strings over arbitrary finite alphabets.

Definition 2.16 (Worst-case trace reconstruction algorithm, [17]). An algorithm Rec is said to be a

(t = t(n), d)-worst-case trace reconstruction algorithm if for n large enough and all x ∈ {0, 1}n it holds

that

Pr[Rec(Y (1)
x , Y (2)

x , . . . , Y (t)
x ) = x] ≥ 1− 1/n,

where the (Y
(i)
x )i∈[t] are i.i.d. according to the output distribution of BDCd on input x.

Definition 2.17 (Average-case trace reconstruction algorithm, [17]). An algorithm Rec is said to be a

(t = t(n), d)-average-case trace reconstruction algorithm if for n large enough it holds that

2−n ·
∑︂

x∈{0,1}n
Pr[Rec(Y (1)

x , Y (2)
x , . . . , Y (t)

x ) = x] ≥ 1− 1/n,

where the (Y
(i)
x )i∈[t] are i.i.d. according to the output distribution of BDCd on input x.

Some works have studied a version of trace reconstruction with a fixed number of traces. Haeupler and

Mitzenmacher [124] considered the capacity of the t-trace deletion channel when the deletion probability

d → 0, which corresponds to the optimal rate of reliable information transmission when the receiver

observes a fixed number t of independent traces. They extended results of Kalai, Mitzenmacher, and

Sudan [78] and Kanoria and Montanari [79] originally obtained for the case t = 1, showing that the

capacity is at least

1− ct · dt log(1/d)−O(dt)

when d → 0 for fixed t, where ct > 0 is an explicit constant depending only on t. This rate is

achievable by a uniform input distribution. In another direction, Srinivasaradhan, Du, Diggavi, and
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Fragouli [125, 126] proposed maximum likelihood and maximum a posteriori algorithms for trace

reconstruction from a fixed number of traces, and empirically study their performance. This problem

was also studied by Sabary, Yaakobi, and Yucovich [127] for the case of two traces.

2.5.3.1 Average-case trace reconstruction

We begin by surveying previous work on average-case trace reconstruction. Batu, Kannan, Khanna,

and McGregor [17] were the first to obtain results in this setting by introducing and analysing the

Bitwise Majority Alignment (BMA) algorithm, a variant of which is used in the heuristic decoder for

DNA-based data storage from [16].

The BMA algorithm is simple to describe. We start by looking at the first bit of every trace, and use

the majority of all such t bits as the guess for the first bit of the input x. To guess the second bit of

x, we look at the second bit of all the traces whose first bits coincided with the first majority, and at

the first bit of all the other traces. Here, we are making the bet that in almost all traces which agree

with the majority the first bit of x was not deleted, and that in all other traces the first bit of x was

deleted (and hence the first bit of these traces is a later bit of x). More generally, suppose we observe

t traces Y (1), . . . , Y (t) and set up a counter ci = 1 for each trace Y (i). Then, the BMA algorithm has

n rounds, guesses one bit of x per round, and proceeds as follows in round j:

1. Let mj denote the majority of Y (i)
ci for i ∈ [t]. Then, set x′j = mj ;

2. For each i ∈ [t], if ci = mj , set ci ← ci + 1;

3. Go back to Step 1 with j ← j + 1.

It was shown in [17] that the BMA algorithm is an efficient (i.e., running in time polynomial in n)

(t, d)-average-case trace reconstruction algorithm with t = c1 log n and d ≤ c2
logn for absolute constants

c1, c2 > 0. This result was extended in [128] to a setting where each bit of x may be corrupted not

only by i.i.d. deletions, but also by i.i.d. geometric insertions of random bits and substitutions. In

particular, they show that O(log n) traces are also enough in this more general setting whenever the

deletion and insertion probabilities are O(1/ log2 n), and the substitution probability is an arbitrary

constant. An improvement of these results, allowing deletion and insertion probabilities O(1/ log n) for

average-case trace reconstruction with t = O(log n) traces, was obtained subsequently by Viswanathan

and Swaminathan [129].
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Later, a breakthrough result by Holenstein, Mitzenmacher, Panigrahy, and Wieder [59] showed that

efficient average-case trace reconstruction is possible for small enough constant deletion probability d

from t = poly(n) traces. This was then improved in the “large alphabet setting” by McGregor, Price,

and Vorotnikova [130], who showed that exp(
√
log n · poly(log log n)) traces are sufficient for average-

case trace reconstruction when the input alphabet has size q = Θ(log n) and the deletion probability

d is constant.7 These results were improved further, first by work of Peres and Zhai [131], who proved

that t = exp(O(
√
log n)) traces are sufficient for average-case trace reconstruction of binary strings

for any d < 1/2. Subsequently, Holden, Pemantle, and Peres [57] improved the result of [131] to

t = exp(O(log1/3 n)) traces and extended it to all constant d ∈ (0, 1). We note that this result holds

not only in the case of i.i.d. deletions, but also when i.i.d. deletions are combined with the insertion of

a geometric number of uniformly random bits.

Interestingly, there is a different coding-theoretic perspective of results in average-case trace recon-

struction that ties with the question of designing coding schemes that can be reliably decoded with

access to multiple, but few, traces of a codeword corrupted by i.i.d. deletions. By an averaging argu-

ment, every (t, d)-average-case trace reconstruction algorithm implies the existence of a family of codes

C ⊆ {0, 1}n with 1 bit of redundancy satisfying the following property: There exists a reconstruction

algorithm Rec such that for every codeword c ∈ C we have

Pr[Rec(Y (1)
c , Y (2)

c , . . . , Y (t)
c ) = c] ≥ 1− 2/n,

where the Y (i)
c are i.i.d. according to the output distribution of BDCd on input c. However, we remark

that although the code C may be efficiently decodable from t traces, average-case trace reconstruction

results do not guarantee that C is efficiently encodable. This perspective casts average-case trace

reconstruction as a subset of what we will come to call coded trace reconstruction in Chapter 5. In

contrast with the results above, and as previously mentioned, we will be mostly interested in designing

efficiently encodable and decodable high-rate coding schemes that can be decoded from few traces.

Notably, we will make use of techniques from average-case trace reconstruction to do so, in particular

those from [59], which we discuss below and in Chapter 5.

The HMPW trace reconstruction algorithm. The discussion below is based on [59], and is an

adaptation of the exposition already found in [5]. We begin by introducing the important concept of
7We note that trace reconstruction becomes easier as the alphabet size grows. We discuss this in more detail in

Chapter 5.
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subsequence-unique strings.8

Definition 2.18 (w-subsequence-unique string). A string x ∈ {0, 1}n is said to be w-subsequence-

unique if for every a, b ∈ [n] such that a+ w, b+ 1.1w ≤ n+ 1 and either a < b or b+ 1.1w < a+ w,

we have that the substring x[a, a+ w) is not a subsequence of x[b, b+ 1.1w).

We remark that the constant 1.1 in Definition 2.18 is arbitrary, and can be replaced by any other

constant close to 1. Intuitively, a string x is w-subsequence-unique if no length w substring of x

appears as a subsequence of another slightly longer substring of x, except for the trivial case where

the longer substring contains the shorter one. Note that these strings have been defined under the

name “substring-unique” in [59]. We chose to change this name to avoid confusion with a different

definition under the same name from [132]. The following result about subsequence-unique strings was

established in [59].

Theorem 2.9 ([59, Theorem 2.2]). For w = 100 log n and every small enough constant deletion

probability d there exists an algorithm that reconstructs every w-subsequence-unique string x ∈ {0, 1}n

with probability at least 1− exp(−Ω(n)) from poly(n) traces in time poly(n).

Since a uniformly random string is w-subsequence-unique for w = 100 log n with high probability [59],

Theorem 2.9 leads to an average-case trace reconstruction algorithm using polynomially many traces

for constant deletion probability. The trace reconstruction algorithm that yields this theorem, which

we call the HMPW algorithm, will be a key catalyst behind our results on coded trace reconstruction

in Chapter 5, and we provide a high-level discussion of the main ideas present in the algorithm below.

A more detailed analysis can be found in Section 5.4.

As already mentioned in [59], the HMPW algorithm may be seen as an iterative voting-based trace

reconstruction, just like the earlier BMA algorithm from [17]. The intuitive difference between the two

methods is that the HMPW algorithm only allows a subset of “good” traces to vote on the value of the

next bit, while we saw that the BMA algorithm allows every trace to vote equally.

Fix a w-subsequence-unique string x ∈ {0, 1}n. The HMPW algorithm begins with a bootstrapping

step which recovers the first O(log n) bits of x with probability at least 1− exp(−Ω(n)) using poly(n)

traces and time. This bootstrapping step follows from the more general algorithm in the lemma below.

8The definition of w-subsequence unique string presented here differs slightly from the one found in the conference
version of [59], but leads only to minor modifications in the analysis of the HMPW trace reconstruction algorithm.
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Lemma 2.10 ([59, Theorem 2.1], adapted). Suppose that d < 1/3. Then, there is an algorithm which,

for an arbitrary string x ∈ {0, 1}n, recovers the first h bits x1, x2, . . . , xh with probability at least 1− ε

using O(he14dh log(1/ε)) time and traces of x.

We can now assume we have already recovered the first i − 1 bits x1, x2, . . . , xi−1 for i = Ω(log n),

and our goal is to recover xi with high probability using this knowledge from poly(n) traces and time,

where the success probability, the number of traces, and the runtime are independent of i. Note that

we cannot afford to run the bootstrapping algorithm from Lemma 2.10 to recover more than O(log n)

bits of x, since we would need a superpolynomial number of traces. Therefore, we require a different

approach going forward.

To recover xi from the previous bits and additional traces, the HMPW algorithm considers a length-w

“anchor” substring x[i − v − w, i − v), for an appropriate parameter v, and retains only the traces

which feature this anchor as a substring, i.e., traces that have a matching with x[i− v − w, i− v), as

formalised in the following definition.

Definition 2.19 (Matching). Fix a string x ∈ {0, 1}n and let T denote a trace of x. Then, we say

that there is a matching of x[a, b) in T if there exists some u such that T [u− (b− a), u) = x[a, b).

After setting w and v appropriately, the two main insights regarding matchings are that (i) matchings

of x[i− v−w, i− v) occur in a sizeable fraction of the traces, meaning poly(n) traces suffice to collect

polynomially many “good” traces matching x[i−v−w, i−v), and (ii) by the w-subsequence-uniqueness

of x, the trace bits close to the end of the matching must come from positions in x close to i−v, unless

there are many deletions in the trace T . Put differently, the second property ensures that the first bits

of the suffix Suff = T [u :] come from positions of x close to i− v with high probability. Consequently,

it is possible to show that for an appropriate j ≈ v, the value of the bit Suffj is markedly influenced

by the value of xi, in the sense that it satisfies a threshold property depending on whether xi = 0 or

xi = 1: There are bounds B1 > B0 +
1

poly(n) such that

Pr[Suffj = 1|xi = 1] ≥ B1 > B0 ≥ Pr[Suffj = 1|xi = 0].

This means that we can recover xi with high probability by using poly(n) good traces to estimate

Pr[Suffj = 1], B1, and B0 to within sufficiently small additive error, and checking whether the estimate

is closer to B1 (in which case we should guess xi = 1) or B0 (in which case we should guess xi = 0).

By repeating this procedure for the remaining i ≤ n, the HMPW algorithm yields Theorem 2.9.
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2.5.3.2 Worst-case trace reconstruction

Recalling Definitions 2.16 and 2.17, it is clear that worst-case trace reconstruction is significantly

more demanding than average-case trace reconstruction, because in the former we require that the

reconstruction algorithm succeed with high probability for an arbitrary input string. Therefore, it is

not surprising that the known results about worst-case trace reconstruction are substantially weaker

than the state-of-the-art algorithms for average-case trace reconstruction.

The first result on worst-case trace reconstruction was obtained by Batu, Kannan, Khanna, and McGre-

gor [17], who showed that a modified version of the BMA algorithm described above is a (t, d)-worst-case

trace reconstruction algorithm for d = O(n−(1/2+ε)) and t = O(n log n), where ε > 0 is an arbitrary

constant. This result was extended to worst-case trace reconstruction from deletions and insertions

of strings without long runs by Kannan and McGregor [128]. Recently, Chen, De, Lee, Servedio, and

Sinha [133] improved the result from [17] by showing that poly(n) traces suffice for worst-case trace

reconstruction when d = O(n−(1/3+ε)) for an arbitrary constant ε > 0. The first non-trivial reconstruc-

tion algorithm for worst-case trace reconstruction with any constant deletion probability d < 1 was

obtained by Holenstein, Mitzenmacher, Panigrahy, and Wieder [59], showing that exp(
√
n ·poly(log n))

traces are enough by analysing a restricted class of reconstruction algorithms, called mean-based al-

gorithms, that only use single-bit statistics of the trace distribution. We discuss such algorithms in

more detail below. Their analysis was subsequently improved in an elegant way concurrently by De,

O’Donnell, and Servedio [60] and Nazarov and Peres [61], who showed that exp(O(n1/3)) traces are

both sufficient and necessary for mean-based algorithms. Moreover, they showed that exp(O(n1/3))

traces are also sufficient for mean-based trace reconstruction in a more general channel model combin-

ing deletions, geometric insertions of random bits, and substitutions. The result above in the case of

i.i.d. deletions only was subsequently extended to some settings where different input coordinates or

symbols may be deleted with different probabilities by Hartung, Holden, and Peres [134]. While this

thesis was being written, Chase [135] improved the best upper bound on worst-case trace reconstruction

to exp(n1/5poly(log n)) traces by going beyond mean-based reconstruction algorithms, and Grigorescu,

Sudan, and Zhu [136] studied the performance of mean-based algorithms when distinguishing strings

at small Hamming or edit distance from each other.

Mean-based trace reconstruction. We proceed to discuss the approach of [60, 61] towards worst-

case trace reconstruction in more detail, as we will extend it to handle more general replication errors
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in Chapter 5. We will focus on the simpler case where the goal is to distinguish between two distinct

arbitrary strings x, x′ ∈ {−1, 1}n. In other words, we observe traces from a string a that is either x

or x′, and we wish to correctly guess with high probability whether a = x or a = x′. Observe that we

have changed the alphabet from {0, 1} to {−1, 1}. This is without loss of generality, and will make for

clearer exposition. An upper bound on the number of traces required to distinguish between arbitrary

x ̸= x′ can then be translated into a similar upper bound on the number of traces for worst-case trace

reconstruction.

The traces of an input string x ∈ {−1, 1}n are i.i.d. according to the output Yx of the deletion channel

BDCd on input x. Noting that |Yx| ≤ n always, we can consider a padded version of Yx, which we

denoted by Y ′
x, that is obtained by padding Yx with n− |Yx| zeros. We can then define the mean trace

of x as the vector µx ∈ Rn given by

µx =
(︁
E[(Y ′

x)1],E[(Y
′
x)2], . . . ,E[(Y

′
x)n]

)︁
,

where (Y ′
x)i denotes the i-th coordinate of Y ′

x. Then, mean-based reconstruction algorithms attempt to

distinguish between a = x and a = x′ by first estimating µa from the t traces, and then making some

decision based on this estimate of µa only. By standard arguments, obtaining upper and lower bounds

on the number of traces required for such mean-based algorithms is equivalent to obtaining upper and

lower bounds on the quantity ∥µx − µx′∥1. Both De, O’Donnell, and Servedio [60] and Nazarov and

Peres [61] show that

∥µx − µx′∥1 ≥ exp(−Cn1/3) (2.10)

for every x ̸= x′, where C is an absolute constant independent of x, x′, and n, and that this is tight,

leading to the following result.

Theorem 2.10 ([60, 61]). For every n and constant deletion probability d < 1 there exists a (t, d)-

worst-case trace reconstruction algorithm for t = exp(O(n1/3)) with error probability exp(−n) running

in time exp(O(n1/3)). Moreover, every mean-based trace reconstruction algorithm requires exp(Ω(n1/3))

traces to be successful with probability at least 3/4.

We describe how the lower bound in (2.10) is obtained in [60, 61], which leads to an upper bound

on the number of traces required by mean-based algorithms. Deriving the desired time complexity

requires a slightly more general, but very similar, argument. We defer this discussion to Chapter 5.
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First, to every x ∈ {−1, 1}n we can associate the polynomial Px over the complex numbers satisfying

Px(z) =
n∑︂

i=1

xiz
i−1

for z ∈ C. In the same way, we can associate to x its mean trace polynomial P x defined as

P x(z) =
n∑︂

i=1

(µx)iz
i−1.

The key result proved in [60, 61] to bound ∥µx−µx′∥1 via this approach is that Px and P x are related

through a change of variable. Namely, for every z ∈ C it holds that

Px(z) = (1− d) · P x(d+ (1− d)z). (2.11)

Then, with (2.11) in mind, one hopes to obtain a suitable lower bound on ∥µx−µx′∥1 by lower bounding

|Px(z) − Px′(z)| for a suitable choice of z. An important property of Px(z) − Px′(z) is that, due to

linearity, it satisfies Px(z) − Px′(z) = 2p(z), where p is a Littlewood polynomial : Its coefficients lie in

{−1, 0, 1}. The following result of Borwein and Erdélyi provides such a lower bound on small subarcs

of the unit circle for general Littlewood polynomials.

Lemma 2.11 ([137]). There is an absolute constant c > 0 such that for any nonzero Littlewood

polynomial p and every L ≥ 1 it holds that

max
z=eiφ:|φ|≤ π

L

|p(z)| ≥ exp(−cL).

By Lemma 2.11, there exists zL such that |Px(zL) − Px′(zL)| ≥ exp(−cL) and zL = eiφ for |φ| ≤ π
L .

Using the fact that |d+ (1− d)zL| = 1 +O(1/L2) and (2.11), we conclude that

exp(−cL) ≤ |Px(zL)− Px′(zL)|

= (1− d)
⃓⃓
P x(d+ (1− d)zL)− P x′(d+ (1− d)zL)

⃓⃓
≤ ∥µx − µx′∥1 · exp(O(n/L2)),

and the desired lower bound on ∥µx − µx′∥1 follows by setting L = n1/3. Finally, relying on results

from [138], it can be seen that the analysis above is tight up to absolute constants in the exponent.
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2.5.3.3 Lower bounds for trace reconstruction

In the previous sections, we surveyed the design of reconstruction algorithms for trace reconstruction.

However, there has also been some work on general lower bounds on the number of traces required by

these algorithms.

The first lower bound for worst-case trace reconstruction was proved by Batu, Kannan, Khanna, and

McGregor [17], who gave a simple argument that Ω(nd(1− d)) traces are required for worst-case trace

reconstruction for any deletion probability d. This lower bound can be derived by studying the number

of traces required to distinguish between the strings 1n/2−10n/2+1 and 1n/2+10n/2−1. The first lower

bound for average-case trace reconstruction was proved by McGregor, Price, and Vorotnikova [130],

who showed that Ω(log2 n) traces are required for any constant deletion probability d > 0. There is a

general way of transforming a lower bound for worst-case trace reconstruction into a lower bound for

average-case trace reconstruction, which so far has been the only way previous lower bounds in the

latter setting. The two lower bounds above were improved by Holden and Lyons [139], who gave the

first superlinear lower bound for worst-case trace reconstruction of Ω
(︂

n5/4
√
logn

)︂
traces by analysing a

more complex pair of strings. This lower bound then immediately implies an improved lower bound

of Ω
(︂

log9/4 n√
log logn

)︂
traces for average-case trace reconstruction. The analysis of Holden and Lyons was

subsequently refined by Chase [140], leading to improved lower bounds of Ω
(︂

n3/2

log7 n

)︂
traces for worst-

case trace reconstruction and Ω
(︂

log5/2 n
(log logn)7

)︂
traces for average-case trace reconstruction. Note that

there is currently a large gap between upper and lower bounds for trace reconstruction in both the

worst-case and average-case settings.

2.5.3.4 Related models

Besides the results discussed above, there has also been some work on other models related to both

trace reconstruction over channels with deletions and DNA-based data storage. We briefly discuss

them here.

Some works have focused on studying other theoretical models which attempt to capture different

aspects of DNA-based data storage. Magner, Duda, Szpankowski, and Grama [33] model nanopore-

based sequencing as trace reconstruction over general sticky channels (which is more approachable than

trace reconstruction over channels with deletions), and obtained some results regarding the number of

traces required for reconstruction. Mao, Diggavi, and Kannan [141] study the capacity of nanopore-
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based sequencing, but focus on more low-level aspects of this technology and consider an incomparable

model for reconstruction. A series of works have been motivated by DNA-based data storage systems

that employ different sequencing techniques, both in the setting of worst-case errors [142, 143, 144, 145]

and random errors [146, 147, 148, 149, 150, 151, 152, 153]. Roughly speaking, in the model considered

by these works the input string is broken up into small blocks, each of which is corrupted by a bounded

number of worst-case errors (deletions, insertions, or substitutions). The output of the channel is a

random permutation of all, or a subset of, the corrupted blocks, meaning in particular that the receiver

does not have any information about which corrupted block corresponds to the i-th block of the input

string. Another reconstruction problem motivated by DNA-based data storage which has received

significant attention recently is that of reconstructing a string given some information about its set of

substrings [154, 155, 132, 156, 157, 158]. These models are incomparable to trace reconstruction and

the coded trace reconstruction problem we study in Chapter 5.

Another set of works has focused on modifications or extensions of the trace reconstruction problem.

Ban, Chen, Freilich, Servedio, and Sinha [159] introduced the problem of population recovery over

the deletion channel, a generalisation of trace reconstruction where the input string is now sampled

independently from a fixed distribution for each trace, and the goal is to approximate this distribution

in statistical distance from as few traces as possible. Their results were subsequently improved by

Ban, Chen, Servedio, and Sinha [160] and Narayanan [161]. Other orthogonal generalisations of trace

reconstruction have been studied. Davies, Racz, and Rashtchian [162] studied trace reconstruction

over trees (in this setting, the original trace reconstruction problem corresponds to reconstruction over

paths). Krishnamurthy, Mazumdar, McGregor, and Pal [163] studied trace reconstruction of matrices,

and also trace reconstruction of sparse vectors. Chen, De, Lee, Servedio, and Sinha [164] studied

a smoothed version of worst-case trace reconstruction where a worst-case string is corrupted by an

arbitrary constant rate of i.i.d. substitutions. They show that in this case poly(n) traces and time

are enough, in contrast with exponentially many traces in the worst-case setting. Narayanan and

Ren [165] studied trace reconstruction combined with random cyclic shifts. Sabary, Yucovich, Shapira,

and Yaakobi [166] studied the problem of recovering a good approximation in edit distance of the input

string with few traces. Bhardwaj, Pevzner, Rashchtian, and Safonova [167] survey trace reconstruction

variants relevant to computational biology. Some approximate notions of trace reconstruction have

been studied by Davies, Racz, Rashtchian, and Schiffer [168].



Chapter 3

Capacity bounds for synchronisation

channels

In this chapter, we derive analytical capacity upper bounds for the geometric sticky channel and the

geometric deletion channel. The sharp analytical bounds we obtain for the geometric sticky channel

are a by-product of the explicit candidate distributions we design for Theorem 2.5 with zero KL-gap

everywhere, which are a first step towards a computer-unaided treatment of this channel. They also

improve upon previous bounds for some range of the replication parameter. With respect to the geo-

metric deletion channel, we modify the original approach of [40] for designing candidate distributions,

leading to generally improved analytical capacity upper bounds. Under a plausible conjecture, we

show numerically that these improvements are significant over a large range of parameters, and thus

deserve further study. These ideas will also prove useful in the derivation of improved capacity upper

bounds for the discrete-time Poisson channel in Chapter 4. We also use these techniques to give a

proof without computer assistance that the capacity of the geometric deletion channel is at most 0.73

bits/channel use in the large replication regime p→ 1.

We present our sharp analytical capacity upper bounds for the geometric stick channel in Section 3.1.

Then, we study the capacity of the geometric deletion channel in Section 3.2.

The material presented in this chapter is based on [2] with minor modifications to improve exposition

and consistency with the rest of this thesis.

In order to avoid dealing with several leading constants in intermediate computations and results, we

83
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will be working with information-theoretic quantities taken with respect to the natural logarithm ln

instead of the base-2 logarithm log as introduced in Section 2.4. For each information-theoretic quan-

tity, such as the Kullback-Leibler divergence DKL, the mutual information I, the Shannon entropy H,

and the binary entropy function h, we denote its corresponding version under the natural logarithm by

D
(e)
KL, I

(e), H(e), and h(e), respectively. In general, going from the base-e quantity to the corresponding

base-2 quantity is done by dividing the former by ln 2.

3.1 Analytical capacity upper bounds for the geometric sticky chan-

nel

Given that excellent numerical capacity upper bounds exist for sticky channels due to their special

structure [32, 1], it is natural to wonder whether an analytical approach to the capacity of these

channels would yield equally sharp analytical capacity upper bounds, or even succeed in determining

the exact capacity of such channels.

In this section, we make significant progress towards a complete conceptual understanding of the

capacity of the geometric sticky channel. Based on Theorems 2.6 and 2.5, we design for the first time

a family of candidate distributions for Theorem 2.5 with zero KL-gap everywhere. This means that

every distribution Y in this family satisfies

D
(e)
KL(Yx∥Y ) = aE[Yx] + b

for all x ∈ N and some a, b ∈ R. In other words, we have KL-gap ∆(x) = 0 for all x. Therefore,

these distributions provably satisfy one of the optimality conditions from Theorem 2.5. Remarkably,

previous attempts towards achieving this for channels with deletions in [40] failed, suggesting one

more fundamental dichotomy between repeat channels with and without deletions. We note also that

previous works on numerical capacity upper bounds for sticky channels [32, 1], which make use of the

(equivalent) framework from Theorem 2.4, never explicitly considered the slackness with which the

analogous constraints in Theorem 2.4 are satisfied by the distributions they design.

Our result suggests a promising approach for determining the exact capacity of the geometric sticky

channel, and leaves open the exciting possibility that an adaptation of our techniques leads to dis-

tributions which are also realisable as channel output distributions. Regardless, from experience, the
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fact that the candidate distributions have zero KL-gap suggests that they should yield sharp capacity

upper bounds. We will see that this is indeed the case, and we also manage to improve upon the

current state-of-the-art numerical upper bounds for some reported parameters.

As introduced before, the geometric sticky channel independently replicates each bit according to a

geometric distribution supported in N. In other words, the geometric sticky channel with replication

parameter p ∈ (0, 1) is a repeat channel with replication rule R satisfying

R(r) = (1− p)pr−1, r = 1, 2, . . . .

Taking into account Theorem 2.6, in order to understand the capacity Cap(R) of the geometric sticky

channel it suffices to understand the mean-limited capacity of the DMC ChR which on input x ∈ N

outputs

Yx =

x∑︂
i=1

Ri

for Ri i.i.d. according to R. Due to the properties of the geometric distribution, the output distribution

Yx has a nice form. We have Yx ∼ x+NBx,p, where we recall NBx,p is a negative binomial distribution

satisfying

NBx,p(y) =

(︃
y + x− 1

y

)︃
(1− p)xpy, y = 0, 1, 2, . . . .

This holds because NBx,p =
∑︁x

i=1R0i for R0i i.i.d. according to R0 ∼ Geom0,p. Then, it suffices to

note that R ∼ 1 +R0. As a result, we have that

Yx(y) = NBx,p(y − x) =
(︃
y − 1

x− 1

)︃
(1− p)xpy−x, y = x, x+ 1, . . . (3.1)

for all x ∈ N. In the following section, we design zero-KL gap candidate distributions to be used in

Theorem 2.5 with ChR.

The remaining material in this section is a reproduction of technical material from [2, Section III],

with modifications to improve quality of exposition and consistency with the rest of the thesis.

3.1.1 Distributions with zero KL-gap everywhere for the geometric sticky channel

In this section, we show how to design distributions for Theorem 2.5 with zero KL-gap everywhere for

the geometric sticky channel. At a high-level, the design of such a class of distributions follows the
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blueprint from [40], with some key differences:

1. We consider a general form for a distribution Y that leads to a simple expression for D(e)
KL(Yx||Y )

with respect to some function g to be defined;

2. We show that Y satisfies D(e)
KL(Yx||Y ) = aE[Yx]+b for every x if and only if g satisfies a functional

equation of the form

E[g(Yx)] = f(x), x = 1, 2, . . . (3.2)

for a specific function f ;

3. We show that the functional equation above has a solution g, and we instantiate Y with it. This

yields the desired result if we can show Y is a valid distribution, i.e., it can be normalised;

4. We show that Y with this choice of g can be normalised. This yields a valid distribution with

zero KL-gap everywhere.

Cheraghchi [40] attempted to apply the approach above to the deletion and Poisson-repeat channels.

However, he could not realise Steps 3 and 4 above in conjunction for either of these channels. As a

result, Cheraghchi turned to alternative techniques that lead to candidate distributions with positive

KL-gap for all x ∈ N. Remarkably, in this section we show that the ideal approach above can be made

to work successfully for the geometric sticky channel, leading in particular to sharp analytical capacity

upper bounds for this channel. We believe that the situation above highlights an important difference

between repeat channels with and without deletions. We have yet to find an example of a repeat

channel with deletions for which the approach above works, while we conjecture that we can design

candidate distributions with zero KL-gap everywhere (and hence potentially obtain sharp analytical

capacity upper bounds) for all sticky channels.

We begin by noting that D(e)
KL(Yx||Y ) can be rewritten as

D
(e)
KL(Yx||Y ) = −H(e)(Yx)−

∞∑︂
y=x

Yx(y) lnY (y).

Then, recalling (3.1) and noting that E[Yx] = x
1−p , we have

−H(e)(Yx) = E

[︃
ln

(︃
Yx − 1

x− 1

)︃]︃
+ x ln(1− p) + (E[Yx]− x) ln p

= E

[︃
ln

(︃
Yx − 1

x− 1

)︃]︃
− E[Yx]h(e)(p)



3.1. Analytical capacity upper bounds for the geometric sticky channel 87

= E[ln[(Yx − 1)!]]− E[ln[(Yx − x)!]]− ln[(x− 1)!]− E[Yx]h(e)(p). (3.3)

Our goal is to design a family of distributions Y such that D(e)
KL(Yx||Y ) = aE[Yx]+ b for all x = 1, 2, . . .

and some a, b ∈ R. Given q ∈ (0, 1), consider the distribution Y (q) with general form

Y (q)(y) = y0q
y exp(g(y)− yh(e)(p)), y = 1, 2, . . . (3.4)

where y0 is the normalising factor and g is a function to be defined. Using (3.3), we have

D
(e)
KL(Yx||Y

(q)) = −H(e)(Yx)−
∞∑︂
y=x

Yx(y) lnY
(q)(y)

= E

[︃
ln

(︃
Yx − 1

x− 1

)︃]︃
− E[Yx]h(e)(p)− ln y0 − E[Yx] ln q − E[g(Yx)] + E[Yx]h(e)(p)

= − ln y0 − E[Yx] ln q + E[ln[(Yx − 1)]!]− E[ln[(Yx − x)!]]− ln[(x− 1)!]− E[g(Yx)].

(3.5)

Taking into account (3.5), we would like to have

E[g(Yx)] = E[ln[(Yx − 1)!]]− E[ln[(Yx − x)!]]− ln[(x− 1)!] (3.6)

for all x ∈ N, so that

D
(e)
KL(Yx||Y

(q)) = − ln y0 − E[Yx] ln q.

We will proceed to design such a function g. Before we begin, we first state a version of the Fubini-

Tonelli theorem specialised for the counting measure on N and the Lebesgue measure on [0, 1] to

exchange an expected value and an integral.

Lemma 3.1 ([169, Theorem 7.8, specialised]). Let (fn)n∈N be a family of continuous functions fn :

[0, 1]→ R, and suppose that either ∫︂ 1

0

∞∑︂
n=1

|fn(t)|dt <∞

or
∞∑︂
n=1

∫︂ 1

0
|fn(t)|dt <∞.
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Then, ∫︂ 1

0

∞∑︂
n=1

fn(t)dt =

∞∑︂
n=1

∫︂ 1

0
fn(t)dt.

Making use of Lemmas 2.7 and 3.1, and of the facts that E[Yx] = x
1−p and that the probability

generating function of Yx is (︃
z(1− p)
1− pz

)︃x

(3.7)

whenever |z| < 1/p, we have

ln[(x− 1)!] =

∫︂ 1

0

1 + t− tx− (1− t)x−1

t ln(1− t)
dt (3.8)

and1

E[ln[(Yx − x)!]] = E

[︃∫︂ 1

0

1− t(Yx − x)− (1− t)Yx−x

t ln(1− t)
dt

]︃

=

∫︂ 1

0

1− txp
1−p −

(︂
1−p

1−p(1−t)

)︂x
t ln(1− t)

dt. (3.9)

Consider now the functions

f1(y, t) =
1 + t− ty(1− p)−

(︂
1−t
1−pt

)︂y
/(1− t)

t ln(1− t)
(3.10)

f2(y, t) =
1− typ−

(︂
1

1+pt

)︂y
t ln(1− t)

. (3.11)

Recalling (3.7), observe that

E[f1(Yx, t)] =
1 + t− tx− (1− t)x−1

t ln(1− t)
, (3.12)

E[f2(Yx, t)] =
1− txp

1−p −
(︂

1−p
1−p(1−t)

)︂x
t ln(1− t)

. (3.13)

With (3.6) in view, we set

Λ1(y) =

∫︂ 1

0
f1(y, t)dt,

Λ2(y) =

∫︂ 1

0
f2(y, t)dt (3.14)

1We can justify the switching of the integral and expected value in (3.9) via Lemma 3.1 by noting that the function
inside the integral in Lemma 2.7 can be extended by continuity to [0, 1] and is non-negative for all integers z ≥ 0.
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with f1 and f2 defined as in (3.10) and (3.11), respectively. Taking into account (3.13), we are able to

show the following.

Lemma 3.2. We have

E[Λ1(Yx)] =

∫︂ 1

0
E[f1(Yx, t)]dt = ln[(x− 1)!],

E[Λ2(Yx)] =

∫︂ 1

0
E[f2(Yx, t)]dt = E[ln[(Yx − x)!]]

for every x ∈ N.

Proof. See Section 3.1.1.1.

Consider the distribution Y (q) in (3.4) defined by the choice of g

g(y) = ln[(y − 1)!]− Λ1(y)− Λ2(y). (3.15)

By Lemma 3.2, it follows that g satisfies (3.6), and so, recalling (3.5), we have

D
(e)
KL(Yx||Y

(q)) = − ln y0 − E[Yx] ln q

provided that Y (q) is a valid distribution. In order to conclude the reasoning, it remains to show this

fact, i.e., that

0 < 1/y0 =

∞∑︂
y=1

qy exp(g(y)− yh(e)(p)) <∞

if q ∈ (0, 1), and thus Y (q) can be normalised so that
∑︁∞

y=1 Y
(q)(y) = 1. The following lemma shows

that Y (q)(y)/y0 = Θ(qy/
√
y). If this holds, then we have the desired result whenever q ∈ (0, 1).

Lemma 3.3. We have ⃓⃓⃓⃓
yh(e)(p)− g(y)− 1

2
ln y

⃓⃓⃓⃓
= O(1)

when y →∞ for every p ∈ (0, 1).

Proof. See Section 3.1.1.2.
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From the results of this section, it follows that Y (q) is a valid distribution and that

D
(e)
KL(Yx||Y

(q)) = − ln y0 − E[Yx] ln q

for all x ∈ N. Therefore, Y (q) achieves zero KL-gap for all x ∈ N and q ∈ (0, 1). Using Theorem 2.5,

we conclude that

Capµ(ChR) ≤ inf
q∈(0,1)

(− ln y0 − µ ln q) (3.16)

for all µ ≥ 1.

Finally, we point out that Lemma 3.3 implies that, given any µ > 1, there is q ∈ (0, 1) such that

E[Y (q)] = µ (see Section 3.1.3 for a proof). This will lead to easier to compute, but still tight, capacity

upper bounds in Section 3.1.2.

3.1.1.1 Proof of Lemma 3.2

In this section, we prove Lemma 3.2, namely that

E[Λ1(Yx)] =

∫︂ 1

0
E[f1(Yx, t)]dt = ln(x− 1)!,

E[Λ2(Yx)] =

∫︂ 1

0
E[f2(Yx, t)]dt = E[ln(Yx − x)!].

The only problem lies with the first equality in each line (the second equality follows directly from (3.8)

and (3.9) combined with (3.12) and (3.13)). We start by showing that this equality holds for Λ1. This

follows if the conditions of Lemma 3.1 are satisfied.

First, note that f1(y, ·) is continuous on (0, 1), and that

lim
t→1

f1(y, t) = 0

and

lim
t→0

f1(y, t) = 1 +
y(1− p)(y(1− p)− 3− p)

2

for all y ≥ 1. This means that f1(y, ·) can be extended by continuity to [0, 1] (this does not change the
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integral). From here onwards we work with this extension. By Lemma 3.1, we only need to show that

∫︂ 1

0
E[|f1(Yx, t)|]dt <∞.

We begin by showing that f1(y, t) ≥ 0 for all t ∈ [0, 1] if y is large enough. Recalling (3.10), the

numerator of f1(y, t) is

h1(y, t) = 1 + t− ty(1− p)−
(︃

1

1− pt

)︃y

(1− t)y−1.

We show that h1(y, t) ≤ 0 for all t ∈ [0, 1] if y is large enough. This gives the desired result since the

denominator of f1(y, t) is t ln(1− t), which is negative for all t ∈ (0, 1). The first and second derivatives

with respect to t of h1(y, t) are

∂h1
∂t

(y, t) = 1− y(1− p) + (y(1− p)− (1− pt))
(︃

1

1− pt

)︃y+1

(1− t)y−2

and

∂2h1
∂t2

(y, t) =
(︁
(1− p)(3 + p(1− 4t))y − (1− p)2y2 − 2(1− pt)2

)︁(︃ 1

1− pt

)︃y+2

(1− t)y−3 .

For fixed p, we can set y∗ = 1 + 4
(1−p)2

so that

(1− p)(3 + p(1− 4t))y − (1− p)2y2 − 2(1− pt)2 ≤ 4y − (1− p)2y2 < 0

for all t ∈ [0, 1] when y ≥ y∗, which implies that ∂2h1
∂t2

(y, t) < 0 for all t ∈ (0, 1) since all other terms

in the expression are positive. As a consequence, it follows that ∂h1
∂t (y, t) is decreasing in t for y ≥ y∗.

Combining this with the fact that ∂h1
∂t (y, 0) = 0, we conclude that ∂h1

∂t (y, t) ≤ 0 for all t ∈ (0, 1),

provided that y ≥ y∗. Finally, this implies that h1(y, t) ≤ 0 holds for all t ∈ (0, 1) when y ≥ y∗, since

h1(y, 0) = 0.

Consequently, we have

∫︂ 1

0
E[|f1(Yx, t)|]dt ≤

∫︂ 1

0

⎛⎝E[f1(Yx, t)] + 2

y∗∑︂
y=1

Yx(y)|f1(y, t)|

⎞⎠ dt = ln[(x− 1)!] + Cx,p <∞,
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where

Cx,p = 2

∫︂ 1

0

y∗∑︂
y=1

Yx(y)|f1(y, t)|dt

is a finite constant depending only on x and p, since f1(y, ·) is continuous on [0, 1] for all y ≥ 1, and

therefore bounded as well. This means that Lemma 3.1 can be applied, which leads to the desired

equality.

The argument for Λ2 follows in an analogous, but simpler, way. In fact, recalling (3.11), the numerator

of f2(y, t) is

h2(y, t) = 1− typ−
(︃

1

1 + pt

)︃y

,

and its derivative with respect to t is

∂h2
∂t

(y, t) = yp

(︄(︃
1

1 + pt

)︃y+1

− 1

)︄
.

Observe that ∂h2
∂t (y, t) < 0 for t ∈ (0, 1) and y ≥ 1, which implies that h2(y, t) is decreasing in t for

fixed p ∈ (0, 1) and y ≥ 1. Combining this with the fact that h2(y, 0) = 0 for all y ≥ 1 yields that

f2(y, t) ≥ 0 for all t ∈ (0, 1) and y ≥ 1, since its denominator is t ln(1 − t), which is negative. As

before, note that f2(y, ·) can be extended by continuity to [0, 1]. This means we can apply Lemma 3.1

and obtain the desired result.

3.1.1.2 Proof of Lemma 3.3

In this section, we prove Lemma 3.3, namely that

⃓⃓⃓⃓
yh(e)(p)− g(y)− 1

2
ln y

⃓⃓⃓⃓
= O(1)

when y →∞ for every p ∈ (0, 1).

In order to show this lemma, we first prove two intermediate results.

Lemma 3.4. We have

|Λ1(y)− ln Γ(y(1− p))| = O(1).
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Proof. Using Lemma 2.7, we have

ln Γ(y(1− p)) =
∫︂ 1

0

1 + t− ty(1− p)− (1− t)y(1−p)−1

t ln(1− t)
dt.

Recalling the definition of Λ1(y) in (3.14), it follows that

Λ1(y)− ln Γ(y(1− p)) =
∫︂ 1

0

(1− t)y(1−p) −
(︂

1−t
1−pt

)︂y
t(1− t) ln(1− t)

dt < 0.

First, we observe that ⃓⃓⃓⃓
⃓⃓∫︂ 1

1/2

(1− t)y(1−p) −
(︂

1−t
1−pt

)︂y
t(1− t) ln(1− t)

dt

⃓⃓⃓⃓
⃓⃓→ 0

when y →∞. As a result, it suffices to show that

⃓⃓⃓⃓
⃓⃓∫︂ 1/2

0

(1− t)y(1−p) −
(︂

1−t
1−pt

)︂y
t ln(1− t)

dt

⃓⃓⃓⃓
⃓⃓ = ∫︂ 1/2

0

(1− t)y(1−p) −
(︂

1−t
1−pt

)︂y
−t ln(1− t)

dt = O(1) (3.17)

since 1/2 ≤ 1− t ≤ 1 for t ≤ 1/2.

We follow an approach suggested by Pinelis [170]. Define a1(t) = ln
(︂

1−t
1−pt

)︂
, a2(t) = (1− p) ln(1− t),

and α(t) = a2(t)− a1(t) > 0. Observe that we can rewrite the left-hand side of (3.17) as

∫︂ 1/2

0

ea2(t)y − ea1(t)y

−t ln(1− t)
dt.

Then, we have

∫︂ 1/2

0

ea2(t)y − ea1(t)y

−t ln(1− t)
dt ≤

∫︂ 1/2

0

α(t)yea2(t)y

−t ln(1− t)
dt

≤ 2(1− p)
∫︂ 1/2

0
yea2(t)ydt

≤ 2(1− p)
∫︂ 1/2

0
ye−(1−p)tydt

≤ 2(1− p)
∫︂ ∞

0
ye−(1−p)tydt

= 2.

The first inequality follows from the fact that

eby − eay < (b− a)yeby (3.18)
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if y ≥ 0 and b > a (recall that a2(t) > a1(t) for all t > 0). The second inequality follows because

α(t) = (1− p) ln(1− t) + ln

(︃
1− pt
1− t

)︃
= (1− p) ln(1− t) + ln

(︃
1 +

(1− p)t
1− t

)︃
≤ −(1− p)t+ (1− p)t

1− t

=
(1− p)t2

1− t

≤ 2(1− p)t2

for all t ∈ [0, 1/2] and p ∈ (0, 1) using ln(1 + z) ≤ z valid for z > −1. The third inequality stems also

from the fact that ln(1 + z) ≤ z. The fourth inequality holds because the function inside the integral

is positive. It follows that (3.17) holds, as desired.

Lemma 3.5. We have

|Λ2(y)− ln Γ(1 + yp)| = O(1).

Proof. The reasoning we use is similar to the proof of Lemma 3.4. Using Lemma 2.7, we have

Λ2(y)− ln Γ(1 + yp) =

∫︂ 1

0

(1− t)yp −
(︂

1
1+pt

)︂y
t ln(1− t)

> 0.

Observe that ⃓⃓⃓⃓
⃓⃓∫︂ 1

1/2

(1− t)yp −
(︂

1
1+pt

)︂y
t ln(1− t)

⃓⃓⃓⃓
⃓⃓→ 0

when y →∞. Therefore, it remains to show that

⃓⃓⃓⃓
⃓⃓∫︂ 1/2

0

(1− t)yp −
(︂

1
1+pt

)︂y
t ln(1− t)

⃓⃓⃓⃓
⃓⃓ = ∫︂ 1/2

0

(1− t)yp −
(︂

1
1+pt

)︂y
t ln(1− t)

= O(1).

Defining b1(t) = p ln(1− t), b2(t) = − ln(1 + pt) and β(t) = b2(t)− b1(t) > 0, we must show that

∫︂ 1/2

0

eb2(t)y − eb1(t)y

−t ln(1− t)
= O(1).

Proceeding analogously to the proof of the previous claim following Pinelis [170], we have

∫︂ 1/2

0

eb2(t)y − eb1(t)y

−t ln(1− t)
dt ≤

∫︂ 1/2

0

β(t)yeb2(t)y

−t ln(1− t)
dt
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≤ p(2 + p)

∫︂ 1/2

0
yeb2(t)ydt

≤ p(2 + p)

∫︂ 1/2

0
ye

− 2pt
2+pt

y
dt

≤ p(2 + p)

∫︂ ∞

0
ye−

2pt
3

ydt

=
3(2 + p)

2
,

where the first inequality follows from (3.18), the second inequality holds because β(t) ≤ pt
1−t −

2pt
2+pt =

p(2+p)t2

(1−t)(2+pt) ≤ p(2 + p)t2 when t ∈ [0, 1/2] using −p ln(1 − t) ≤ pt
1−t and − ln(1 + pt) ≤ − 2pt

2+pt , and the

third inequality follows again from the fact that b2(t) = − ln(1 + pt) ≤ − 2pt
2+pt .

We are now ready to prove Lemma 3.3.

Proof of Lemma 3.3. We make use of the asymptotic expansion of the log-gamma function from

Lemma 2.8. Taking into account (3.15), we can apply Lemma 2.8 to ln[(y − 1)!] = ln Γ(y), Λ1(y),

and Λ2(y) and invoke Lemmas 3.4 and 3.5 to obtain

ln Γ(y) = y ln y − y − 1

2
ln y ±O(1),

Λ1(y) = y(1− p) ln y + y(1− p) ln(1− p)− y(1− p)− 1

2
ln y ±O(1),

Λ2(y) = (1 + yp) ln(1 + yp)− (1 + yp)− 1

2
ln(1 + yp)±O(1)

= yp ln y + yp ln p− yp+ 1

2
ln y ±O(1),

where in the last equality we have used the fact that ln(1 + yp) = ln(yp) + O
(︂

1
yp

)︂
when y →∞. As

a result, we have

g(y) = −yp ln p− y(1− p) ln(1− p)− 1

2
ln y ±O(1)

= yh(e)(p)− 1

2
ln y ±O(1).

3.1.2 Bounds for the geometric sticky channel

In this section, we derive an analytical capacity upper bound for the geometric sticky channel by

combining the family of distributions Y (q) designed in Section 3.1.1 with Theorems 2.5 and 2.6, and



96 Chapter 3. Capacity bounds for synchronisation channels

compare it to the known numerical bounds from [32, 1]. In order to apply Theorem 2.6, note that

λ = E[R] = 1/(1− p). Then, the bound follows from (3.16).

Corollary 3.1. For every p ∈ (0, 1), we have

Cap(R) ≤ sup
µ≥1/(1−p)

infq∈(0,1)(− ln y0 − µ ln q)
µ(1− p)

(3.19)

≤ sup
q∈(0,1):

E[Y (q)]≥1/(1−p)

− ln y0 − E[Y (q)] ln q

E[Y (q)](1− p)
, (3.20)

where

1/y0 =
∞∑︂
y=1

qyeln[(y−1)!]−Λ1(y)−Λ2(y)−yh(e)(p) <∞, (3.21)

E[Y (q)] =
∞∑︂
y=1

y · y0 · qyeln[(y−1)!]−Λ1(y)−Λ2(y)−yh(e)(p), (3.22)

with Λ1 and Λ2 defined as in (3.14).

We remark that (3.20) is obtained by choosing, for each µ ≥ 1/(1− p) > 1, the value of q ∈ (0, 1) such

that E[Y (q)] = µ. Lemma 3.3 ensures that such q always exists for every µ > 1. A proof of this fact

can be found in Section 3.1.3.

Table 3.1 compares the results obtained via the analytical capacity upper bound (3.20) with the

numerical bounds from [1]. As discussed in Section 2.5.1.1, the upper bound from [1] is obtained from

an application of the Jimbo-Kunisawa algorithm coupled with numerically solving a finite optimisation

problem. In contrast, our bound is obtained from explicit candidate distributions Y (q), and consists

in maximising an analytic function over (0, 1) which can be easily approximated to the desired level of

accuracy. Notably, this function appears to be concave for all values of p considered, and we envision

that such a bound will lead to a better computer-unaided understanding of the capacity of the geometric

sticky channel via further study of the normalising factor and expected value of Y (q).

Approximating the values of 1/y0 and E[Y (q)] to the desired accuracy can be done by computing the

sums in (3.21) and (3.22) for a large enough number of terms depending on q. Lemma 3.3 justifies

this by ensuring that the terms in these sums decay exponentially fast. This also means the number

of terms we must consider is not a large function of q. Each term in the sum requires approximating

Λ1(y) and Λ2(y), but this is accomplished by standard numerical integration procedures. Combining
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Figure 3.1: Function inside the supremum in (3.20) for some values of p, normalised by ln 2. The region
where the function is zero corresponds to the cases where E[Y (q)] < 1

1−p . Adapted from [2]. ©2019
IEEE.

these observations with the experimentally observed concavity of the function inside the supremum in

its positive region (see Figure 3.1) ensures that numerically computing the maximum over (0, 1) for a

given p is tractable.

Figure 3.2 plots the numerical capacity upper bound from [1] and the analytical upper bound (3.20).

Table 3.1 and Figure 3.2 present capacity bounds in bits/channel use. We see that for p ≤ 0.4 we are off

the numerical upper bound by less than 10−6. The error for p ≤ 0.5 is still less than 10−5. This shows

that our analytical bound is tight whenever p ≤ 0.5. We also improve over the numerical upper bound

for p = 0.15. However, the bound degrades when p is large; When p = 0.85, the difference between the

analytical and numerical bound is approximately 0.0117. For p ≥ 0.9, the bound increases.

As an aside, it is interesting to note that the function inside the supremum in (3.20), call it f(p, q),

approaches 0 as q → 1 for any p ∈ (0, 1). To see this, observe that

f(p, q) =
− ln y0 − E[Y (q)] ln q

E[Y (q)](1− p)
=

− ln y0

E[Y (q)](1− p)
− ln q

1− p
.

First, we have ln q → 0 when q → 1, and we deal with the remaining term on the right-hand side.

Recalling the definition of Y (q) and Lemma 3.3, which states that

⃓⃓⃓⃓
g(y)− yh(e)(p)− 1

2
log y

⃓⃓⃓⃓
≤ c0p



98 Chapter 3. Capacity bounds for synchronisation channels

Numerical upper bound [1]

Analytical upper bound (3.20)
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Figure 3.2: Plot of the numerical capacity upper bound from [1] for the geometric sticky channel and
the analytical capacity upper bound (3.20). Adapted from [2]. ©2019 IEEE

for all y ≥ 1 and some constant c0p, we have

− ln y0

E[Y (q)](1− p)
≤ c1p · F (q)(ln(F (q)) + c1p)

G(q)
(3.23)

for some constant c1p > 0, where F (q) =
∑︁∞

k=1
qk√
k

and G(q) =
∑︁∞

k=1 q
k
√
k. To see that the right-hand

side of (3.23) approaches 0 as q → 1, observe that F (q)
G(q) → 0 in this case, and that F (q) ≤ 1

1−q and

G(q) ≥ qNq
√︁
Nq ·

∞∑︂
k=0

qk =
qNq
√︁
Nq

1− q

for all q ∈ (0, 1), where we set Nq = ⌈| ln(1− q)3|⌉. Therefore, we have

F (q) lnF (q)

G(q)
≤ 1

qNq | ln(1− q)|1/2
→ 0

when q → 1, since qNq → 1 by the choice of Nq.

3.1.3 Proof of (3.20)

In this section, we show that for any µ > 1 there exists q ∈ (0, 1) such that E[Y (q)] = µ for Y (q) of the

form

Y (q)(y) = y0q
y exp(g(y)− yh(e)(p)), y = 1, 2, . . .
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p Lower bound [1] Upper bound [1] Upper bound (3.20)
0.05 0.814457 0.814464 0.814464
0.10 0.714096 0.714114 0.714115
0.15 0.640901 0.643267 0.640930
0.20 0.583575 0.583611 0.583611
0.25 0.537038 0.537076 0.537076
0.30 0.498427 0.498463 0.498463
0.35 0.465925 0.465957 0.465957
0.40 0.438291 0.438318 0.438318
0.45 0.414637 0.414659 0.414660
0.50 0.394311 0.394331 0.394333
0.55 0.376821 0.376849 0.376855
0.60 0.361775 0.361794 0.361875
0.65 0.348491 0.348575 0.349152
0.70 0.336593 0.336946 0.338551
0.75 0.325900 0.326678 0.330062
0.80 0.316257 0.317317 0.323856
0.85 0.307560 0.308767 0.320448
0.90 0.299601 0.300952 0.321210
0.95 0.292373 0.293788 0.330824
0.99 0.287036 0.288476 0.368459

Table 3.1: Comparison between the numerical capacity bounds for the geometric sticky channel from
[1] and the upper bound (3.20) in bits/channel use. Reproduced from [2]. ©2019 IEEE

with g(y) defined as in (3.15). This suffices to justify (3.20), which is obtained from (3.19) by choosing,

for each µ ≥ 1
1−p > 1, the value of q ∈ (0, 1) such that E[Y (q)] = µ.

We begin by recalling that Lemma 3.3 implies that

exp(g(y)− yh(e)(p)) = Θ(1/
√
y)

when y →∞, where the hidden constants depend only on p. Note also that g(y) is finite for all integers

y ≥ 1. This can be seen by observing that

g(y) = ln[(y − 1)!]− Λ1(y)− Λ2(y)

where Λ1(y) and Λ2(y) are integrals over (0, 1) of functions which are continuous on (0, 1) and can be

extended by continuity to [0, 1], and hence the integrals are finite. Combining these two observations

implies that there exist constants CL, CU > 0 depending only on p such that

CL/
√
y ≤ exp(g(y)− yh(e)(p)) ≤ CU/

√
y (3.24)
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for all integers y ≥ 1.

We claim that it is enough to show that

lim
q→0+

E[Y (q)] = 1 (3.25)

and

lim
q→1−

E[Y (q)] =∞. (3.26)

This is the case because E[Y (q)] is a continuous function of q ∈ (0, 1), and the main result then follows

from the intermediate value theorem. To see the continuity of E[Y (q)], it suffices to note that both

1/y0 and E[Y (q)]/y0 are power series of q which converge to a positive value when q ∈ (0, 1), and hence

are continuous on (0, 1).

We now argue that (3.25) holds. First, note that E[Y (q)] ≥ 1 since Y (q) only takes values in N. As a

result, it suffices to observe that

E[Y (q)] =
q exp(g(1)− h(e)(p))∑︁∞

y=1 q
y exp(g(y)− yh(e)(p))

+

∑︁∞
y=2 yq

y exp(g(y)− yh(e)(p)∑︁∞
y=1 q

y exp(g(y)− yh(e)(p))

≤ 1 +

∑︁∞
y=2 yq

y exp(g(y)− yh(e)(p))
q exp(g(1)− h(e)(p))

≤ 1 + CU

∑︁∞
y=2

√
yqy

q exp(g(1)− h(e)(p))

≤ 1 + CU

∑︁∞
y=2 yq

y

q exp(g(1)− h(e)(p))

= 1 + CU
q(2− q)

(1− q)2 exp(g(1)− h(e)(p))
→ 1

when q → 0+, where the second inequality follows from (3.24).

It remains to show (3.26). Fix an integer k ≥ 1. Then, we have

E[Y (q)] ≥
CL
∑︁∞

y=1

√
yqy

CU
∑︁∞

y=1 q
y/
√
y

≥
CL

√
k
∑︁∞

y=k q
y

CU
∑︁∞

y=1 q
y

=
CL

√
kqk−1

CU
,
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where the first inequality follows from (3.24). It follows that for q sufficiently close to 1 we have

E[Y (q)] ≥ CL

√
k

2CU
.

Since k ≥ 1 is an arbitrary integer and CL, CU are constants, this implies (3.26), which concludes the

proof.

3.2 Analytical capacity upper bounds for the geometric deletion chan-

nel

In the previous section, we studied the capacity of the geometric sticky channel, which replicates each

input bit according to a Geom1,p distribution, and obtained sharp analytical capacity upper bounds

for this channel from distributions with zero KL-gap for Theorem 2.5. It is then natural to consider

the effect of combining deletions with geometric replications of input bits. This leads us to consider

what we call the geometric deletion channel, which independently replicates each input bit according

to a Geom0,p distribution. More precisely, the geometric deletion channel with replication parameter

p is the repeat channel with replication rule R0 satisfying

R0(y) = (1− p)py, y = 0, 1, 2, . . .

Given the above, we may also call d = 1− p = R0(0) the deletion probability of the geometric deletion

channel.

Our goal in this section is to study the capacity of the geometric deletion channel via Theorems 2.7

and 2.5. Due to the memoryless property of the geometric distribution R0, we have R0 ∼ 1 + R0,

where R0 corresponds to (R0|R0 ̸= 0). This means that the DMC Ch′R0
which on input x ∈ N outputs

Y ′
x = R0 +

x−1∑︂
i=1

R0i,

where R0 and the R0i are independent and the R0i are i.i.d. according to R0 can be equivalently cast

as the DMC that on input x ∈ N outputs

Y ′
x ∼ 1 + NBx,p,
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since NBx,p is the sum of x i.i.d. Geom0,p random variables.

We are now ready to apply Theorem 2.7 to the geometric deletion channel. Observing that we have

λ = E[R0] =
p

1−p and λ = E[R0] = 1 + E[R0] =
1

1−p , it holds that

Cap(R0) ≤ sup
µ≥ 1

1−p

Capµ(Ch
′
R0

)

1/p+ (µ− λ)/λ
=

p

1− p
· sup
µ≥ 1

1−p

Capµ(Ch
′
R0

)

µ
.

We can make one further simplification to the expression above. Recalling that Ch′R0
outputs Y ′

x =

1 + NBx,p, the µ-limited capacity of Ch′R0
is equal to the (µ− 1)-limited capacity of the channel ChR0

which on input x ∈ N outputs NBx,p. In symbols, we have

Capµ(Ch
′
R0

) = Capµ−1(ChR0).

This follows from the fact that the decoder can perfectly simulate the output of ChR0 from the output

of Ch′R0
and vice-versa (by subtracting/adding 1). As a result, we have

Cap(R0) ≤
p

1− p
· sup
µ≥ 1

1−p

Capµ−1(ChR0)

µ
. (3.27)

With the upper bound from (3.27) in mind, our goal is now to study Capµ(ChR0) via Theorem 2.5. In

this section, we obtain several upper bounds on this mean-limited capacity which lead to good capacity

upper bounds for the geometric deletion channel in different regimes, and we also uncover surprising

connections between candidate distributions originally designed to obtain capacity upper bounds for

the deletion channel and new distributions designed for the geometric deletion channel. Our bounds

are obtained by developing and applying techniques that significantly improve upon the bounds given

by the approach of [40]. We proceed in steps:

1. We begin by showing in Sections 3.2.1 and 3.2.2 that approaches analogous to the ones used

in [40] to obtain capacity upper bounds for the deletion and Poisson-repeat channels can also be

used to design candidate distributions Y for Theorem 2.5 applied to ChR0 satisfying

D
(e)
KL(Yx∥Y ) = aE[Yx] + b−∆(x) (3.28)

for all x ∈ N, where ∆(x) ≥ 0 is the KL-gap to the line aE[Yx]+ b at x (and generally ∆(x) > 0).

We remark that such approaches were developed in [40] specifically because one was unable to
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design distributions Y with zero KL-gap for channels with deletions. We contrast this with

Section 3.1, where we were able to successfully design such zero KL-gap distributions for the

geometric sticky channel.

2. We observe that, unlike [40], here we only need to consider D(e)
KL(Yx∥Y ) for x ≥ 1. Because of

the structure of the deletion and Poisson-repeat channels, Cheraghchi [40] was forced to use a

generally weaker result than Theorem 2.7 where one must upper bound the mean-limited capacity

of the DMC extending ChR to x ∈ {0, 1, 2, . . . } with Y0 = 0 (namely [40, Corollary 5]). Although

this appears to be an innocent modification, it has deep consequences. Taking into account (3.28),

for the distributions designed in [40] one has

D
(e)
KL(Y0∥Y ) = b,

and hence ∆(0) = 0. As a result, it is not clear how to improve the upper bound aµ+ b for the

related DMC with input x ∈ {0, 1, 2, . . . }. However, in our case, we do not care about satisfying

the inequality at x = 0. Moreover, we experimentally observe that ∆(x) ≥ ∆ with ∆ significantly

larger than 0 for all x ∈ N, which leads to the significantly improved upper bound aµ + b −∆

on the mean-limited capacity of ChR0 . However, we do not stop here, and show that we can do

much better.

3. Taking again into account that we only need to satisfy the inequality

D
(e)
KL(Yx∥Y ) ≤ aE[Yx] + b

for x ≥ 1, we develop a general technique in Section 3.2.3 that can be used to transform distri-

butions Y designed in Step 1 above into new distributions Yδ, parameterised by δ ∈ (0, 1), which

yield even better upper bounds on Capµ(ChR0) than simply applying the observation from Step

2 above to Y . We showcase explicit values of δ which appear to lead to significantly improved

upper bounds. Surprisingly, this general technique also shows that a family of distributions orig-

inally designed to obtain capacity upper bounds for the deletion channel in [40], called inverse

binomial distributions, are feasible candidates for the geometric deletion channel too.

4. Finally, in Section 3.2.5 we focus on what we call the large replication regime, which corresponds

to the asymptotic regime where p → 1. Equivalently, this is the regime where the deletion

probability d approaches 0. For the deletion channel and the Poisson-repeat channel, two well-
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studied repeat channels, it can be shown that their capacity approaches 1 as the probability of

deletion approaches 0.2 On the other hand, numerical evidence suggests that the capacity of

the geometric deletion channel is much smaller than 1 when p → 1. Given this, we would like

to derive non-trivial properties of Cap(R0) in this regime without computer assistance. We use

our techniques from Step 3 to give a proof, without computer assistance, that Cap(R0) < 0.73

bits/channel use when p→ 1.

The remaining material in this section is a reproduction of [2, Section V], with some modifications to

improve exposition and consistency with the theme of the thesis.

3.2.1 A bound via convexity

In this section, we obtain a capacity upper bound for the negative binomial channel by following a

reasoning similar to the one used to derive capacity upper bounds for the deletion channel in [40]. We

will later show how this bound can be improved. For convenience, we define d = 1− p.

As previously observed, we can write

D
(e)
KL(Yx||Y ) =

∞∑︂
y=0

Yx(y) ln

(︃
Yx(y)

Y (y)

)︃
= −H(e)(Yx)−

∞∑︂
y=0

Yx(y) lnY (y).

Furthermore, recalling that Yx ∼ NBx,p and E[Yx] = xp
1−p , we have

−H(e)(Yx) =
∞∑︂
y=0

Yx(y) ln

(︃(︃
y + x− 1

y

)︃
dxpy

)︃
= E

[︃
ln

(︃
Yx + x− 1

Yx

)︃]︃
+ x ln d+ E[Yx] ln p

= E

[︃
ln

(︃
Yx + x− 1

Yx

)︃]︃
− E[Yx]

h(e)(p)

p
. (3.29)

We consider a family of distributions Y (q) for q ∈ (0, 1) of the form

Y (q)(y) = y0

(︃
g(y)

y

)︃
qy exp(−yh(e)(p)/p), y = 0, 1, 2, . . .

2This is trivial for the deletion channel, and can be easily shown for the Poisson-repeat channel by noting that the
Poisson distribution concentrates strongly around the mean [2].
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for a function g to be defined, where

y0 =

⎛⎝ ∞∑︂
y=0

Y (q)(y)/y0

⎞⎠−1

is the normalising factor. Instantiating Y with Y (q) leads to

D
(e)
KL(Yx||Y

(q)) = E

[︃
ln

(︃
Yx + x− 1

Yx

)︃]︃
+ E[Yx]

h(e)(p)

p
−

∞∑︂
y=0

Yx(y) ln

(︃
y0

(︃
g(y)

y

)︃
qy exp(−yh(e)(p)/p)

)︃

= E

[︄
ln

(︁
Yx+x−1

Yx

)︁(︁g(Yx)
Yx

)︁ ]︄− ln y0 − E[Yx] ln q. (3.30)

Equipped with some insight, we want to choose g such that

g(E[Yx]) = E[Yx] + x− 1,

which can be accomplished by setting g(y) = y/p− 1. This leads to the expression

Y (q)(y) = y0

(︃
y/p− 1

y

)︃
qy exp(−yh(e)(p)/p). (3.31)

The fact that Y (q) is a valid distribution for all q ∈ (0, 1), i.e., 1/y0 < ∞, follow from the asymp-

totic expression for
(︁
y/p−1

y

)︁
obtained via the asymptotic expansion for the log gamma function from

Lemma 2.8.

Combining (3.30) and (3.31), we obtain

D
(e)
KL(Yx||Y

(q)) ≤ −ε(p)− ln y0 − E[Yx] ln q (3.32)

for all x ∈ N, where

ε(p) = inf
x∈N

E

[︄
ln

(︁Yx/p−1
Yx

)︁(︁
Yx+x−1

Yx

)︁]︄ .
The next lemma shows we can always replace ε(p) by 0 in (3.32) to obtain a valid upper bound.

Lemma 3.6. We have ε(p) ≥ 0 for all p ∈ (0, 1).

Proof. See Section 3.2.1.1.
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While Lemma 3.6 implies that we can replace ε(p) by 0 in (3.32), it turns out that ε(p) is actually

significantly larger than zero for most values of p, and so keeping it in (3.32) leads to improved capacity

upper bounds for the negative binomial channel. We are now in a position to apply Theorem 2.5 using

(3.32).

Theorem 3.1. We have

Capµ(R0) ≤ −ε(p) + inf
q∈(0,1)

(− ln y0 − µ ln q)

≤ inf
q∈(0,1)

(− ln y0 − µ ln q).

Interestingly, Y (q) is closely related to the inverse binomial distribution defined in [40] to obtain ca-

pacity upper bounds for the deletion channel. For given p, q ∈ (0, 1), we denote the inverse binomial

distribution by InvBinp,q. It satisfies

InvBinp,q(y) = yIB

(︃
y/p

y

)︃
qy exp(−yh(e)(p)/p), y = 0, 1, . . . ,

where yIB is the normalising factor. Using the equality

(︃
y/p− 1

y

)︃
= d

(︃
y/p

y

)︃

valid for all y > 0 and p ∈ (0, 1) and recalling (3.31), we conclude that

Y (q)(y)

y0
= d · InvBinp,q(y)

yIB
(3.33)

for all y ≥ 1. This property of Y (q) will prove useful in the following sections, as there exist sharp bounds

for the normalising factor and expected value of InvBinp,q in terms of both special and elementary

functions [40, Sections 6.1.1 and 6.1.2]. In particular, we use such a bound in the proof that the

capacity of the geometric deletion channel is bounded well away from 1 when p→ 1 in Section 3.2.5.

It is also relevant to study the behaviour of the KL-gap

∆(x) = E

[︄
ln

(︁Yx/p−1
Yx

)︁(︁
Yx+x−1

Yx

)︁]︄ .
The following lemma characterises the asymptotic behaviour of ∆(x) for large x. In particular, it
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shows that ∆(x)→ 1/2, a fact which will be useful in Section 3.2.3.

Lemma 3.7. We have

∆(x) ≥ 1/2− 4

3p(x− 1)
− (2− p)2

12(1− p)x
−O(1/x2)

for x ≥ 2, and

∆(x) ≤ 1/2 +O(x−1/2+β)

for all p ∈ (0, 1) and β > 0.

Proof. See Section 3.2.1.2.

3.2.1.1 Proof of Lemma 3.6

In this section, we prove Lemma 3.6. We first present an auxiliary result from [171] that will be useful.

Lemma 3.8 ([171, Lemma 1, specialised]). Consider the function f : (0,∞)→ R satisfying

f(y) = ln

(︄∏︁k1
i=1 Γ(Aiy + ai)∏︁k2
j=1 Γ(Bjy + bj)

)︄
,

where Ai, Bj > 0 and ai, bj ≥ 0 for all i and j. Then, f is convex on (0,∞) provided that

k1∑︂
i=1

exp(−aiu/Ai)

1− exp(−u/Ai)
−

k2∑︂
j=1

exp(−bju/Bj)

1− exp(−u/Bj)
≥ 0

for all u > 0.

We are now ready to prove that ε(p) ≥ 0 for all p ∈ (0, 1). We show that fx(y) = ln
[︂(︁

y/p−1
y

)︁
/
(︁
y+x−1

y

)︁]︂
is convex on [0,∞) for all x ∈ N. This implies the desired result via Jensen’s inequality, since then we

have

E[fx(Yx)] ≥ fx(E[Yx]) = ln 1 = 0

for all x ∈ N, and so ε(p) = infx∈NE[fx(Yx)] ≥ 0.

For any x ≥ 1 and y > 0 we have

fx(y) = lnΓ(x) + ln

[︃
Γ(y/p)

Γ(y(1/p− 1))Γ(y + x)

]︃
.
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Then, by Lemma 3.8, fx is convex on (0,∞) if

Px(u) =
1

1− e−up
− 1

1− e−up/(1−p)
− e−ux

1− e−u
≥ 0

for all x ≥ 1 and u > 0. Note that Px(u) ≥ P1(u) for x ≥ 1 and that P1(u) can be rewritten as

P1(u) =
1

eup − 1
− 1

eup/(1−p) − 1
− 1

eu − 1

using the fact that 1
1−e−a = 1 + 1

ea−1 for every a ̸= 0. Therefore, it suffices to show that

1− p
eup − 1

− 1

eup/(1−p) − 1
≥ 0 (3.34)

and
p

eup − 1
− 1

eu − 1
≥ 0. (3.35)

We show (3.35) and observe that (3.34) follows in an analogous manner. Rearranging terms, we want

to show that

p(eu − 1)− (eup − 1) ≥ 0. (3.36)

Note that the left-hand side of (3.36) is 0 at u = 0, and that its derivative with respect to u is

p(eu − eup), which is positive for all u > 0. This yields the desired inequality.

It remains to see that fx is convex on [0,∞). Note that fx(0) = 0, since
(︁−1

0

)︁
= 1 by the expression for

the binomial coefficients in Section 2.2. Furthermore, using the continuity of Γ(z) for z > 0 we have

lim
y→0+

ln

(︃
y/p− 1

y

)︃
= lim

y→0+
ln

(︃
d

(︃
y/p

y

)︃)︃
= ln d

and

lim
y→0+

ln

(︃
y + x− 1

y

)︃
= 0.

This implies that limy→0+ fx(y) = ln d < 0 for all x ≥ 1. We then have fx(0) = 0 ≥ limy→0+ fx(y),

which shows that fx is convex on [0,∞) (recall we had already shown it was convex on (0,∞)).
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3.2.1.2 Proof of Lemma 3.7

In this section, we prove Lemma 3.7, namely that

∆(x) ≥ 1/2− 4

3p(x− 1)
− (1 + p)2

12px
−O(1/x2)

for x ≥ 2, and

∆(x) ≤ 1/2 +O(x−1/2+β)

for all p ∈ (0, 1) and β > 0.

First, we have

ln

(︃
y/p− 1

y

)︃
≥ yh

(e)(p)

p
− 1

2
ln y +

1

2
ln

(︃
1− p
2π

)︃
− 1

12(y + 1)
− p

12(1− p)y
− 1

2y

and

ln

(︃
y/p− 1

y

)︃
≤ yh

(e)(p)

p
− 1

2
ln y +

1

2
ln

(︃
1− p
2π

)︃
+

p

12y

for all y ≥ 1. This follows from the asymptotic expansion of the log gamma function from Lemma 2.8

and the inequalities 2
1+2y ≤ ln(1 + 1/y) ≤ 1/y valid for all y > 0. Therefore, it holds that

lnY (q)(y) ≥ ln y0 + y ln q − 1

2
ln y +

1

2
ln

(︃
1− p
2π

)︃
− 2

3(1− p)y
(3.37)

and

lnY (q)(y) ≤ ln y0 + y ln q − 1

2
ln y +

1

2
ln

(︃
1− p
2π

)︃
+

p

12y
(3.38)

for y ≥ 1, and lnY (q)(0) = ln y0.

Furthermore, sharp asymptotic expansions are also known for H(e)(Yx) when x → ∞. To be precise,

according to [172, Section 5] we have3

H(e)(Yx) =
1

2
ln

(︃
2πexp

(1− p)2

)︃
− (1 + p)2

12px
−O(1/x2). (3.39)

3General results about the asymptotic expansion of the entropy of sums of i.i.d. random variables can also be found
in [173, 174].
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We begin by proving the first inequality in the lemma statement. For x ≥ 2, we have

∆(x) = − ln y0 − E[Yx] ln q −D(e)
KL(Yx||Y

(q))

= − ln y0 − E[Yx] ln q +H(e)(Yx) +

∞∑︂
y=0

Yx(y) lnY
(q)(y)

≥ H(e)(Yx) +
1

2
ln

(︃
1− p
2π

)︃
− 1

2

∞∑︂
y=1

Yx(y) ln y −
2

3(1− p)

∞∑︂
y=1

Yx(y)/y (3.40)

≥ H(e)(Yx) +
1

2
ln

(︃
1− p
2π

)︃
− 1

2
lnE[Yx]−

4

3p(x− 1)
−O(1/x2) (3.41)

=
1

2

(︃
ln

(︃
2πexp

(1− p)2

)︃
− ln

(︃
xp

1− p

)︃
+ ln

(︃
1− p
2π

)︃)︃
− 4

3p(x− 1)
− (1 + p)2

12px
−O(1/x2) (3.42)

=
1

2
− 4

3p(x− 1)
− (1 + p)2

12px
−O(1/x2),

as desired. The inequality in (3.40) follows from (3.37). To justify (3.41), note that

−
∞∑︂
y=1

Yx(y) ln y ≥ −(1− Yx(0)) ln
(︃

E[Yx]

1− Yx(0)

)︃
≥ − lnE[Yx] + (1− p)x lnE[Yx] + ln(1− Yx(0))

≥ − lnE[Yx] + (1− p)x
(︃
ln

(︃
p

1− p

)︃
− 1/p

)︃

by Jensen’s inequality, the convexity of − ln y, and the fact that ln(1− Yx(0)) ≥ − Yx(0)
1−Yx(0)

≥ − (1−p)x

p .

Moreover,

∞∑︂
y=1

Yx(y)/y ≤ 2
∞∑︂
y=0

Yx(y)

y + 1

=
2(1− p)
p(x− 1)

∞∑︂
y=0

(︃
y + x− 1

y + 1

)︃
(1− p)x−1py+1

=
2(1− p)
p(x− 1)

(1− Yx−1(0))

≤ 2(1− p)
p(x− 1)

(3.43)

for x ≥ 2. The equality in (3.42) follows from (3.39).

For the second inequality, note that

∆(x) = − ln y0 − E[Yx] ln q +H(e)(Yx) +
∞∑︂
y=0

Yx(y) lnY
(q)(y)



3.2. Analytical capacity upper bounds for the geometric deletion channel 111

≤ H(e)(Yx) +
1− Yx(0)

2
· ln
(︃
1− p
2π

)︃
− 1

2

∞∑︂
y=1

Yx(y) ln y +
p

12

∞∑︂
y=1

Yx(y)/y (3.44)

≤ H(e)(Yx) +
1

2
ln

(︃
1− p
2π

)︃
− 1

2
lnE[Yx] +O(x−1/2+β) (3.45)

=
1

2
+O(x−1/2+β). (3.46)

The inequality in (3.44) follows from (3.38). The inequality in (3.45) holds because of (3.43) and the

fact that
∞∑︂
y=1

Yx(y) ln y ≥ lnE[Yx]−O(x−1/2+β),

which follows from the concentration bound for the negative binomial from Lemma 2.3. Finally, (3.46)

follows from (3.39).

3.2.2 A bound via truncation

In this section, we design a distribution whose KL-gap converges to 0 exponentially fast as x increases.

The process will be similar to that of Section 3.1.1, and we will reutilise some arguments. As was

the case for the deletion and Poisson-repeat channels in [40, Sections 5 and 6], in this case we cannot

ensure that the KL-gap is zero everywhere (in fact, it will be positive everywhere).

We consider a family of distributions Y (q) for q ∈ (0, 1) of the form

Y
(q)

(y) = y0q
y exp(g(y)− yh(e)(p)/p), y = 0, 1, 2, . . . (3.47)

for some function g to be determined, where y0 is the normalising factor. Recalling that Yx ∼ NBx,p

and (3.29), we want g to satisfy

E[g(Yx)] = E[ln[(Yx + x− 1)!]]− ln[(x− 1)!]− E[ln(Yx!)] +Rp(x),

where Rp(x) ≥ 0 is an error term which vanishes exponentially fast with x. Furthermore, we want g

to have moderate growth so that Y (q) is a valid probability distribution.

Recalling Lemma 2.7, we have

ln[(x− 1)!] =

∫︂ 1

0

1 + t− tx− (1− t)x−1

t ln(1− t)
dt
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and4

E[ln[(Yx + x− 1)!]] = E

[︃∫︂ 1

0

1 + t− t(y + x)− (1− t)y+x−1

t ln(1− t)
dt

]︃

=

∫︂ 1

0

1 + t− tx
1−p − (1− t)x−1

(︂
1−p

1−p(1−t)

)︂x
t ln(1− t)

dt. (3.48)

Consider the functions

f1(y, t) =
1 + t− ty(1− p)/p−

(︂
p−t

p(1−t)

)︂y
/(1− t)

t ln(1− t)
,

f2(y, t) =
1 + t− ty/p−

(︂
p−t(1+p)
p(1−t)

)︂y
/(1− t)

t ln(1− t)
.

We would hope that E
[︂∫︁ 1

0 f1(Yx, t)dt
]︂
= ln[(x − 1)!] and E

[︂∫︁ 1
0 f2(Yx, t)dt

]︂
= E[ln[(Yx + x − 1)!]].

However, this does not hold as f1(y, t) and f2(y, t) grow exponentially fast for large t. We contrast

this with the geometric sticky channel in Section 3.1, where we derive a solution to the corresponding

functional equation via this method and prove that it is well-defined and leads to a valid distribution.

In order to overcome the above, we truncate the integration bounds. To determine the point at which

to truncate, note that p−t(1+p)
p(1−t) ≥ −1 whenever t ≤ 2p

1+2p . Truncating at this point ensures that the

exponential terms in y in the two integrals are controlled, and so the resulting function g has the

desired growth. Consider the truncated integrals

Λ1(y) =

∫︂ 2p
1+2p

0
f1(y, t)dt, (3.49)

Λ2(y) =

∫︂ 2p
1+2p

0
f2(y, t)dt. (3.50)

Then, we have

E[Λ1(Yx)] =

∫︂ 2p
1+2p

0
E[f1(Yx, t)]dt (3.51)

= ln[(x− 1)!]−
∫︂ 1

2p
1+2p

1 + t− tx− (1− t)x−1

t ln(1− t)
dt

= ln[(x− 1)!]− η
(︃

1

1 + 2p

)︃
+ (x− 1)li

(︃
1

1 + 2p

)︃
+

∫︂ 1

2p
1+2p

(1− t)x−1

t ln(1− t)
dt,

4Once again, switching the integral and expected value in (3.48) is allowed via Lemma 3.1, since the function inside
the integral is continuous on [0, 1] and positive for all y ≥ 0 and x ≥ 1.
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and

E[Λ2(Yx)] =

∫︂ 2p
1+2p

0
E[f2(Yx, t)]dt (3.52)

= E[ln[(Yx + x− 1)!]]−
∫︂ 1

2p
1+2p

1 + t− tx
1−p − (1− t)x−1

(︂
1−p

1−p(1−t)

)︂x
t ln(1− t)

dt

= E[ln[(Yx + x− 1)!]]− η
(︃

1

1 + 2p

)︃
+

(︃
x

1− p
− 1

)︃
li
(︃

1

1 + 2p

)︃

+

∫︂ 1

2p
1+2p

(1− t)x−1
(︂

1−p
1−p(1−t)

)︂x
t ln(1− t)

dt,

where we recall from Section 2.2 that li(z) =
∫︁ z
0

dt
ln t for z < 1 is the logarithmic integral, and we define

η(z) =
∫︁ z
0

dt
(1−t) ln t . An analogous argument to that used in the proof of Lemma 3.2 shows that (3.51)

and (3.52) hold. For the sake of completeness, we present proofs of (3.51) and (3.52) in Appendix A.

We set

g(y) = Λ2(y)− Λ1(y)− ln(y!)− y · li
(︃

1

1 + 2p

)︃
.

Note that g satisfies

E[g(Yx)] = E[ln[(Yx + x− 1)!]]− ln[(x− 1)!]− E[ln(Yx!)] +Rp(x), (3.53)

where

Rp(x) = −
∫︂ 1

2p
1+2p

(1− t)x−1
(︂
1−

(︂
1−p

1−p(1−t)

)︂x)︂
t ln(1− t)

dt ≥ 0. (3.54)

Observe that Rp(x) vanishes exponentially fast in x.

It now remains to show that g has the correct asymptotic growth. The proof of the following result is

analogous to the proof of Lemma 3.3. For the sake of completeness, we present a proof in Appendix A.3.

Lemma 3.9. We have

Λ1(y) = lnΓ

(︃
y(1− p)

p

)︃
+
y(1− p)

p
· li
(︃

1

1 + 2p

)︃
− η

(︃
1

1 + 2p

)︃
+O(1),

Λ2(y) = lnΓ

(︃
y

p

)︃
+
y

p
· li
(︃

1

1 + 2p

)︃
− η

(︃
1

1 + 2p

)︃
+O(1).

In particular, it holds that ⃓⃓⃓⃓
⃓yh(e)(p)p

− g(y)− 1

2
ln y

⃓⃓⃓⃓
⃓ = O(1).
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Proof. See Appendix A.3.

Lemma 3.9 implies that Y (q) is a valid distribution if q ∈ (0, 1), since then Y
(q)
/y0 = Θ(qy/

√
y). It

remains to upper bound D(e)
KL(Yx||Y

(q)
). We have

D
(e)
KL(Yx||Y

(q)
) = −H(e)(Yx)−

∞∑︂
y=0

Yx(y) lnY
(q)

(y)

= −H(e)(Yx)− ln y0 − E[Yx] ln q − E[g(Yx)] + E[Yx]h(e)(p)/p

= E

[︃
ln

(︃
Yx + x− 1

Yx

)︃]︃
− ln y0 − E[Yx] ln q − E[g(Yx)]

= −Rp(x)− ln y0 − E[Yx] ln q

≤ − ln y0 − E[Yx] ln q. (3.55)

The second equality follows from (3.47), the third equality follows from (3.29), the fourth equality holds

because of (3.53), and the inequality follows from the fact that Rp(x) ≥ 0 for all x ≥ 1. Combining

(3.55) with Theorem 2.5, we immediately obtain the capacity upper bound

Capµ(R0) ≤ inf
q∈(0,1)

(− ln y0 − µ ln q)

for all µ ≥ 0. There are two important comments regarding this bound: First, as shown in (3.55),

the gap between D(e)
KL(Yx||Y

(q)
) and the line − ln y0 −E[Yx] ln q is exactly Rp(x), which converges to 0

exponentially fast as x increases. Second, we have Rp(1)≫ 0.

3.2.3 Improving the bounds by fixing the mass at y = 0

In this section, we showcase a technique that can be used to significantly improve the bounds we obtain

from the distributions designed in Sections 3.2.1 and 3.2.2. We will also use this technique to give a

proof without computer assistance that the capacity of the geometric deletion channel is at most 0.73

bits/channel use when p→ 1 in Section 3.2.5. This technique will be useful in Chapter 4 as well.

The technique we present below consists in optimising the mass at y = 0 of any given family of

distributions suitable for Theorem 2.5. This leads to an upper bound which is at least as good as the

original, and, when applied to the distributions from Section 3.2.1, we see significant improvements for

a large range of the replication parameter p. At a high-level, we proceed as follows:
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1. We study how the Kullback-Leibler divergence D(e)
KL(Yx||Y ) behaves when we change the value of

Y (0) to some value δ and renormalise Y . Calling the new distribution obtained in this way Yδ,

we show that there is a simple relationship between D(e)
KL(Yx||Yδ) and the original KL divergence

D
(e)
KL(Yx||Y );

2. From experience, we know that a small KL-gap leads to better capacity upper bounds. Naively,

one could numerically optimise over δ to obtain a better upper bound than the one given by Y .

However, adding a new layer of numerical optimisation is cumbersome. Instead, we analytically

derive explicit choices of δ that significantly reduce the KL-gap under some mild assumptions,

and lead to much better upper bounds. This derivation is possible because there is a simple

relationship between D(e)
KL(Yx||Yδ) and D(e)

KL(Yx||Y );

3. We instantiate this reasoning with the distributions designed in Sections 3.2.1 and 3.2.2, and

give evidence that both distributions satisfy the assumptions required for the effectiveness of our

choices of δ for several values of p.

A special case of this approach was used by Martinez [47] to derive an improved capacity upper bound

for the discrete-time Poisson channel. Here, we provide a general treatment of the technique for the

geometric deletion channel, show that it can be used to significantly improve the capacity upper bounds

originally given by the distributions designed in Sections 3.2.1 and 3.2.2, and give further applications

of this technique to the derivation of a non-trivial capacity upper bound in the large replication regime.

Consider a distribution Y with support on {0, 1, 2, . . . } and probability mass function Y (y) = y0a(y)

for some function a(y) with a(0) = 1 and normalising factor y0. For δ ∈ (0, 1], we define the modified

distribution Yδ satisfying

Yδ(y) =

⎧⎪⎪⎨⎪⎪⎩
αδ, if y = 0

αa(y), if y > 0,

where α is the new normalising factor, satisfying 1/α = δ + 1/y0 − 1. Intuitively, Yδ is obtained from

Y by modifying the mass of Y at y = 0, and setting δ = 1 yields the original distribution Y .

3.2.3.1 KL-divergence and KL-gap of Yδ

In this section, we study how D
(e)
KL(Yx||Yδ) behaves with respect to D(e)

KL(Yx||Y ), where Yδ denotes the

modified version of Y . A key point that will be useful in later sections is that D(e)
KL(Yx||Yδ) has a simple
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expression in terms of D(e)
KL(Yx||Y ) for all x. In fact, letting d = 1 − p and recalling that Yx ∼ NBx,p

yields

D
(e)
KL(Yx||Yδ) = −H

(e)(Yx)− lnα−
∞∑︂
y=1

Yx(y) ln a(y)− dx ln δ

= −H(e)(Yx)− lnα−
∞∑︂
y=0

Yx(y) ln a(y)− dx ln δ

= −H(e)(Yx)− ln y0 −
∞∑︂
y=0

Yx(y) ln a(y) + ln y0 − lnα− dx ln δ

= D
(e)
KL(Yx||Y ) + ln y0 − lnα− dx ln δ (3.56)

≤ D(e)
KL(Yx||Y ) + ln y0 − lnα− d ln δ. (3.57)

In the first equality we used the fact that Yx(0) = dx for all x ≥ 1. The second equality holds because

ln a(0) = 0 since a(0) = 1. In the last equality we used that δ ≤ 1, and so −dx ln δ ≤ −d ln δ for x ≥ 1.

Since the KL-gap of a distribution is a good indicator for the quality of the capacity upper bound

induced by that distribution via Theorem 2.5, it is instructive to study how the KL-gap changes with

δ. Given the simple form of (3.56) and (3.57), we have good control of how the KL-gap changes when

we transform Y into Yδ. Suppose Y satisfies

D
(e)
KL(Yx||Y ) ≤ aE[Yx] + b (3.58)

for some a, b ∈ R and all x ∈ N. Then, the KL-gap associated to Y and the line aE[Yx] + b is

∆(x) = aE[Yx] + b−D(e)
KL(Yx||Y ) ≥ 0. (3.59)

Combining (3.57) and (3.58), we have

D
(e)
KL(Yx||Yδ) ≤ aE[Yx] + b+ ln y0 − lnα− d ln δ. (3.60)

As a result, we may compute the KL-gap associated to Yδ and the line aE[Yx]+ b+ln y0− lnα−d ln δ,

denoted ∆δ(x), as a function of the original KL-gap ∆(x):

∆δ(x) = aE[Yx] + b+ ln y0 − lnα− d ln δ −D(e)
KL(Yx||Yδ)

= ∆(x)− d ln δ + dx ln δ
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≥ 0, (3.61)

where the second equality follows from (3.56) and (3.59). In particular, we have ∆δ(1) = ∆(1) and

∆δ(x) ≥ ∆(x) for all x ∈ N.

Since we may have ∆δ(x) ≫ 0 simultaneously for all x, we can refine (3.60) considerably by shifting

the line on the right hand side of (3.60) down by the smallest value the KL-gap ∆δ(x) attains, i.e., we

can shift the line down by infx∈N∆δ(x). Based on this, we have the refined bound

D
(e)
KL(Yx||Yδ) ≤ aE[Yx] + b+ ln y0 − lnα− d ln δ − εδ(p), (3.62)

where we have defined

εδ(p) = inf
x∈N

∆δ(x) ≥ ε1(p). (3.63)

Taking into account (3.61), the KL-gap associated to Yδ and the refined line on the right hand side

of (3.62), which we denote by ∆′
δ, satisfies

∆′
δ(x) = aE[Yx] + b+ ln y0 − lnα− d ln δ − εδ(p)−D

(e)
KL(Yx||Yδ)

= ∆δ(x)− εδ(p). (3.64)

Put differently, ∆′
δ(x) is a shift of ∆δ(x) designed so that infx∈N∆′

δ(x) = 0. Recall that we could have

∆δ(x) ≫ 0 for all x ∈ N, which would imply some slackness in the capacity upper bound induced by

the first inequality (3.60) via Theorem 2.5. The refinement in (3.62) removes this slackness.

Finally, combining the previous discussion with Theorem 2.5 leads to the capacity upper bound

Capµ(R0) ≤ inf
q∈(0,1),δ∈(0,1]

(aµ+ b+ ln y0 − lnα− d ln δ − εδ(p)). (3.65)

In the following section, we show that the optimisation over δ is not required, in the sense that we are

able to analytically derive good explicit choices of δ under mild assumptions (which are satisfied by

the distributions designed in Sections 3.2.1 and 3.2.2 over a large range of p).
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3.2.3.2 Analytical derivation of good choices of δ

Optimising the right hand side of (3.65) over two parameters q and δ is cumbersome. In this section,

we argue that a specific choice of δ works well over a large range of p for the distributions we designed,

thus obtaining a much simpler bound than (3.65) which still gives great results. As discussed before,

as a rule of thumb, a smaller KL-gap leads to improved upper bounds. The distributions we designed

in Sections 3.2.1 and 3.2.2 have associated KL-gaps which converge to 1/2 and 0 when x→∞, respec-

tively. In the case of the truncation-based distribution from Section 3.2.2, the speed of convergence is

exponential in x. However, the KL-gap at small x does not behave as well. In general, it is significantly

bounded away from 0 when x = 1. From experience, the KL-gap at small x appears to have significant

influence on the sharpness of the upper bounds obtained. As a result, it is natural to wonder how one

can obtain a small gap for small x without affecting the behaviour of the gap for large x.

Let ∆(x) be the original KL-gap of some distribution Y . Throughout this section, we make the

following assumptions:

• ∆(x)→ L when x→∞;

• ∆δ(x) ≥ ∆(1) ≥ L for all x ∈ N.

We now describe how we can modify the mass at y = 0 to derive a new upper bound on D(e)
KL(Yx||Yδ)

with a new KL-gap ∆′
δ(x) such that ∆′

δ(1) = 0 and ∆′
δ(x) → 0 when x → ∞ with similar speed of

convergence to the original KL-gap ∆. In other words, the new KL-gap ∆′
δ(x) is as small as possible

at x = 1, and also small when x is large. This leads to improved capacity upper bounds, as we shall

see in Section 3.2.4. Figure 3.3 illustrates how the KL-gap changes with our explicit choice of δ.

We pick δ = exp(−(∆(1)−L)/d), and proceed to justify this choice. Recalling the definition of ∆δ(x)

in (3.61) and our assumptions, it holds that ∆δ(1) = ∆(1) and that

∆δ(x) = ∆(x)− d ln δ + dx ln δ

= ∆(x) +
(d− dx)(∆(1)− L)

d

= ∆(x) + (1− dx−1)(∆(1)− L)→ ∆(1) (3.66)

when x → ∞. Note that we pay only an exponentially small penalty in the speed of convergence

compared to ∆. As we shall see, we have ∆δ(x) ≥ ∆(1) for all x ∈ N often for the distributions
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designed in Sections 3.2.1 and 3.2.2. In that case, we have εδ(p) = infx∈N∆δ(x) = ∆(1). Recalling

(3.62) and the choice of δ, it holds that

D
(e)
KL(Yx||Yδ) ≤ aE[Yx] + b+ ln y0 − lnα− d ln δ − εδ(p)

= aE[Yx] + b+ ln y0 − lnα+ (∆(1)− L)−∆(1)

= aE[Yx] + b+ ln y0 − lnα− L,

with corresponding KL-gap (recall (3.64))

∆′
δ(x) = aE[Yx] + b+ ln y0 − lnα− L−D(e)

KL(Yx||Yδ)

= ∆δ(x)−∆(1)

≥ 0.

As desired, the new KL-gap ∆′
δ(x) satisfies

∆′
δ(1) = ∆δ(1)−∆(1) = ∆(1)−∆(1) = 0

and, using (3.66),

∆′
δ(x) = ∆δ(x)−∆(1)→ ∆(1)−∆(1) = 0

when x→∞.

3.2.3.3 Instantiation with concrete distributions

In this section, we instantiate the techniques developed in Sections 3.2.3.1 and 3.2.3.2 with the distri-

butions designed in Sections 3.2.1 and 3.2.2.

We begin by considering the distribution Y
(q) from Section 3.2.2. We will use overlines over the

relevant quantities associated to Y (q) to distinguish from the same quantities associated to Y (q) from

Section 3.2.1. Recalling (3.55), the KL-gap for the original distribution Y (q), denoted by ∆(x), satisfies

∆(x) = Rp(x)
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with Rp(x) defined as in (3.54). We now compute the quantity ∆δ(x) associated with Y
(q)

δ
for some

value δ. According to (3.61), we have

∆δ(x) = ∆(x)− d ln δ + dx ln δ

= Rp(x)− d ln δ + dx ln δ. (3.67)

Observe that we have ∆(1) = Rp(1) > 0 and ∆(x)→ 0 exponentially fast when x→∞. As a result,

in accordance with Section 3.2.3.2, we set δ = exp(−Rp(1)/d). Recalling (3.55) and (3.62), this choice

leads to the upper bound

D
(e)
KL(Yx||Y

(q)

δ
) ≤ − lnα− E[Yx] ln q +Rp(1)− εδ(p), (3.68)

where εδ(p) = infx∈N∆δ(x) and 1/α = δ + 1/y0 − 1.

Numerical evidence suggests that for p ≥ 0.6 we have ∆δ(x) ≥ Rp(1) for all x ∈ N. As was the case in

Section 3.2.3.2, this implies that εδ(p) = Rp(1). Consequently, combining this fact with (3.68) leads

to the bound

D
(e)
KL(Yx||Y

(q)

δ
) ≤ − lnα− E[Yx] ln q

for p ≥ 0.6, with respective KL-gap

∆
′
δ(x) = − lnα− E[Yx] ln q −D(e)

KL(Yx||Y
(q)

δ
) = ∆δ(x)−Rp(1) ≥ 0.

In particular, for this particular choice of δ and p ≥ 0.6 we now have

∆
′
δ(1) = 0 and lim

x→∞
∆

′
δ(x) = 0, (3.69)

and the convergence for large x is exponentially fast, as desired. These KL-gaps are plotted for some

p ≥ 0.6 in Figure 3.11.

Concluding, from (3.68) and Theorem 2.5 we obtain the following upper bound for general p.

Theorem 3.2. We have

Capµ(R0) ≤ inf
q∈(0,1)

(− lnα− µ ln q) +Rp(1)− εδ(p),
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where δ = exp(−Rp(1)/d), 1/α = δ + 1/y0 − 1, and εδ(p) = infx∈N∆δ(x).

We now consider the distribution Y (q) defined in (3.31). The reasoning is analogous to the previous

case, so we skip some parts of the instantiation. Recalling (3.30), we have

∆(x) = − ln y0 − E[Yx] ln q −D(e)
KL(Yx||Y

(q)) = E

[︄
ln

(︁Yx/p−1
Yx

)︁(︁
Yx+x−1

Yx

)︁]︄ . (3.70)

By Lemma 3.7, we have that ∆(x) → 1/2 when x → ∞. In the cases where ∆(1) ≥ 1/2, we can

follow the general reasoning previously described in Section 3.2.3.2 and set δ = exp(−(∆(1)− 1/2)/d).

However, when ∆(1) < 1/2, we simply set δ = 1, i.e., we use the original distribution Y (q). Therefore,

in general we set δ = min(exp(−(∆(1)− 1/2)/d), 1).

Recalling (3.61), we have

∆δ(x) = − lnα− E[Yx] ln q − d ln δ −D(e)
KL(Yx||Y

(q)
δ ) = ∆(x)− d ln δ + dx ln δ ≥ 0, (3.71)

where 1/α = δ + 1/y0 − 1. If ∆(1) ≥ 1/2, this leads to the bound

D
(e)
KL(Yx||Y

(q)
δ ) ≤ − lnα− E[Yx] ln q +∆(1)− 1/2− εδ(p), (3.72)

where εδ(p) = infx∈N∆δ(x). Furthermore, in this case we have ∆δ(1) = ∆(1) and ∆δ(x)→ ∆(1) when

x→∞, as before.

Numerical evidence suggests that for p ∈ [0.35, 0.5] we have ∆δ(1) = ∆(1) > 1/2 and ∆δ(x) ≥ ∆(1)

for all x ∈ N. This means that εδ(p) = infx∈N∆δ(x) = ∆(1) in this case, and so

D
(e)
KL(Yx||Y

(q)
δ ) ≤ − lnα− E[Yx] ln q − 1/2

for p ∈ [0.35, 0.5], with associated KL-gap

∆′
δ(x) = − lnα− E[Yx] ln q − 1/2−D(e)

KL(Yx||Y
(q)) = ∆δ(x)−∆(1) ≥ 0.

Observe that, similarly to previous cases, we have

∆′
δ(1) = 0 and lim

x→∞
∆′

δ(x) = 0, (3.73)
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Figure 3.3: How the gap changes when the mass at y = 0 is modified, as a function of x for p = 1/2
and Y (q) defined in Section 3.2.1. Black curve: The original KL-gap ∆(x)− 1/2. Dashed curve: The
new KL-gap ∆′

δ(x) after fixing the mass at y = 0 appropriately. Reproduced from [2]. ©2019 IEEE

as desired. Figure 3.3 showcases how the KL-gap changes for p = 1/2 when we modify Y (q) at y = 0

with our choice of δ. As can be observed, the KL-gap improves substantially for small x. The resulting

KL-gaps are plotted for some p ∈ [0.35, 0.5] in Figure 3.8.

From (3.72) and Theorem 2.5 we obtain the following upper bound for general p.

Theorem 3.3. We have

Capµ(R0) ≤ inf
q∈(0,1)

(− lnα− µ ln q) + max(∆(1)− 1/2, 0)− εδ(p),

where δ = min(exp(−(∆(1)− 1/2)/d), 1), 1/α = δ + 1/y0 − 1, and εδ(p) = infx∈N∆δ(x).

3.2.3.4 Some comments on the choice δ = d

In this section, we briefly discuss the choice δ = d for Y (q) defined in Section 3.2.1. This choice

corresponds exactly to the inverse binomial distribution, which was designed independently for the

deletion channel [40], and leads to the result that the capacity of the geometric deletion channel is

bounded well away from 1 when p→ 1 in Section 3.2.5.

We argue that there is a natural justification behind this choice. First, observe that we can extend the

function Y (q)(·)/y0 to [0,∞) in a natural way. Then, recalling the definition of the binomial coefficients
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in Section 2.2, we have

Y (q)(0)/y0 =

(︃
−1
0

)︃
= 1.

However, it is also the case that

lim
y→0+

Y (q)(y)/y0 = d < 1.

It follows that Y (q)(·)/y0 is not right-continuous at y = 0, and the unique choice of δ that makes

Y
(q)
δ (·)/α right-continuous at y = 0 is δ = d.

3.2.4 Capacity upper bounds for the geometric deletion channel

In this section, we analyse the capacity upper bounds we obtain for the geometric deletion channel by

combining (3.27) with the distributions designed in Sections 3.2.1 and 3.2.2 and their modifications

described in Section 3.2.3.

Note that the capacity of the geometric deletion channel with replication parameter p is upper bounded

by the capacity of the deletion channel with deletion probability d = 1−p. In fact, we can simulate the

output of a geometric deletion channel via the output of the deletion channel by having the receiver

independently replace every output bit by R = 1 +R0 copies of it.

It also holds that the capacity of the geometric deletion channel with replication parameter p is upper

bounded by the capacity of the geometric sticky channel with the same replication parameter. For the

remainder of this paragraph, we consider a modified geometric deletion channel that always deletes the

first input bit. This modification does not change the capacity of the channel, and we can see it as a

composition of a deletion channel with deletion probability d = 1−p that always deletes the first input

bit and a geometric sticky channel with replication parameter p. Let X be an input distribution for

the modified geometric deletion channel supported on {0, 1}n with associated output distribution Y ,

and Z the associated output distribution of the deletion channel. By the data processing inequality,

we have I(X;Y ) ≤ I(Z;Y ), and Y can be seen as the output of the geometric sticky channel with

replication parameter p on input Z. It always holds that |Z| < n, and we can extend Z to n bits by

adding an extra run ˆ︁Z (with different bit value) of length n − |Z| at the end of Z. Letting ˆ︁Y denote

the output of the geometric sticky channel on input ˆ︁Z, using the fact that the channel is sticky yields

I(Z;Y ) ≤ I(Z, ˆ︁Z;Y, ˆ︁Y ) = I(Z∥ ˆ︁Z;Y ∥ˆ︁Y ) ≤ sup
Z(n)

I(Z(n);YZ(n)),
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where the supremum is taken over all distributions Z(n) with support in {0, 1}n and associated output

YZ(n) under the geometric sticky channel. By Theorem 2.2, it follows that Cap(R0) ≤ Cap(R) for all

p ∈ (0, 1).

We will compare the bounds we obtain with the state-of-the-art capacity upper bounds for the deletion

channel from [3] which, for most values of p, are still the best bounds found in the literature, and also

to the best known capacity upper bounds on the geometric sticky channel from [1] and Section 3.1.

However, when p = 1/2 the geometric deletion channel corresponds exactly to the binary replication

channel which has been studied in depth in [1, 39] with pd = pt = 1/2. In particular, good numerical

upper bounds have been derived for the binary replication channel, and hence for the geometric deletion

channel with p = 1/2. Therefore, the setting with p = 1/2 will serve as a good standard to judge the

performance of our upper bounds, and we shall single it out.

For p ∈ (0, 1), our bounds are obtained by combining (3.27) with Theorems 3.2 and 3.3, and choosing,

for each µ > 0, the value of q satisfying E[Y (q)
δ ] = µ. This is possible because both distributions grow

like Θ(qy/
√
y), and the proof is analogous to the one in Section 3.1.3. For the sake of completeness,

we include it in Appendix A.4.

Corollary 3.2. We have

Cap(R0) ≤ sup
q∈(0,1):

µq≥p/(1−p)

p(−εδ(p)− d ln δ − lnα− µq ln q)
d(1 + µq)

(3.74)

with δ = min(exp(−(∆(1)− 1/2)/d), 1), and

Cap(R0) ≤ sup
q∈(0,1):

µq≥p/(1−p)

p(−εδ(p)− d ln δ − lnα− µq ln q)
d(1 + µq)

(3.75)

with δ = exp(−Rp(1)/d), where

1/α = δ +

∞∑︂
y=1

(︃
y/p− 1

y

)︃
qye−yh(e)(p)/p,

µq =

∞∑︂
y=1

αy

(︃
y/p− 1

y

)︃
qye−yh(e)(p)/p,

1/α = δ +

∞∑︂
y=1

qyeΛ2(y)−Λ1(y)−y·li(1/(1+2p))−yh(e)(p)/p

y!
,
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µq =
∞∑︂
y=1

αyqyeΛ2(y)−Λ1(y)−y·li(1/(1+2p))−yh(e)(p)/p

y!
,

with Λ1 and Λ2 as defined in (3.49) and (3.50), respectively, εδ(p) = infx∈N∆δ(x) for ∆δ(x) defined

in (3.71), and εδ(p) = infx∈N∆δ(x) for ∆δ(x) defined in (3.67).

Figure 3.4 compares (3.74), (3.75), the state-of-the-art capacity upper bound for the deletion channel

from [3], and the state-of-the-art capacity upper bounds for the geometric sticky channel from [1] and

Section 3.1.2. Table 3.2 reports values of these bounds for the values of p analysed. Similarly to

Section 3.1.2, one can reliably approximate 1/α, 1/α, µq, and µq by computing the sums up to a large

enough number of terms depending on q. The asymptotic behaviour of the associated distributions

ensures that the terms in the sums decrease exponentially fast, and that the number of terms we

must consider is not a large function of q. Plots of the functions inside the suprema in (3.74) and

(3.75) can be found in Figures 3.5 and 3.6, respectively. Similarly to the geometric sticky channel,

numerical evidence strongly suggests that these functions are concave in q for fixed p. Exploiting these

observations, maximising the relevant analytic function over q ∈ (0, 1) is tractable for a given p ∈ (0, 1).

As in Section 3.1.2, Table 3.2 and Figure 3.4 present values in bits/channel use.

Figures 3.7 and 3.8 showcase the KL-gap attained by the distribution Y (q)
δ from Section 3.2.1 with the

choice of δ specified in Corollary 3.2 before and after shifting by the minimum KL-gap, respectively,

for some values of p analysed. Figures 3.10 and 3.11 showcase the analogous gaps for Y (q)

δ
. For the

values of p ∈ (0, 0.5] analysed, numerical evidence suggests that the infimum in εδ(p) is achieved at

x = 1 (see Figure 3.7 for examples), and the same holds for εδ(p) when p ∈ [0.6, 1) (see Figure 3.10

for examples). Moreover, we have ∆(1) ≥ 1/2 for the values of p ∈ [0.35, 0.5] analysed. This indicates

that the choices of δ and δ in Corollary 3.2 (which were derived in Section 3.2.3) for the values of

p ∈ [0.35, 0.5] and p ∈ [0.6, 1) analysed, respectively, yield distributions Y (q)
δ and Y (q)

δ
whose KL-gaps

are exactly 0 at x = 1 and converge to 0 quickly for large x. These gaps are displayed in Figures 3.8

and 3.11, respectively. For the sake of comparison, Figures 3.9 and 3.12 show the original KL-gaps of

the distributions Y (q) and Y (q) for some values of p.

We remark that the numerical values plotted in Figure 3.4 and reported in Table 3.2 are only ap-

proximations of the true bounds, since we instantiated (3.74) and (3.75) with the minimum KL-gaps

suggested by numerical evidence and asymptotic convergence results for ∆δ and ∆δ. With respect

to (3.75), our approximation of the minimum KL-gap is guaranteed to be correct to within additive
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error 10−10 for p ≥ 0.6. Therefore, instantiating (3.75) with this approximation guarantees we are

within 2 · 10−10 bits/channel use of the true bound in that range of p. In fact, we can approximate

εδ(p) and εδ(p) with high accuracy by numerically computing the KL-gap for a small number of values

of x. This is guaranteed by Lemma 3.7 and the fact that Rp(x) → 0 exponentially fast in x. In the

case of εδ(p), for a prescribed accuracy α > 0 we can explicitly compute the threshold T (α) required

so that computing the KL-gap and taking the minimum for all integers 1 ≤ x ≤ T (α) ensures that we

obtain an approximation of εδ(p) to within additive error α: Recall that ∆δ(x)→ Rp(1) and

∆δ(x) = Rp(x) +Rp(1)− dx−1Rp(1) ≥ Rp(1)− dx−1Rp(1)

by the choice of δ. Therefore, in order to approximate εδ(p) to within error α it suffices to compute

∆δ(x) for x until dx−1Rp(1) ≤ α, or, equivalently, to compute it for integers x ≤ T (α) = 1+
lnα−lnRp(1)

ln d .

In particular, for p ≥ 0.6 it is enough to compute ∆δ(x) for integers 1 ≤ x ≤ 30, as shown in Figure 3.10,

and take the minimum over these values to approximate εδ(p) to within additive error α = 10−10.

3.2.4.1 The case p = 1/2

When p = 1/2, the best known capacity upper bound was given in [1]. They report a bound of 0.209092

bits/channel use, obtained by employing a reduction from the original channel to a memoryless channel

via the addition of undeletable markers between input runs (this same reduction was used in [89]),

coupled with clever numerical methods. Our best analytical upper bound, which in particular employs

a tighter reduction via Theorem 2.7 and the technique from Section 3.2.3, yields a bound of 0.168074

bits/channel use. In contrast, the best analytical upper bound we obtain without using the technique

from Section 3.2.3, but still shifting the KL-gap down by ε1(1/2) = 1/2 (suggested by numerical

evidence), is noticeably worse: 0.199082 bits/channel use.

Remarkably, Y (q) is closely related to a negative binomial distribution NB1/2,q when p = 1/2. This

holds because of (3.33) and the fact that InvBin1/2,q = NB1/2,q [40, Claim 20 and Expression (85)]. As

a result, we can derive closed-form expressions for y0 and E[Y (q)]. More precisely, since yIB =
√
1− q

when p = 1/2 we have

1/y0 = 1 +
1

2
·
1− NB1/2,q(0)

yIB
=

1

2
+

1

2
√
1− q
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and

E[Y (q)] =
y0
2yIB

· E[NB1/2,q] =
q

2(1− q)(1 +
√
1− q)

for all q ∈ (0, 1). These closed-form expressions can be combined with Corollary 3.2 to yield simpler

upper bounds when p = 1/2.

p Upper bound deletion [3] Upper bound geom. sticky Analytical upper bound
0.05 0.021 0.814464 0.021244
0.10 0.041 0.714114 0.041351
0.15 0.062 0.640930 0.061242
0.20 0.082 0.583611 0.076981
0.25 0.103 0.537076 0.091134
0.30 0.123 0.498463 0.104846
0.35 0.144 0.465957 0.119552
0.40 0.165 0.438318 0.135271
0.45 0.187 0.414659 0.151342
0.50 0.212 0.394331 0.168074
0.55 0.241 0.376849 0.186588
0.60 0.275 0.361794 0.208075
0.65 0.315 0.348575 0.234480
0.70 0.362 0.336946 0.262103
0.75 0.420 0.326678 0.269490
0.80 0.491 0.317317 0.271810
0.85 0.579 0.308767 0.270561
0.90 0.689 0.300952 0.275251
0.95 0.816 0.293788 0.337581
0.99 0.963 0.288476 0.769426

Table 3.2: Comparison between the numerical capacity bounds for the deletion channel from [3], the
best capacity upper bounds for the geometric sticky channel from [1] and Section 3.1.2, and the best
analytical upper bound from Corollary 3.2 in bits/channel use. Reproduced from [2] with corrections
to the values reported in the rightmost column when p = 0.10, p = 0.60, p = 0.90, and p = 0.99.
©2019 IEEE

3.2.5 A non-trivial capacity upper bound when p→ 1

Building on results obtained in Sections 3.2.1 and 3.2.3, we prove without computer assistance that

the capacity of the geometric deletion channel is at most 0.73 bits/channel use for large replication

parameter p, and thus bounded well away from 1 in this regime. This is in contrast with the behaviour

of the deletion and Poisson-repeat channels in their analogous regimes.

Theorem 3.4. We have

Cap(R0) ≤
1

2 ln 2
+ o(1) bits/channel use

when p→ 1, and 1
2 ln 2 ≈ 0.7214.



128 Chapter 3. Capacity bounds for synchronisation channels

Deletion upper bound [3]

Geom sticky upper bound

Upper bound (3.74)

Upper bound (3.75)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

replication parameter

bi
ts
/c
ha
nn
el
us
e

Figure 3.4: Plot of analytical upper bounds (3.74) and (3.75), the state-of-the-art deletion channel
capacity upper bound from [3], and the state-of-the-art capacity upper bound for the geometric sticky
channel from [1] and Section 3.1.2. Adapted from [2]. ©2019 IEEE

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 3.5: Function inside the supremum in (3.74) for some values of p, normalised by ln 2. The region
where the function is zero corresponds to the cases where E[Y (q)

δ ] < p
1−p . Adapted from [2]. ©2019
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Figure 3.6: Function inside the supremum in (3.75) for some values of p, normalised by ln 2. The region
where the function is zero corresponds to the cases where E[Y (q)

δ
] < p

1−p . Adapted from [2]. ©2019
IEEE
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Figure 3.7: KL-gap ∆δ(x) (defined in (3.71)) of the distribution Y (q)
δ from Section 3.2.1 with the choice

of δ in Corollary 3.2 plotted for 1 ≤ x ≤ 50 for some values of the replication parameter p.
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Figure 3.8: KL-gap ∆′
δ(x) (defined in (3.64)) of the distribution Y (q)

δ from Section 3.2.1 with the choice
of δ in Corollary 3.2 plotted for 1 ≤ x ≤ 100 for some values of the replication parameter p.
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Figure 3.9: KL-gap ∆(x) (defined in (3.70)) of the distribution Y (q) from Section 3.2.1 plotted for
1 ≤ x ≤ 50 for some values of the replication parameter p.
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Figure 3.10: KL-gap ∆δ(x) (defined in (3.67)) of the distribution Y
(q)

δ
from Section 3.2.2 with the

choice of δ in Corollary 3.2 plotted for 1 ≤ x ≤ 30 for some values of the replication parameter p.
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Figure 3.11: KL-gap ∆
′
δ(x) (defined in (3.64)) of the distribution Y

(q)

δ
from Section 3.2.2 with the

choice of δ in Corollary 3.2 plotted for 1 ≤ x ≤ 30 for some values of the replication parameter p.
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Figure 3.12: KL-gap Rp(x) (defined in (3.54)) of the distribution Y
(q) from Section 3.2.2 plotted for

1 ≤ x ≤ 30 for some values of the replication parameter p.

Proof. Define d = 1− p. Combining (3.27) and (3.65) instantiated with Y (q) defined in Section 3.2.1,

we conclude that

Cap(R0) ≤
p

d
sup

µ≥1/d

1

µ
inf

q∈(0,1),δ∈(0,1]
(−εδ(p)− d ln δ − lnα− (µ− 1) ln q).

Moreover, recalling (3.63) and Lemma 3.6, we have

εδ(p) ≥ ε(p) ≥ 0

for all δ ∈ (0, 1] and p ∈ (0, 1). Therefore,

Cap(R0) ≤
p

d
sup

µ≥1/d

1

µ
inf

q∈(0,1),δ∈(0,1]
(−d ln δ − lnα− (µ− 1) ln q). (3.76)

We set δ = d, and begin by estimating − lnα. Recall that 1/α = δ + 1/y0 − 1. Then,

1/α = δ + d(1/yIB − 1) = d+ d(1/yIB − 1) = d/yIB.

We can bound 1/yIB according to [40, Corollary 22] for p ≥ 1/2 as

1/yIB ≤ 1 +
1√
2d

(︃
1√
1− q

− 1

)︃
,
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and so

1/α ≤ d+
√︁
d/2

(︃
1√
1− q

− 1

)︃
.

Setting q = 1− d/2 yields

1/α ≤ d+
√︁
d/2

(︄
1√︁
d/2
− 1

)︄
= 1 + d−

√︁
d/2 < 1

for d < 1/2, which implies that − lnα < 0. Taking into account (3.76) and setting δ = d, q = 1− d/2,

we obtain the bound

Cap(R0) ≤
p

d
sup

µ≥1/d

−d ln d− lnα− (µ− 1) ln q

µ

≤ sup
µ≥1/d

−d ln d− lnα− (µ− 1) ln q

µd

≤ −d ln d− ln q

d
,

where in the second inequality we used the fact that p < 1, and in the third inequality we used the

fact that µd ≥ 1, − lnα < 0, and − (µ−1) ln q
µd ≤ − ln q

d since µ > 1.

Recalling that q = 1 − d/2, we have − ln q
d = 1

2 + o(1), where o(1) → 0 when d → 0. Finally, observe

that −d ln d = o(1) as well. This gives the desired bound in nats/channel use, and dividing it by ln 2

concludes the proof.
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Chapter 4

From synchronisation errors to the

discrete-time Poisson channel

When one wishes to derive capacity upper bounds for the Poisson-repeat channel via Theorems 2.7

and 2.5, as was done in [40], one is led to study the mean-limited capacity of the DMC which on input

x ∈ {0, 1, 2, . . . } outputs

Yx =

x∑︂
i=1

Ri,

where the Ri are i.i.d. according to Poiλ. Because of the properties of the Poisson distribution, we

have Yx ∼ Poiλx. When x = 0, we have Y0 ∼ Poi0, which is the degenerate distribution satisfying

Poi0(0) = 1. Throughout this chapter, we adopt the convention that 0 ln 0 = 0.

Interestingly, the channel above is a discrete-input analogue of a well-studied continuous-input channel

with applications to optical communication, called the Discrete-Time Poisson (DTP) Channel with

dark current λ [42]. This is a memoryless channel which on input x ∈ R+
0 outputs a sample from

Poiλ+x. In particular, when λ = 1 for the channel above and λ = 0 for the DTP channel, these two

channels behave in exactly the same way, except that the former is restricted to non-negative integer

inputs. Without any constraints on the input, the capacity of the DTP channel is infinite. However,

motivated by applications, one is interested in the capacity of the DTP channel under an average-

power constraint µ, in which case the DTP channel only accepts input distributions X satisfying

E[X] ≤ µ. Orthogonally, sometimes it is also practical to impose a peak-power constraint A on

the input distribution. In this case, the DTP channel only accepts input distributions X satisfying

Pr[X ≤ A] = 1, which may additionally have to satisfy an average-power constraint. Given the

135
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similarity between the two problems above, a natural question arises: Can we exploit the frameworks

and results used to study the mean-limited capacity of the discrete-input DMC above to improve on

state-of-the-art results for the DTP channel under an average-power constraint?

In this chapter, we explore this question in two complementary directions. We begin by giving some

historical background on the DTP channel in Section 4.1. Then, we show that capacity upper bounds

from [40] on the Poisson-repeat channel can be easily adapted to give significantly improved capacity

upper bounds for the DTP channel without dark current (i.e., λ = 0) in Section 4.2. Following that, in

Section 4.3 we combine the results from Section 4.2 with ideas already developed in Section 3.2.3 for

the geometric deletion channel to derive improved non-asymptotic capacity upper bounds for the DTP

channel with dark current λ > 0. In Section 4.4, we complement our capacity upper bounds above by

using an analogue of Theorem 2.5 to uncover novel properties of the capacity-achieving distributions

for the DTP channel.

The material in this chapter is a close adaptation of material found in [4, 55], with minor modifications

to improve exposition and consistency with the rest of the thesis.

4.1 Historical background

The DTP channel was first explicitly introduced and studied by Shamai [42], and is a discretised

version of the continuous-time Poisson (CTP) channel used to model optical communication. Roughly

speaking, as described in [42], the input to the CTP channel is a non-negative function x(t) which

modulates the intensity of a photon-emitting source on the sender’s side. Then, the receiver observes

a photon count following a Poisson process induced by x(t), which may additionally be corrupted by

some background interference. The DTP channel is derived in a natural way from the CTP channel

by imposing a realistic bandwidth constraint on the channel input x(t), meaning that we divide the

timeline into equally sized sub-intervals, and require the input function x to be constant over each of

these sub-intervals. As shown in [42], the capacity of this restricted channel is achieved by setting the

value of x(t) in each sub-interval in an i.i.d. fashion. This is captured by the DTP channel without

dark current, which on input x ∈ R+
0 outputs a sample from Poix. Additionally, as mentioned above,

this process may be corrupted by some background interference, and this is modelled in terms of an

additive dark current term λ to x. Therefore, on input x, the DTP channel with dark current λ

outputs Yx ∼ Poiλ+x. As mentioned above, the input distribution X may be constrained by imposing
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an average-power constraint E[X] ≤ µ and/or a peak-power constraint X ≤ A. Interestingly, while

the capacity of the CTP channel has been well-understood in several regimes under the constraints

above for several decades [43, 44, 45, 46, 175], along with several other properties (e.g., see the recent

works [176, 177] and references therein), no exact expression is known for the capacity of the DTP

channel (which can be seen as a CTP channel restricted to more realistic coding techniques) under

average- and/or peak-power constraints, and only loose bounds are known on this quantity outside

the asymptotic regimes when µ → 0 or µ → ∞, especially when no finite peak-power constraint is

imposed.

Throughout this chapter we will be mostly interested in the capacity of the DTP channel with an

average-power constraint only (both with and without dark current), which is the continuous analogue

of the DMC associated with the Poisson-repeat channel. We let C(λ, µ,A) denote the capacity of the

DTP channel with dark current λ, average-power constraint µ, and peak-power constraint A, defined

as

C(λ, µ,A) = sup
X:E[X]≤µ,X≤A

I(e)(X;YX), (4.1)

where the supremum is taken over all input distributions X with support in R+
0 satisfying the average-

and peak-power constraints, and YX denotes the output distribution of the DTP channel with dark

current λ on input X. Observe that X in (4.1) is allowed to be any input distribution satisfying the

constraints. In particular, it need not be discrete nor continuous and may not have an associated

probability density function, although it always has an associated cumulative distribution function

(cdf) F . While we only considered the case where X is discrete in Section 2, the mutual information

is extended to the setting of this chapter as

I(e)(X;YX) =

∫︂
D

(e)
KL(Yx∥YX)dF (x) = H(e)(YX)−

∫︂
H(e)(Yx)dF (x),

where YX(y) =
∫︁
Yx(y)dF (x),

∫︁
D

(e)
KL(Yx∥YX)dF (x), and

∫︁
H(e)(Yx)dF (x) are Lebesgue integrals with

respect to the probability measure induced by F (see [178, Section 2.3] or [179, Expression (2.10)]). As

mentioned before, we will only deal with measure-theoretic probability in the proof of Theorem 4.1,

which is discussed in Appendix B and requires only basic familiarity with this topic. To make the

exposition mostly self-contained, we include an introductory section discussing the required concepts

in Appendix B.1. Applying Theorem 4.1, which is a natural extension of previous results for other

channels obtained via standard techniques, the maximisation problem in (4.1) is immediately replaced
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by an equivalent formulation that reduces to the analysis of information-theoretic quantities associated

with discrete distributions only, as discussed in Section 2.4 and following the theme of the remainder

of this thesis.

Shannon’s noisy channel coding theorem (Theorem 2.1) can be extended to stationary memoryless

channels with an average power constraint [178, Section 19], of which the DTP channel is an example.

This means that, similarly to previous cases, the quantity C(λ, µ,A) is the supremum of rates achievable

by length-n codes C ⊆ [0, A]n with vanishing decoding error probability over the DTP channel as

n→∞ whose codewords c ∈ C satisfy the average-power constraint

1

n

n∑︂
i=1

ci ≤ µ.

When A =∞, which is our main setting of interest, we use C(λ, µ) to denote the capacity. Moreover,

when λ = 0 we denote the capacity of the DTP channel with zero dark current and under an average-

power constraint only by C(µ). For every λ, µ, and A, we have the chain of inequalities

C(µ) ≥ C(λ, µ) ≥ C(λ, µ,A),

which we will make use of later.

4.1.1 The capacity of the constrained DTP channel

The capacity of the DTP channel under average- and/or peak-power constraints, with or without

dark current λ, has been studied in several different regimes. However, as discussed above, an exact

expression for this capacity is still unknown, and in general we do not have sharp bounds on this

quantity. As a result, most works have focused on asymptotic regimes where µ→∞ or µ→ 0.

Brady and Verdú [50] (see also the PhD thesis of Brady [180, Section 4]) were the first to study the

capacity C(λ, µ) in a regime where the ratio µ/λ is fixed and µ → ∞. In particular, they obtained a

class of asymptotic upper bounds (see [180, Section 4, Proof of Theorem 4])

C(λ, µ) ≤ ln(1 + µ+ λ) + (µ+ λ) ln

(︃
1 +

1

µ+ λ

)︃
− 1

2
ln(2π(µ+ λ)) + ln(3/2) + ε (4.2)

valid for all µ > Cε, where Cε is a large constant depending on ε > 0. We note that, even disregarding
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the asymptotic term ε, the bound in (4.2) is only good when µ is large. Later, Lapidoth and Moser [51]

studied C(λ, µ) when λ is a fixed arbitrary constant and µ→∞. In particular, they showed that

lim
µ→∞

C(λ, µ)

lnµ
=

1

2
(4.3)

for arbitrary constant dark current λ ≥ 0. They also determined the asymptotic behaviour of C(λ, µ,A)

when the ratio µ/A is held fixed and µ→∞.

In the regime where µ→ 0, Lapidoth, Shapiro, Venkatesan, and Wang [48] determined the first-order

asymptotics of C(λ, µ,A). Namely, in the case where there is no dark current, they showed that

lim
µ→0

C(µ)

µ ln(1/µ)
= 1.

Moreover, they gave the following general upper bound matching the asymptotic behaviour [48, Ex-

pression (86)],

C(µ) ≤ −µ ln p− ln(1− p) + µ

β
+ µ ·max

(︃
0,

1

2
lnβ + ln

(︃
Γ(1/2, 1/β)√

π

)︃
+

1

2β

)︃
, (4.4)

where p ∈ (0, 1) and β > 0 are free constants, and Γ is the upper incomplete gamma function1. The

optimal choice for p in (4.4) is p = µ
1+µ . When λ > 0, the capacity C(λ, µ) behaves quite differently

from C(µ) when µ is small. It was shown in [48] that

1

2
≤ lim inf

µ→0

C(λ, µ)

µ ln ln(1/µ)
≤ lim sup

µ→0

C(λ, µ)

µ ln ln(1/µ)
≤ 2 (4.5)

for every λ > 0. In order to prove (4.5), the authors [48, Expression (114)] derive a non-asymptotic

upper bound on C(λ, µ) given by

C(λ, µ) ≤ F1(λ, µ) + F2(λ, µ) + F3(λ, µ) (4.6)

with F1, F2, and F3 given by

F1(λ, µ) =

(︃
η ln η +

1

12η
+

1

2
ln(2πη) + λ− η lnλ− ln(1− p)

)︃
e
η+η lnλ−η ln η+ µ

η−√
η−λ ,

F2(λ, µ) = max

(︃
0, (1 + ln(1/p) + lnλ)

(︃
µ+

λµ

η −√η − λ
+ λeη−1−λ+(η−1) lnλ−(η−1) ln(η−1)

)︃)︃
,

1The upper incomplete gamma function Γ is defined as Γ(s, α) =
∫︁∞
α

ts−1e−tdt. Note that Γ(s, 0) = Γ(s).



140 Chapter 4. From synchronisation errors to the discrete-time Poisson channel

F3(λ, µ) = µ

(︃
1 +

λ

η − λ

)︃
max (0, ln(1/λ)) + µ

η ln(η/λ)

η − λ
,

where η is a free integer parameter that must be larger than some non-explicit constant Cλ ≥ 0

depending on λ and p ∈ (0, 1) is a free parameter. In [48, Section IV-B], it is explictly stated that the

derivation is carried out assuming that η is large compared to λ, and inspection shows that we must

at least have η −√η > λ. Therefore, the upper bound in (4.6) is significantly larger than

µ(1 + max(0, 1 + lnλ) + max(0, ln(1/λ))). (4.7)

Later, Wang and Wornell [49] determined the higher-order asymptotic behaviour of C(λ, µ) when

µ→ 0 under the assumption that the dark current λ decreases linearly with µ, i.e., one has λ = cµ for

some constant c ≥ 0. In this case, it was shown that

C(λ = cµ, µ) = µ ln(1/µ)− µ ln ln(1/µ) +Oc(µ)

when µ → 0, where Oc(·) hides constants which depend on c. A version of this result was previously

noted by Chung, Guha, and Zheng [181], although, as mentioned in [49], they only proved it for a more

restricted set of input distributions. Wang and Wornell gave an upper bound on C(λ, µ) matching

this asymptotic behaviour which holds whenever µ and λ are small enough. Namely, according to [49,

Expression (180)], for µ small enough and λ = cµ it holds that

C(λ, µ) ≤ µ ln ln(1/µ) + µ− ln(1− µ− λ)− λ+
λ2

2
ln ln(1/µ)

− (µ+ λ) ln

(︃
1− 1

ln(1/µ)

)︃
+ µe−λ sup

x≥0
ϕµ,λ(x), (4.8)

where ϕµ,λ(x) = 1−e−x

x ln
(︂

x+λ
(µ+λ) ln(1/µ)

)︂
. In the special case where c = 0 (i.e., there is no dark current),

we have

C(µ) ≤ µ ln ln (1/µ) + µ− ln (1− µ)− µ ln
(︃
1− 1

ln(1/µ)

)︃
+ µ · sup

x≥0
ϕµ,0(x). (4.9)

Regarding general non-asymptotic upper bounds on C(µ), the best result for every µ except in the

limiting regime µ→ 0 is due to Martinez [47, Expression (10)], and is given by

C(µ) ≤
(︃
µ+

1

2

)︃
ln

(︃
µ+

1

2

)︃
− µ lnµ− 1

2
+ ln

(︄
1 +

√
2e− 1√
1 + 2µ

)︄
. (4.10)
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We have that (4.10) attains the first-order asymptotic behaviour of C(µ) both when µ→ 0 and when

µ → ∞, and is strictly better than (4.4) for all µ > 0. However, as noted in [51], the proof in [47]

is not considered to be completely rigorous as it contains a gap (an intermediate step is only verified

numerically). As we shall see in Section 4.3, the bound in (4.10) is also the best known upper bound

on C(λ, µ) for reasonable choices of the dark current λ and the average-power constraint µ (namely,

when λ is not significantly larger than µ). Remarkably, this means that there are no non-trivial non-

asymptotic upper bounds on C(λ, µ) for reasonable choices of parameters, in the sense that the best

upper bound we have in that case is an upper bound on C(µ), and the inequality C(µ) ≥ C(λ, µ) holds

for every λ ≥ 0.

Aminian, Arjmandi, Gohari, Nasiri-Kenari, and Mitra [182, Example 2] also derived a non-asymptotic

upper bound on C(λ, µ,A) for finite peak-power constraint A given by

C(λ, µ,A) ≤ sup
X:E[X]≤µ,X≤A

Cov(X + λ, ln(X + λ)) =

⎧⎪⎪⎨⎪⎪⎩
µ
A(A− µ) ln

(︁
1 + A

λ

)︁
, if µ < A/2,

A
4 ln

(︁
1 + A

λ

)︁
, otherwise,

(4.11)

where Cov denotes the covariance. This upper bound is most useful when λ is large compared to the

constraints µ and A. Note that when A → ∞, the upper bound in (4.11) becomes arbitrarily large.

Therefore, it does not imply any non-trivial upper bound on C(λ, µ). However, this bound may be

used to recover some known asymptotic results on C(λ, µ,A) when µ→ 0 from [48].

We note that an analytical lower bound was also given in [47]. This lower bound was obtained by

considering gamma distributions as the input to the DTP channel (and thus negative binomial channel

output). We have

C(µ) ≥ (µ+ ν) ln

(︃
µ+ ν

ν

)︃
+ µ(ψ(v + 1)− 1)

−
∫︂ 1

0

[︃(︃
1−

(︃
ν

ν + µ(1− t)

)︃ν)︃ tν−1

(1− t) ln t
− µ

ln t

]︃
dt (4.12)

for all ν > 0, where ψ(y) is the digamma function. Martinez [183] also obtained the elementary lower

bound C(µ) ≥ 1
2 ln(1+µ). This bound behaves well when µ is large. In fact, as already mentioned, the

capacity is known to behave like 1
2 lnµ when µ→∞. The lower bound in (4.12) was extended to dark

current λ > 0 by Cao, Hranilovic, and Chen [184]. Other (asymptotic and non-asymptotic) capacity

lower bounds for several settings were already implictly present in early works [185, 186, 187, 188], and
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can also be found in more recent works [51, 48, 49, 189]. Moreover, numerical approximations of the

capacity of the DTP channel under a finite peak-power constraint were studied in [190, 54, 191].

4.1.2 Structure of capacity-achieving distributions

The problem of determining properties of interest of capacity-achieving distributions has been con-

sidered before for many different classes of channels, mostly those with continuous input alphabets.

Usually, one is interested in determining whether the support of the capacity-achieving distribution

is finite or discrete. Showing that the capacity-achieving distribution has these properties is useful

in practice because it reduces the complexity of the problem of approximating this distribution, and

allows the application of a wider range of numerical methods.

The landscape of this problem is well-understood for quite general classes of noise-additive chan-

nels under several input constraints. This line of work started with Smith [52], who showed that

the capacity-achieving distributions for amplitude-constrained Gaussian channels have finite support.

This result and its underlying technique were then extended to a more general set of amplitude-

and average-power-constrained noise-additive channels by Das [192] and Tchamkerten [193], and later

by Fahs and Abou-Faycal [53] to more general input-cost constraints. Other works have focused on

studying such properties for certain noise-additive and closely related channels under peak and/or

average-power constraints, such as noise-additive channels with piecewise-constant noise density func-

tions [194], quadrature Gaussian channels [195], Rayleigh-fading channels [196], non-coherent and

partially-coherent Gaussian channels [197], and non-coherent Rician fading channels [198]. A brief ac-

count of the application of Smith’s technique from [52] to more general channels can be found in [199].

The structure of capacity-achieving distributions for the DTP channel was first studied by Shamai [42],

who showed that capacity-achieving distributions for the DTP channel under a finite peak-power

constraint must have finite support, and conjectured that capacity-achieving distributions for the

DTP channel under an average-power constraint only have discrete support. He also gave conditions

which ensure that distributions with two mass points are optimal. These results were extended by Cao,

Hranilovic, and Chen [54, 200]. In particular, they showed that the support of a capacity-achieving

distribution for the DTP channel under an average-power constraint only must be an unbounded set.

Moreover, they also proved that such a distribution must have some mass at x = 0. Additionally, if

there is only an active peak-power constraint A, they show there must also be some mass at x = A, and
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that this may not be the case otherwise. Unlike noise-additive channels, not much is known about the

capacity-achieving distributions of the DTP channel when there is only an average-power constraint

present. We will discuss previous approaches to deriving properties of the support of capacity-achieving

distributions for the DTP channel in Section 4.4, along with our new result that capacity-achieving

distributions for the DTP channel with an average-power constraint have a finite number of mass

points in every bounded interval.

4.2 Improved capacity upper bounds for the DTP channel

In this section, we are interested in upper bounding the quantity

C(µ) = max
X:E[X]≤µ

I(e)(X;YX),

where the maximum is taken over all distributions X supported in R+
0 satisfying E[X] ≤ µ, and YX is

the corresponding channel output distribution with Yx ∼ Poix, i.e., such that

Yx(y) =
e−xxy

y!
, y = 0, 1, 2, . . . ,

with Y0(0) = 1. We denote the DTP channel with dark current λ and average-power constraint µ by

DTPλ,µ, and omit λ when it is 0. We are interested in obtaining improved upper bounds on C(λ, µ) by

transferring techniques used to upper bound the capacity of the Poisson-repeat channel to the average-

power constrained DTP channel. In order to do this, we must first be able to apply an analogue of

Theorem 2.5 in a continuous setting. Although Cheraghchi [40] only proved Theorem 2.5 for DMCs,

it can be extended to stationary memoryless channels with continuous input alphabets as well.

Theorem 4.1. Fix λ ≥ 0 and suppose there exist constants a ∈ R+
0 , b ∈ R and a distribution Y over

N0 such that

D
(e)
KL(Yx∥Y ) ≤ ax+ b

for every x ∈ R+
0 , where Yx ∼ Poiλ+x is the output of DTPλ,µ on input x. Then, we have

C(λ, µ) ≤ aµ+ b.

Moreover, an input X is capacity-achieving for DTPλ,µ if and only if E[X] = µ and there exist constants
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a ∈ R+
0 , b ∈ R such that

D
(e)
KL(Yx∥YX) ≤ ax+ b

for every x ∈ R+
0 , with equality for all x ∈ supp(X). In this case, we have C(λ, µ) = aµ+ b.

The first part of Theorem 4.1 can be obtained as a special case of a result of Lapidoth and Moser [201],

which generalises an earlier convex duality result [202, Chapter 2, Theorem 3.4] to arbitrary alphabets.

Lemma 4.1 ([201, Theorem 5.1, specialised]). Fix a stationary memoryless channel Ch with input

alphabet R+
0 and output alphabet N0. Suppose that for every set S ⊆ N0 the map x ↦→ Yx(S) =∑︁

y∈S Yx(y) is continuous on R+
0 . Let X be any distribution on R+

0 with cdf F and Y any distribution

on N0. Then, we have

I(e)(X;YX) ≤
∫︂
D

(e)
KL(Yx||Y )dF (x),

where YX denotes the output distribution of Ch on input X. If instead the input alphabet is N, then no

assumptions on Yx are necessary for the result to hold.

In order to derive the first part of Theorem 4.1 from Lemma 4.1, suppose that Y is such that

D
(e)
KL(Yx∥Y ) ≤ ax + b for every x ∈ R+

0 and some a ∈ R+
0 , b ∈ R. Then, for every X with cdf F

and supp(X) ⊆ R+
0 satisfying the average-power constraint we have

I(e)(X;YX) ≤
∫︂
D

(e)
KL(Yx||Y )dF (x)

≤
∫︂
(ax+ b)dF (x)

≤ aµ+ b,

where the third inequality follows from the fact that
∫︁
xdF (x) = E[X] ≤ µ. An analogous reasoning

can be used to recover the capacity upper bounds in Theorem 2.5 from Lemma 4.1.

The optimality conditions in Theorem 4.1, which imply in particular that we can consider this more spe-

cialised version of Lemma 4.1 without any loss in optimality, and the existence of a capacity-achieving

distribution for the DTP channel can be proved by following the approach from [196, Appendices I and

II] for the Rayleigh-fading channel with an average-power constraint. For the sake of completeness, we

provide a proof of these results in Appendix B, which is a close adaptation of [4, Appendices A and

B].
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4.2.1 The digamma distribution

The starting point for deriving improved upper bounds on C(µ) is the family of digamma distributions,

which were already used in [40] to obtain analytical capacity upper bounds for the Poisson-repeat

channel. This family of distributions Y (q) is parameterised by q ∈ (0, 1), and the distribution is given

by

Y (q)(y) = y0q
y exp(g(y)− y − ln(y!)), y = 0, 1, . . . , (4.13)

with g defined as

g(y) =

⎧⎪⎪⎨⎪⎪⎩
yψ(y), if y > 0,

0, if y = 0,

where ψ is the digamma function and y0 is the normalising factor. In particular, for integer y we have

ψ(y) = −γ +
∑︁y−1

i=1 1/i, where γ ≈ 0.5772 is the Euler-Mascheroni constant.

We begin by showing that the digamma distribution Y (q) satisfies

D
(e)
KL(Yx∥Y

(q)) ≤ − ln y0 − x ln q (4.14)

for every x ≥ 0 and q ∈ (0, 1) via well-established results from the theory of special functions. First,

similarly to other computations from Chapter 3, we have

D
(e)
KL(Yx∥Y

(q)) = D
(e)
KL(Poix∥Y

(q)) = − ln y0 − x ln q + x lnx− E[g(Yx)] (4.15)

for every x ≥ 0. Therefore, in order to show (4.14) it now suffices to prove that

E[g(Yx)] =
∞∑︂
y=0

e−xxyg(y)

y!
≥ x lnx

for all x ≥ 0. This holds when x = 0, and so it remains to consider the case x > 0. From the theory of

special functions (by instantiating the Tricomi confluent hypergeometric function U(a, n + 1, x) with

approriate parameters: [70, 13.1.6, p. 504 with a = n+ 1 = 1 and z = x] combined with [70, 13.6.12,

p. 509] and [70, 13.6.30, p. 510]), we have the identity

exE1(x) =

∞∑︂
y=0

ψ(1 + y)

y!
xy − ex lnx, (4.16)
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where we recall the exponential integral E1 from Section 2.2. Multiplying both sides of (4.16) by xe−x

and shifting the index in the sum appropriately leads to

∞∑︂
y=0

e−xxyg(y)

y!
= x lnx+ xE1(x) ≥ x lnx.

As a result, using the convention that 0E1(0) = 0, we obtain (4.14) for every x ≥ 0 and q ∈ (0, 1) with

associated KL-gap

∆(x) = xE1(x). (4.17)

Consequently, by Theorem 4.1 it follows that

C(µ) ≤ inf
q∈(0,1)

(− ln y0 − µ ln q). (4.18)

4.2.2 Improved closed-form upper bounds

In this section, we discuss how to obtain good closed-form upper bounds on C(µ) from (4.18). Our

starting point is a result of Cheraghchi [40] that bounds − ln y0 as a function of q via well-known

properties of the gamma and digamma functions.

Lemma 4.2 ([40, Corollary 16]). For all y ≥ 1 and q ∈ (0, 1), we have

2

e1+γ
NB1/2,q(y) ≤

√
1− q · Y (q)(y)

y0
≤ 1√

2e
NB1/2,q(y).

In particular, this implies that

ln

(︃
1 +

2

e1+γ

(︃
1√
1− q

− 1

)︃)︃
≤ − ln y0 ≤ ln

(︃
1 +

1√
2e

(︃
1√
1− q

− 1

)︃)︃

for all q ∈ (0, 1).

Combined with (4.18), this immediately leads to the upper bound

C(µ) ≤ inf
q∈(0,1)

f(µ, q), (4.19)

where f(µ, q) = −µ ln q+ln
(︂
1 + 1√

2e

(︂
1√
1−q
− 1
)︂)︂

. In order to obtain good closed-form upper bounds

on C(µ), it suffices now to instantiate f(µ, q) with good choices q = q(µ), and we briefly discuss a



4.2. Improved capacity upper bounds for the DTP channel 147

heuristic for deriving such choices.

As a starting point, since C(µ) is a concave unbounded function of µ, we know that the capacity-

achieving distribution X for the DTP channel under average-power constraint µ satisfies E[X] =

E[YX ] = µ, where YX denotes the associated channel output distribution. With this in mind, we want

to derive choices q = q(µ) such that E[Y (q)] is close to µ for all µ. Numerical evidence suggests that the

optimal q satisfies this property, and moreover that the optimal q approaches 1 as µ→∞. For q close

to 1, Lemma 4.2 implies that Y (q) is well-approximated by NB1/2,q. To ensure that E[NB1/2,q] = µ, it

suffices to set q = 2µ
1+2µ , and thus we expect the choice q1(µ) = 2µ

1+2µ to yield a good upper bound on

C(µ). Interestingly, we have

C(µ) ≤ f(µ, q1(µ)) =
(︃
µ+

1

2

)︃
ln

(︃
µ+

1

2

)︃
− µ lnµ− 1

2
+ ln

(︄
1 +

√
2e− 1√
1 + 2µ

)︄
,

thus providing a rigorous proof of Martinez’s bound in (4.10). This is not entirely surprising, as

Martinez reaches (4.10) by considering a similar duality-based approach and a negative binomial dis-

tribution as the candidate, instead of the digamma distribution which we use here. However, we can

refine the choice q1(µ) above and improve significantly on Martinez’s bound by setting q2(µ) so that,

similarly to q1(µ), we have q2(µ) = 2µ
1+2µ + o(1/µ) when µ → ∞ and also E[Y (q2(µ))] = (1 + o(1))µ

when µ→ 0.

We consider the choice q2(µ) satisfying

1

1− q2(µ)
= 1 + αµ+

βµ2

1 + µ

for some constants α and β. We have that 1
1−q2(µ)

behaves as 1 + αµ + o(µ) when µ → 0 and as

1+ (α+ β)µ+ o(µ) when µ→∞, which means we can set its asymptotic behaviour in both the small

and large µ regimes independently of each other. Moreover, setting α + β = 2 leads to the desired

behaviour q2(µ) = 2µ
1+2µ + o

(︂
1
µ

)︂
when µ → ∞. We now proceed to choose α. Given our previous

discussion, we determine the choice of α which ensures that E
[︁
Y (q2(µ))

]︁
= µ+ o(µ) when µ → 0. By

construction, q2(µ) = αµ+ o(µ) when µ→ 0. We will need the following result.

Lemma 4.3. We have E
[︁
Y (q)

]︁
= e−(1+γ)q + o(q) as q → 0.
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Proof. Using the fact that g(1)− 1 = ψ(1)− 1 = −(1 + γ), we have

E
[︁
Y (q)

]︁
q

= y0e
−(1+γ) + y0

∞∑︂
y=2

y · e
g(y)−yqy−1

y!
. (4.20)

From Lemma 4.2 it follows that y0 approaches 1, and the rightmost term on the right-hand side of

(4.20) vanishes when q → 0.

The remarks above, combined with Lemma 4.3, imply that E
[︁
Y (q2(µ))

]︁
= e−(1+γ)αµ + o(µ) when

µ→ 0. Therefore, it suffices to set α = e1+γ to have E
[︁
Y (q2(µ))

]︁
= µ+ o(µ) when µ→ 0, as desired.

Based on this, we choose q2(µ) satisfying

1

1− q2(µ)
= 1 + e1+γµ+

(2− e1+γ)µ2

1 + µ
.

With this choice of q2(µ), we obtain the upper bound

C(µ) ≤ µ ln

(︄
1 +

(︁
1 + e1+γ

)︁
µ+ 2µ2

e1+γµ+ 2µ2

)︄
+ ln

(︄
1 +

1√
2e

(︄√︄
1 + (1 + e1+γ)µ+ 2µ2

1 + µ
− 1

)︄)︄
, (4.21)

which improves on (4.10) for all µ > 0. Figure 4.1 compares the bounds derived in this section to

previously known bounds. The curve corresponding to the bound of Lapidoth et al. (4.4) is the plot

of µ ln
(︂
1+µ
µ

)︂
+ ln(1 + µ), which lower bounds the right-hand side of (4.4). There is a noticeable

improvement over Martinez’s bound (4.10) when µ is not small, and one can see that (4.21) is close

to (4.19) and (4.18), which confirms that the choice q2(µ) is close to optimal. Due to the fact that our

bounds are tighter than Martinez’s bound, both of them satisfy the first-order asymptotic behaviour

of C(µ) when µ → 0 and when µ → ∞. However, they do not exhibit the correct second order

asymptotic term when µ → 0. In fact, the second-order asymptotic term of our bounds when µ → 0

is −O(µ), while the correct term is −µ ln ln(1/µ). For this reason, our bounds do not improve on

the Wang-Wornell bound (4.9) when µ is sufficiently small (numerically, when µ < 10−6), while they

noticeably improve on every previous bound when µ is not too small.
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Figure 4.1: Comparison of upper bounds and the analytical lower bound (4.12) with ν = 0.05 for
µ ∈ [0, 0.2]. Adapted from [4]. ©2019 IEEE

4.3 Capacity upper bounds for the DTP channel with positive dark

current

In this section, we are interested in obtaining improved upper bounds on the capacity of the DTP

channel with arbitrary dark current λ > 0 and average-power constraint µ, which is given by the

expression

C(λ, µ) = sup
X:E[X]≤µ

I(e)(X;YX),

where YX is the output distribution of DTPλ,µ induced by the input distribution X. As discussed

before, every upper bound on C(µ) is also an upper bound C(λ, µ) for every λ ≥ 0, which means that

our improved upper bounds derived in Section 4.2 are also upper bounds on C(λ, µ). Our goal in this

section is to improve on known upper bounds when λ > 0, and we do this by combining the digamma

distribution described in Section 4.2.1 with techniques from Section 3.2.3.

4.3.1 The modified digamma distribution

The starting point in the derivation of our upper bounds is what we call the modified digamma distri-

bution Y
(q)
δ , where δ ∈ (0, 1] is a free parameter to be determined. Analogously to Section 3.2.3, our

modification consists in changing the value of the digamma distribution Y (q) at y = 0 and renormalising
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the distribution. More precisely, for every such δ we define

Y
(q)
δ (y) =

⎧⎪⎪⎨⎪⎪⎩
αδ, if y = 0,

αY (q)(y)/y0, if y > 0,
(4.22)

where Y (q) is the digamma distribution defined in (4.13) and α is the new normalising factor satisfying

1/α = 1/y0 + δ − 1,

which follows from the fact that Y (q)(0)/y0 = 1 for the digamma distribution Y (q). We note again that

a similar approach was employed by Martinez [47] in the special case where λ = 0 to improve the upper

bound given by his different candidate distribution and obtain (4.10). However, no rigorous proof is

given in [47] to show that this approach works in that special case, with only numerical evidence being

presented. In this section, we use the approach above for general λ ≥ 0 to analytically derive improved

upper bounds on C(λ, µ).

Based on Section 3.2.3, we know that the quantity D(e)
KL(Yx∥Y

(q)
δ ) has a simple expression in terms of

D
(e)
KL(Yx∥Y

(q)). We compute it here explicitly. Recalling that Yx ∼ Poiλ+x and setting z = λ + x, we

have

D
(e)
KL(Yx∥Y

(q)
δ ) = D

(e)
KL(Poiz∥Y

(q)
δ )

= −H(e)(Poiz)−
∞∑︂
y=0

Poiz(y) lnY
(q)
δ (y)

= − lnα− Poiz(0) ln δ −H(e)(Poiz) +
∞∑︂
y=1

Poiz(y)(ln(y!) + y − g(y))

= − lnα− Poiz(0) ln δ −H(e)(Poiz) + Ey∼Poiz [ln(y!) + y − g(y)− y ln q] (4.23)

= − lnα− z ln q − e−z ln δ −H(e)(Poiz) + Ey∼Poiz [ln(y!) + y − g(y)] (4.24)

= − lnα− z ln q − e−z ln δ + z ln z − Ey∼Poiz [g(y)] (4.25)

= − lnα− z ln q − e−z ln δ − zE1(z). (4.26)

The equality (4.23) holds because the term inside the sum is 0 at y = 0. The equality (4.24) is true

since E[Poiz] = z and Poiz(0) = e−z. The equality (4.25) follows from the fact that

H(e)(Poiz) = z + Ey∼Poiz [ln(y!)]− z ln z
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for all z ≥ 0. Finally, the equality (4.26) follows from (4.15) and (4.17).

We continue following the line of reasoning from Section 3.2.3. Given λ ≥ 0, consider the choice

δλ = exp(−λeλE1(λ)). (4.27)

Then, recalling that z = λ+ x we have

−e−z ln δλ = e−xλE1(λ).

Consequently, by defining Y (q)
λ = Y

(q)
δλ

and using (4.26) we have

D
(e)
KL(Yx∥Y

(q)
λ ) = − lnα− (λ+ x) ln q + e−xλE1(λ)− (λ+ x)E1(λ+ x) (4.28)

for every x ≥ 0. We now claim that the following result holds.

Theorem 4.2. For every x ≥ 0, q ∈ (0, 1), and λ > 0 we have

D
(e)
KL(Yx∥Y

(q)
λ ) ≤ − lnα− (λ+ x) ln q,

with KL-gap ∆λ satisfying

∆λ(x) = − lnα− (λ+ x) ln q −D(e)
KL(Yx∥Y

(q)
λ ) = (λ+ x)E1(λ+ x)− e−xλE1(λ) < ∆(λ+ x).

Analogously to Section 3.2.3, the choice of δλ in (4.27) ensures that we have ∆λ(0) = 0 and ∆λ(x)→ 0

exponentially fast when x → ∞ (in general, ∆λ(x) is always smaller than the KL-gap ∆(λ + x) of

the original digamma distribution). Theorem 4.2 and the observations above justify our choice of δλ

in (4.27); With this choice, we obtain a new family of modified digamma distributions Y (q)
λ with KL-

gap ∆λ that is always smaller than the original KL-gap ∆ of the digamma distributions. Moreover,

the KL-gap ∆λ equals 0 at x = 0 and is significantly smaller than ∆(λ+ x) around x = 0. Figure 4.2

compares the original KL-gap ∆ with the new KL-gap ∆λ for λ = 1/2. Given the above, intuitively we

expect to obtain a sharper upper bound on C(λ, µ) using the family of modified digamma distributions.

Theorem 4.2 is an immediate consequence of (4.28) and the following lemma.
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Figure 4.2: Comparison between ∆λ(x) (dashed line) and ∆(λ + x) (full line) when λ = 1/2 for
x ∈ [0, 7].

Lemma 4.4. For every λ, x ≥ 0 we have

∆λ(x) = (λ+ x)E1(λ+ x)− e−xλE1(λ) ≥ 0.

Proof. Multiplying both sides of the inequality above by eλ+x, we conclude that the desired inequality

holds provided we can show that

(λ+ x)eλ+xE1(λ+ x) ≥ λeλE1(λ)

for all λ, x ≥ 0. Since equality is achieved for every λ ≥ 0 when x = 0, it is enough to show that the

function f(z) = zezE1(z) is non-decreasing when z > 0. Note that we have

f ′(z) = (1 + z)ezE1(z)− 1

for every z > 0, where we used the fact that E′
1(z) = −e−z/z. We proceed to show that f ′(z) ≥ 0 for

all z > 0, which implies the desired result. Recalling Lemma 2.9, we have the lower bound

ezE1(z) ≥
1

2
ln(1 + 2/z)
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for all z > 0. Therefore, it is enough to argue that

1 + z

2
· ln(1 + 2/z) ≥ 1

for all z > 0. This follows from the fact that ln(1 + x) ≥ 2x
2+x for all x ≥ 0, and thus

1 + z

2
· ln(1 + 2/z) ≥ 1 + z

2
· 4/z

2 + 2/z
= 1.

4.3.2 Derivation of the capacity upper bounds

In this section, we derive our capacity upper bounds with the help of Theorems 4.1 and 4.2. First, by

combining these two results we have

C(λ, µ) ≤ inf
q∈(0,1)

[− lnα− (λ+ µ) ln q], (4.29)

where we recall that α is the normalising factor of the modified digamma distribution Y
(q)
λ defined

in (4.22) with δ = δλ defined in (4.27). Then, similarly to Section 4.2, we can upper bound − lnα in

terms of upper bounds on − ln y0, where y0 denotes the normalising factor of the original digamma

distribution Y (q), by recalling Lemma 4.2 and the fact that 1/α = 1/y0 − 1 + δλ. Exploiting these

observations, we conclude that

− lnα ≤ ln

(︃
δλ +

1√
2e

(︃
1√
1− q

− 1

)︃)︃
(4.30)

for every q ∈ (0, 1) and λ ≥ 0.

It remains now to choose q = q(λ, µ) appropriately. Recalling Section 4.2.2, when λ = 0 the choice

q2(µ) = 1− 1

1 + e1+γµ+ 2−e1+γ

1+µ µ2

is close to optimal for all µ ≥ 0, and leads to a significantly improved upper bound on C(µ). For the

case where λ > 0, we consider the direct extension q(λ, µ) defined as

q(λ, µ) = 1− 1

1 + e1+γ(µ+ λ) + 2−e1+γ

1+µ+λ (µ+ λ)2
, (4.31)
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where γ is the Euler-Mascheroni constant. Combining (4.29), (4.30), and (4.31) leads to the following

upper bound on C(λ, µ).

Theorem 4.3. For every µ, λ ≥ 0 we have

C(λ, µ) ≤ ln

(︄
δλ +

1√
2e

(︄
1√︁

1− q(λ, µ)
− 1

)︄)︄
− (µ+ λ) ln q(λ, µ), (4.32)

where δλ = exp(−λeλE1(λ)), with the convention that 0E1(0) = 0, and q(λ, µ) defined in (4.31).

Remark 4.1. Although the upper bound in (4.32) does not have a closed-form expression due to

the use of the exponential integral (which is nevertheless easy to compute numerically), we can use

Lemma 2.9 to upper bound δλ as

δλ ≤ min
(︂
(1 + 2/λ)−λ/2, (1− e−λeγ )λe

λ
)︂

(4.33)

for all λ > 0. Replacing δλ in (4.32) by the upper bound in (4.33) leads to an improved upper bound

on C(λ, µ) with a closed-form and elementary expression which sharply approaches (4.32) when λ is

small and overall improves on previously known bounds.

Figures 4.3 and 4.4 compare our new upper bound on C(λ, µ) from (4.32) and the closed-form, el-

ementary upper bound obtained by combining (4.32) and (4.33) to previously known upper bounds

on C(λ, µ) and C(λ, µ,A). In Figure 4.4, the bound (4.6) is replaced by the underestimate (4.7), the

upper bound (4.2) is plotted without the positive asymptotic term ε, and the upper bound (4.11),

which is only valid when there is a peak-power constraint A < ∞, is plotted for the case A = 1.

The upper bound (4.8) is plotted by ignoring the additive term µe−λ supx≥0 ϕµ,λ(x), which is always

positive when it is well-defined, and the fact that this bound only holds when µ is small enough and

λ→ 0 when µ→ 0. In both figures, we see that the new upper bound (4.32) significantly improves on

previously known upper bounds on C(λ, µ) whenever µ is not tiny, including the upper bound (4.11)

on C(λ, µ,A = 1). Moreover, it is sharply approached by the elementary upper bound.

4.4 Structure of capacity-achieving distributions for the DTP channel

In this section, we show that capacity-achieving distributions for the DTP channel with arbitrary dark

current λ ≥ 0 under an average-power constraint and/or a peak-power constraint must be discrete.
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Figure 4.3: Comparison between the upper bound (4.32), the elementary upper bound combining (4.32)
and (4.33), and the upper bound (4.21) when λ = 1/10.
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Figure 4.4: Comparison between the upper bound (4.32), the elementary upper bound combining (4.32)
and (4.33), and previous upper bounds when λ = 1/10.
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This proves a conjecture of Shamai [42]. As discussed in Section 4.1.2, previously it was only known

that capacity-achieving distributions have finite support under a finite peak-power constraint [42], and

that their support is an unbounded set when there is only an average-power constraint present [54].

We show the stronger result that the support of capacity-achieving distributions for the DTP channel

under an average-power constraint and/or a peak-power constraint must have finite intersection with

every bounded interval. Our techniques are general, and we recover Shamai’s original result [42] for

the DTP channel under a finite peak-power constraint with an alternative proof. For completeness,

we show that there exist capacity-achieving distributions for the DTP channel under an average-power

constraint in Appendix B.2.

It is interesting to point out connections between the study of properties of capacity-achieving dis-

tributions and the derivation of channel capacity upper bounds. First, techniques for tackling both

problems make use of the convex duality-based approach to channel capacity. Second, an in-depth

study of capacity-achieving distributions may lead to more refined capacity upper bounds. In fact,

as we have seen in the previous sections, one obtains capacity upper bounds by designing candidate

distributions Y to be used in the framework of Theorem 4.1. Since the capacity-achieving output

distribution Y ⋆ is the optimal candidate distribution for Theorem 4.1, one expects to obtain improved

upper bounds by using candidate distributions Y that are more similar to Y ⋆. As we have seen in

Chapter 2, this approach has already been used with great success to obtain tight numerical capacity

upper bounds for sticky channels in [32, 1]. Therefore, we expect that knowing more about the prop-

erties of the capacity-achieving input distribution will lead to a more informed design of candidate

distributions for Theorem 4.1, and hence to better capacity upper bounds for the DTP channel.

4.4.1 The original argument for the DTP channel under a peak-power constraint

Before we present our proof, it is illustrative to describe the technique of Shamai [42], which in turn is

an adaptation of the technique that Smith [52] used to study the analogous problem for the amplitude-

and average-power-constrained Gaussian channel. The same technique was used to prove that capacity-

achieving distributions for the DTP channel under an average-power constraint only have unbounded

support [54], and was also recently used to prove discreteness of the support of capacity-achieving dis-

tributions for a general class of noise-additive channels under many different input-cost constraints [53].

Consider the DTP channel with average-power constraint µ and peak-power constraint A <∞, and let
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X be the capacity-achieving distribution with associated output distribution Y . Then, the optimality

conditions from Theorem 4.1 state that there exist a, b ∈ R such that

D
(e)
KL(Yx∥Y ) ≤ ax+ b

for all x ∈ [0, A], with equality for x ∈ supp(X) ⊆ [0, A]. Shamai [42] begins by noting that D(e)
KL(Yx∥Y )

is a real analytic function2 of x on (0,∞). If we assume that supp(X) is bounded but infinite, then

the following property of real analytic functions allows us to conclude (ignoring some details) that

D
(e)
KL(Yx∥Y ) = ax+ b for all x ∈ (0,∞).

Theorem 4.4 (Identity theorem for real analytic functions [203, Corollary 1.2.6]). If f and g are real

analytic functions on an open interval U ⊆ R and there exists a set W ⊆ U with a limit point3 in U

such that f(x) = g(x) for all x ∈ W, then f(x) = g(x) for all x ∈ U .

In order to reach a contradiction, it is now enough to argue that we must have D(e)
KL(Yx∥Y ) ̸= ax+b for

some x ≥ 0. To show that this is the case, Shamai [42] used the fact that X ∈ [0, A] with probability

1 to argue that D(e)
KL(Yx∥Y ) = ΩA(x lnx) as x → ∞, where the hidden constant depends on A. This

implies the desired result, which in turn shows that supp(X) must be finite.

To prove our new result below, we also use Theorem 4.4 to conclude (again, ignoring some details)

that we must have D(e)
KL(Yx∥Y ) = ax + b for all x ≥ 0. However, in our case we cannot assume that

supp(X) is bounded, and therefore it is not clear whether D(e)
KL(Yx∥Y ) = Ω(x lnx) still holds as x

grows. We overcome this by instead analysing the behaviour of D(e)
KL(Yx∥Y ) around x = 0 and deriving

a contradiction.

4.4.2 Capacity-achieving distributions for the DTP channel have discrete support

Consider a discrete probability distribution Y supported on N0. For our results, it suffices to consider

Y with full support. This is because all optimal output distributions of the DTP channel have full

support, as the only input distribution which does not induce an output distribution with full support

is the distribution that assigns probability 1 to x = 0, which is not optimal under average-power
2A function f : R → R is said to be real analytic on an open set U ⊆ R if for every α ∈ U there is an interval

I = (α− ε, α+ ε) and real numbers (ai)i=0,1,... such that f(x) =
∑︁∞

i=0 ai(x−α)i for all x ∈ I (see [203] for an extensive
treatment of such functions).

3A real number x is a limit point of a set W ⊆ R if there exists a sequence (xi)i∈N such that xi ∈ W, xi → x, and
xi ̸= x for all i.
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constraint µ > 0. For the sake of simplicity, in this section we will work under the assumption that

λ = 0. Nevertheless, the approach extends easily to the case of arbitrary λ ≥ 0. The following result

gives a characterisation of optimal output distributions for the DTP channel (which we might also call

capacity-achieving) that is obtained by writing a general distribution in the form y0q
y exp(f(y)) for

some function f and invoking Theorem 4.1. As seen before, writing distributions in this form simplifies

the inequality D
(e)
KL(Yx∥Y ) ≤ aE[Yx] + b considerably, and will allow us to instead focus on studying

an inequality with a nice form. Before we proceed, we need the following definition.

Definition 4.1 (Exponential generating function). Given a function g : N0 → R, its (real-valued)

exponential generating function, which we denote by Gg, is defined as

Gg(z) =
∞∑︂
i=0

g(i)

i!
zi.

When the context is clear, we may denote Gg by G.

The key property of the distribution Yx ∼ Poix which we will exploit is that E[g(Yx)] = e−x ·G(x) for

all x ≥ 0.

Lemma 4.5. Suppose X is capacity-achieving for the DTP channel under an average-power constraint

µ > 0 and peak-power constraint A (we may have A = ∞) with corresponding output distribution Y .

Then, we can write Y as

Y (y) = exp(−ay − b+ g(y)− y − ln(y!)), y ∈ N0, (4.34)

for a function g such that |g(y)| = O(y ln y) and

G(x) ≥ xex lnx, ∀x ∈ [0, A]

with equality for all x ∈ supp(X), where G is the exponential generating function of g with infinite

radius of convergence, and we follow the convention that 0 ln 0 = 0.

Proof. By the assumptions on X and Y and Theorem 4.1 there exist a, b ∈ R such that

D
(e)
KL(Yx||Y ) ≤ aE[Yx] + b (4.35)
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for all x ∈ [0, A], with equality if x ∈ supp(X). Consider the function g defined as

g(y) = ay + b+ lnY (y) + y + ln(y!), y ∈ N0.

Noting that supp(X) ̸= {0} (because otherwise X is not capacity-achieving under average-power

constraint µ > 0), it follows that Y must have full support over N0. Therefore, g(y) is well-defined

for every y ∈ N0, and (4.34) is satisfied by construction. To see that |g(y)| = O(y ln y), observe that

there is an interval I = [c1, c2] with 0 < c1 < c2 < ∞ such that Pr[X ∈ I] > 0 since Pr[X > 0] > 0.

Therefore, for y > c2 we have

Y (y) ≥ Pr[X ∈ I] · Yc1(y) = Pr[X ∈ I] · e−c1 · c
y
1

y!

since the map x ↦→ Yx(y) is increasing for fixed y when x < y, and so

0 ≤ − lnY (y) ≤ ln(y!)− y ln c1 + c1 − ln Pr[X ∈ I] ≤ y ln y +O(y).

Therefore, we have

|g(y)| ≤ ay + |b| − lnY (y) + y + ln(y!) = ay + |b|+O(y ln y) + y + ln(y!) = O(y ln y).

In particular, this implies that the exponential generating function G(z) of g is finite for every z ∈ R.

Finally, we may write

D
(e)
KL(Yx||Y ) = −H(e)(Yx)− E[lnY (Yx)]

= x lnx− x− E[ln(Yx!)]− E[aYx + b+ g(Yx)− Yx − ln(Yx!)]

= aE[Yx] + b+ x lnx− E[g(Yx)]

= aE[Yx] + b+ x lnx− e−x ·G(x),

where the last equality follows by observing that E[g(Yx)] = e−x ·G(x). Recalling (4.35), we conclude

that

G(x) ≥ xex lnx

for all x ∈ [0, A], with equality for all x ∈ supp(X).
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We also need the already mentioned result from [54] stating that optimal input distributions for the

DTPµ channel have unbounded support.

Theorem 4.5 ([54]). Suppose X is a capacity-achieving distribution for the DTP channel under an

average-power constraint µ > 0 and no peak-power constraint. Then, supp(X) is an unbounded set.

We now show that capacity-achieving input distributions for the DTP channel under an average-power

constraint and/or a peak-power constraint must be discrete.

Theorem 4.6. Suppose X is a capacity-achieving distribution for the DTP channel under an average-

power constraint µ > 0 and/or a peak-power constraint A (we may have A =∞). Then, supp(X) ∩ I

is finite for every bounded interval I. In particular, supp(X) is countably infinite when A = ∞ and

finite when A <∞.

Proof. Fix X as in the theorem statement and let Y be the corresponding output distribution. Then,

Lemma 4.5 guarantees the existence of a function g such that its exponential generating function G

converges everywhere and satisfies

G(x) ≥ xex lnx, ∀x ∈ [0, A]

with equality for x ∈ supp(X).

Without loss of generality, we can focus on intervals I ⊆ (0,∞), since supp(X) ⊆ [0,∞). Suppose

that there exists a bounded interval I ⊆ (0,∞) such that S = supp(X) ∩ I is infinite. Since G is

a power series with infinite radius of convergence, it is real analytic on R. Moreover, we have that

f(x) = xex lnx is real analytic on (0,∞) and can be extended by continuity to x = 0 by setting

f(0) = 0. We work with this extension from here onwards. Since G and f are both real analytic on

(0,∞) and agree on the set S in this interval, it follows by Theorem 4.4 that G(x) = f(x) for all

x ∈ (0,∞) provided that S has a limit point in (0,∞).

Assume that indeed S has a limit point in (0,∞). Then, it follows that G(x) = f(x) for all x ∈ (0,∞).

We show that this leads to a contradiction. First, by right-continuity of G and f at 0, the above implies

that G(0) = f(0) = 0. Then, we have G′(0) = limx→0+ G(x)/x = g(1) ∈ R. On the other hand, we

have limx→0+ f(x)/x = limx→0+ e
x lnx = −∞. This implies that we cannot have G(x) = f(x) for

x > 0 small enough. As a result, we conclude that supp(X) ∩ I must be finite, as desired.
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We now prove that S must have a limit point in (0,∞). Suppose that S has no limit points in (0,∞).

Then, since S is a bounded infinite set in (0,∞) by hypothesis, it must be the case that 0 is a limit

point of S (bounded infinite sets have at least one limit point by the Bolzano-Weierstrass theorem, and

this limit point must lie in [0,∞) since S ⊆ (0,∞)). Therefore, there exists a sequence (xi)i∈N such

that xi ∈ S and xi → 0. By definition of S, we must have G(xi) = f(xi) for all i, and the argument

from the previous paragraph shows that G(xi) ̸= f(xi) for i large enough, a contradiction.

Combining the above with Theorem 4.5 yields the desired result.
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Chapter 5

Coded trace reconstruction

In this chapter, we introduce and study the coded trace reconstruction problem, where the goal is to

design high-rate efficient coding schemes that can be decoded with high probability from few traces

obtained by corrupting a codeword with a constant rate of i.i.d. deletions. The motivation for studying

this problem is twofold, and is already apparent from our discussion in Section 2.5.3: On the one hand,

it can be seen as a first step towards the design of efficient coding schemes for DNA-based data storage

systems with nanopore-based sequencing [15, 16]. As previously discussed, current coding schemes

for such storage systems are based on heuristics, and have no rigorous decoding properties, even in a

simplified model with i.i.d. deletions. Overall, not much is known about the design of coding schemes in

the trace reconstruction setting in general. On the other hand, coded trace reconstruction can also be

seen as a natural extension of the average-case trace reconstruction problem. As we remarked before,

average-case trace reconstruction algorithms imply the existence of high-rate coding schemes with an

associated reconstruction algorithm that can reconstruct all codewords from few traces. However,

efficient encoding procedures are not known for such codes. In contrast, our goal in this chapter is to

design coding schemes with efficient encoding and decoding procedures.

As we shall see, coded trace reconstruction has deep connections to the original trace reconstruction

problem. Notably, we will leverage results obtained in both the worst-case and average-case trace

reconstructions already discussed in Section 2.5.3 to design our coding schemes.

We begin by rigorously introducing the coded trace reconstruction setting in Section 5.1. Then,

we discuss a first efficient coding scheme combining a marker-based approach with worst-case trace

reconstruction algorithms in Section 5.2. The flexibility of this construction allows us to enforce

163
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additional desirable properties, and in Section 5.3 we show that the coding scheme from Section 5.2

can be modified so as to have balanced GC-content, an important property for codes used in DNA-

based data storage systems. In Section 5.4, we show that by leveraging results on average-case trace

reconstruction we can obtain an efficient coding scheme with the same rate as that of Section 5.2, but

requiring significantly fewer traces for reliable reconstruction. Then, we study extensions of the mean-

based worst-case trace reconstruction algorithm from [60, 61] discussed in Section 2.5.3 that handle a

more general set of replication errors, and argue how such reconstruction algorithms can be coupled

with the approach from Section 5.2 to obtain results on coded trace reconstruction from a large class

of repeat channels. Finally, we briefly discuss related work that appeared in parallel or subsequently

to the first release of the work presented in this chapter.

The material presented in this chapter excepting Section 5.5 is based on [5] with minor modifications

to improve the exposition and consistency with the rest of the thesis.

5.1 The coded trace reconstruction problem

The channel model of coded trace reconstruction may be formalised as follows. For a given input string

x ∈ {0, 1}n, a deletion probability d, and an integer t(n), the channel returns t(n) traces of x. Each

trace of x is obtained by sending x through the BDCd channel, i.e., a deletion channel with deletion

probability d. Thus, the t(n) traces are i.i.d. according to the output distribution of BDCd on input x.

Given a code C ⊆ {0, 1}n, we say that C can be efficiently reconstructed from t(n) traces if there exists

a reconstruction algorithm Rec running in time poly(n) and a constant α > 0 such that for every c ∈ C

it holds that

Pr [Rec(T1, . . . , Tt) = c] ≥ 1− α/n,

where the Ti are i.i.d. according to the output distribution of BDCd on input c for i ∈ [t]. In words, the

reconstruction algorithm Rec recovers every codeword c ∈ C from t(n) i.i.d. traces of c with probability

at least 1 − α/n over the randomness of the traces and the reconstruction algorithm. We remark

that this definition corresponds to worst-case trace reconstruction restricted to codewords of C. The

goal of coded trace reconstruction is to design efficiently encodable codes C that can be efficiently

reconstructed from t(n) traces for t(n) as small as possible. We note also that although this definition

is stated specifically for the deletion channel, as that is our main focus, it can be extended in a
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straightforward manner to the setting where the traces are obtained by sending c through a different

repeat channel. We study this setting in Section 5.5.

Remark 5.1. The reconstruction algorithms we study in Sections 5.2 and 5.3 are deterministic. On

the other hand, the reconstruction algorithms from Section 5.4 are randomised as presented, since they

require access to independent samples from Berd. Although this is already reasonable in practice, we

can completely derandomise these algorithms by adding an efficient preprocessing step which extracts

the necessary samples (to within small statistical distance) from extra traces, while keeping the total

number of traces required and the final error probability of the same order. We discuss this in more

detail in Remark 5.5.

Remark 5.2. We have decided to require reconstruction success probability 1−α/n both for concrete-

ness and for consistency when comparing our results to previous works on trace reconstruction (which

generally also require similar success probability). The general tradeoff between code rate, number of

traces, and success probability is not a focus of this chapter. However, it is natural to consider other

settings (say, requiring only success probability 1− o(1)), and we leave this as an interesting direction

for future research. In view of this, we note that the difference (in terms of number of traces required)

by algorithms with some constant success probability η > 1/2 and algorithms with success probability

1 − 1/poly(n) is relatively small. Given any algorithm Rec with success probability η > 1/2 using t

traces, we can obtain an algorithm Rec′ with success probability at least 1−1/n using O(t log n) traces.

This is achieved by repeating Rec O(log n) times, each on a new batch of t traces, and choosing the

most common output of Rec. By a direct application of the Hoeffding bound, we obtain the desired

result. Of course, there is still much room for improvement if one aims for trace reconstruction with a

sublogarithmic number of traces.

Remark 5.3. For simplicity, our exposition focuses mostly on constructions of binary codes, although

it provides some guidelines and simple coding procedures for quaternary codes. It is also important

to note that designing a code with a given rate R for coded trace reconstruction is inherently harder

for smaller alphabets. Indeed, the existence of a binary code C ⊆ {0, 1}n with rate R that can be

efficiently encoded and reconstructed from t traces with error probability ε implies the existence of a

Q-ary code C′ (for Q = 2q) with the same rate R that can be efficiently encoded and reconstructed

from t traces with error probability at most qε. To see this, consider

C′ = {(c(1), c(2), . . . , c(q)) : c(i) ∈ C, i ∈ [q]} ⊆ {0, 1}q·n,
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which is a Q-ary code of length n and rate R. Moreover, let T denote a trace of some c′ =

(c(1), c(2), . . . , c(q)) ∈ C′. Observe that the trace T (i) obtained by replacing each Q-ary symbol in

T by the i-th bit of its binary expansion has the same distribution as a trace of ci. As a result, apply-

ing the transformation T ↦→ T (i) to each of the t traces of c′ and running the reconstruction algorithm

associated with C allows us to recover c(i) with error probability at most ε. Since this holds for every

i = 1, . . . , q, a union bound over all i shows that we can simultaneously recover c(1), c(2), . . . , c(q) from

t traces of c′ with error probability at most qε.

5.2 A simple marker-based construction

We start with a simple construction of high-rate codes that can be efficiently reconstructed from few

traces. The idea behind the approach is the following: Each codeword contains markers, consisting of

sufficiently long runs of 0s and 1s. Between two consecutive markers, we add a short block containing

a codeword from an inner code satisfying a mild constraint.

Intuitively, the runs in the markers will still be long in the trace, and so we hope to be able to correctly

identify the positions of all markers in a trace with high probability. After this is done, we can effectively

split the trace into many shorter, independent sub-traces corresponding to a block (and possibly some

bits from the two markers delimiting it). Then, we can apply worst-case trace reconstruction algorithms

to the sub-traces. The savings in the number of traces required for reconstruction stem from the fact

that sub-traces are short, and that each trace can be utilised simultaneously (and independently) by

all blocks. This idea for reconstruction almost works as is, except that the process of identifying the

markers in a trace may be affected by long runs of 0s originating from a block between two markers.

However, this can be solved by requiring that all runs of 0s in each block are short enough. There

exist low-redundancy codes satisfying the desired property, and hence we have good candidates for the

inner code. This approach leads to the following result.

Theorem 5.1. For n large enough there is an efficiently encodable code C ⊆ {0, 1}n+r with redundancy

r = O
(︂

n
logn

)︂
which can be efficiently reconstructed from exp(O(log2/3 n)) traces for any constant

deletion probability d < 1. Moreover, encoding can be perfomed in nearly-linear time n ·poly(log n) and

reconstruction can be performed in nearly-linear time n · exp(O(log2/3 n)).

In Section 5.3, we extend these ideas to the {A,C,G, T} alphabet in order to obtain high-rate codes

with desireable properties for DNA-based storage. Namely, these codes have balanced GC-content
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and can be reconstructed from few traces. Such codes are designed by exploiting the fact that the

marker-based constructions can be instantiated with a large range of inner codes, and we can make

the inner code satisfy yet stronger constraints.

We provide a precise description of the encoder Enc for our code C and prove Theorem 5.1. For

simplicity, we consider d ≤ 1/2 throughout. This choice of d is arbitrary, and the construction and

analysis can be easily generalised to all constant d ∈ [0, 1) by modifying leading constants appropriately.

Let ℓ = 50⌈log n⌉. Then, a marker M is a string of length 2ℓ of the form M = 0ℓ∥1ℓ. We also require an

efficiently encodable and decodable inner code C′ ⊆ {0, 1}m+r with encoder Enc′ : {0, 1}m → {0, 1}m+r,

where m = ⌈log2 n⌉ and r is the redundancy, satisfying the following property.

Property 5.1. For all c ∈ C′ and substrings s of c with |s| = ⌈
√
m⌉, it holds that wgt(s) ≥ |s|/3,

where wgt(s) denotes the Hamming weight of s.

In other words, every codeword of C′ has many 1s in all long enough substrings. Such efficient codes

exist with redundancy r = O(logm) = O(log log n), which is enough for our needs. We provide a

simple construction in Section 5.2.1.

Suppose we wish to encode an n-bit message x ∈ {0, 1}n. The encoder Enc on input x proceeds as

follows:

1. Split x into B = ⌈n/m⌉ blocks, each of length m (the last block may have to be padded with up

to m bits)

x = x(1)∥x(2)∥ · · · ∥x(B);

2. Encode each block x(i) under the inner code C′ to obtain x(i) = Enc′(x(i)) ∈ {0, 1}m+r;

3. Set the encoding of x, denoted by Enc(x), to be

Enc(x) = 1ℓ∥x(1)∥M∥x(2)∥M∥ · · · ∥M∥x(B)∥0ℓ.

We remark that the first run 1ℓ and the last run 0ℓ are superfluous, and are added only to make the

analysis simpler. Computing Enc(x) from x and decoding x from Enc(x) can both be done efficiently if

the inner code C′ is efficiently encodable and decodable. Figure 5.1 illustrates the encoding procedure

for C with a general inner code C′ satisfying Property 5.1 detailed above.
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Figure 5.1: The general encoding and reconstruction procedures for C. By considering different instanti-
ations of the inner code C′ and the trace reconstruction algorithm, we obtain Theorem 5.1, Theorem 5.2
(with slightly different markers and a 4-ary alphabet), and Theorem 5.4. Adapted from [5]. ©2020
IEEE

We now compute the redundancy of C. It holds that

|Enc(x)| ≤ B(|M |+ |x(1)|) = n+O

(︃
n

log n

)︃
+Br. (5.1)

Since we have r = O(logm) = O(log log n) and B = O
(︂

n
log2 n

)︂
, it follows that C has redundancy

O
(︂

n
logn

)︂
.

In the remainder of this section, we prove Theorem 5.1 using C via a sequence of lemmas. The

reconstruction procedure works as follows: First, we show that the markers M still contain long

enough runs after they are sent through the deletion channel. Then, we show that no long runs of 0s

originate from the sub-traces associated with each block. This implies that we can correctly identify

the position of the “01” part of each marker in the trace. As a result, we can split the trace into smaller

“sub-traces”, each one associated to a different block x(i). Then, we apply a reconstruction algorithm

to the set of sub-traces associated to each block in order to reconstruct the blocks, and thus the whole

codeword. This general reconstruction procedure is illustrated in Figure 5.1.

To obtain Theorem 5.1, we show that we can apply the worst-case trace reconstruction algorithm from

Theorem 2.10 to recover each block with high probability and with the desired number of traces. As

we will see in Section 5.4, a more careful instantiation of the inner code C′ will allow us to use even

more efficient trace reconstruction algorithms.
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We start by proving that the markers M still contain long runs after they are sent through the deletion

channel.

Lemma 5.1. Let 0L01L1 be the output of the deletion channel on input M . Then,

Pr[L0 > 10 log n,L1 > 0] ≥ 1− n−4

if n is large enough.

Proof. The result follows by a direct application of the Hoeffding bound. More precisely, we have

E[L0] ≥ 25 log n since ℓ = 50⌈log n⌉ and d ≤ 1/2, and thus

Pr[L0 ≤ 10 log n] ≤ Pr[Binℓ,1/2 ≤ E[Binℓ,1/2]− 15 log n]

≤ exp

(︃
−2 · 152 log2 n

ℓ

)︃
≤ exp

(︃
− 2 · 152 log2 n
50(1 + log n)

)︃
≤ n−5

if n is large enough. To conclude the proof, we note that Pr[L1 = 0] ≤ 2−ℓ ≤ n−50. A union bound

over the two events yields the desired result.

We now show that no long runs of 0s originate from the sub-traces associated with each block.

Lemma 5.2. Let c ∈ C′. Then, a trace of c does not contain a run of 0s of length at least 10 log n with

probability at least 1− n−3 if n is large enough.

Proof. Suppose that the run of 0s in question is obtained by deleting bits from a substring z of c with

at most 4 log n 1s. This implies that for n large enough there is a substring s of z with |s| = ⌈
√
m⌉

and wgt(s) < |s|/3, violating Property 5.1. Therefore, for n large enough there must exist a substring

of c with Hamming weight at least 4 log n such that all its 1s are deleted in the trace. The probability

that all 1s of a fixed substring of c with Hamming weight at least 4 log n are deleted is at most n−4.

Since there are at most m = ⌈log2 n⌉ choices for the substring, a union bound shows that the desired

probability is at most m · n−4 < n−3 for n large enough.
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The next lemma follows immediately by combining Lemmas 5.1 and 5.2 with a union bound over the

B ≤ ⌈ n
log2 n

⌉ blocks.

Lemma 5.3. Consider the following event E with respect to a trace of Enc(x): Set y(i) = 1ℓ∥x(i)∥0ℓ

for each i ∈ [B]. Then, for every i the first run 1ℓ of y(i) is not completely deleted, the last run 0ℓ has

length at least 10 log n in the trace, and there is no run of 0s of length at least 10 log n in the trace of

x(i).

Then, E happens with probability at least 1−n−2 over the randomness of the trace if n is large enough.

In particular, if E happens we correctly identify the separation between the traces of 0ℓ and 1ℓ from

every marker in the trace of Enc(x) by looking for all 1s that appear immediately after a run of at least

10 log n 0s.

We are now ready to prove Theorem 5.1. Let E denote the event described in Lemma 5.3. Then,

Lemma 5.3 implies that, conditioned on E, we can split a trace T of Enc(x) into B sub-traces

T (1), . . . , T (B) satisfying the following:

• The sub-traces T (i) are independent for i = 1, 2, . . . , B;

• Each sub-trace T (i) is distributed like a trace of 1ℓ∥x(i)∥0ℓ conditioned on the first run 1ℓ not

being completely deleted, the trace of the last run 0ℓ having length at least 10 log n, and the

trace of x(i) not containing any run of 0s of length at least 10 log n.

As mentioned above, each sub-trace T (i) can be identified by looking for the (i− 1)-th and i-th runs of

0 of length at least 10 log n in the trace T , and picking every bit in T immediately after the (i− 1)-th

run up to and including the i-th such run.

Observe that 1ℓ∥x(i)∥0ℓ has length O(log2 n). Suppose that we have t = exp(O(log n)2/3) independent

traces T1, . . . , Tt of Enc(x). Let Eall denote the event that E holds for all Ti simultaneously. Combining

Lemma 5.3 with a union bound over the t traces yields

Pr[Eall] ≥ 1− t/n2 > 1− 1/n (5.2)

for n large enough. Fix some trace reconstruction algorithm A, and let E(i)
indFail denote the event that

A fails to recover a fixed string y(i) = 1ℓ∥x(i)∥0ℓ from t independent traces of y(i). Assuming that

Eall holds, the sub-traces T (i)
1 , . . . , T

(i)
t (note that T (i)

j denotes the i-th sub-trace of the j-th trace) are
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distributed as t independent traces of y(i), each also satisfying the conditions that the first run 1ℓ is

not completely deleted, the last run 0ℓ has length at least 10 log n in the trace, and there is no run of

0s of length at least 10 log n in the trace of x(i). We denote the event that these conditions hold for

all of the t independent traces of y(i) by E(i)
split, meaning that we may write Eall = (∀i : E(i)

split). Finally,

we let Efail denote the event that we fail to recover Enc(x) from the t i.i.d. traces T1, . . . , Tt. Then, we

have

Pr[Efail] ≤ Pr[Efail, Eall] + Pr[¬Eall]

= Pr[(∃i : E(i)
indFail), (∀i : E

(i)
split)] + Pr[¬Eall]

≤ Pr[∃i : E(i)
indFail] + 1/n

≤
B∑︂
i=1

Pr[E
(i)
indFail] + 1/n. (5.3)

The first equality follows from the discussion in the previous paragraph, the second inequality follows

from (5.2), and the third inequality follows by a union bound. Instantiating A with the worst-case

trace reconstruction algorithm from Theorem 2.10, we conclude from (5.3) that

Pr[Efail] ≤ n · exp(−2 log2 n) + 1/n < 2/n

for n large enough.

As a result, we can successfully recover x from exp(O(log n)2/3) traces of Enc(x) with probability at

least 1 − 2/n. Since recovering each x(i) from the associated traces takes time exp(O(log2/3 n)), the

inner code C′ has an efficient decoder, and we can efficiently recover x from Enc(x), the whole procedure

is efficient.

Remark 5.4. By modifying the inner block length m from ⌈log2 n⌉ to ⌈log1+γ n⌉ for an arbitrary

constant γ ∈ (0, 1), the reasoning above can be adapted to yield efficiently encodable codes with

redundancy O(n/ logγ n) which are efficiently reconstructible from exp
(︂
O
(︂
log

1+γ
3 n

)︂)︂
traces.

5.2.1 Instantiating the inner code

It remains to instantiate the inner code C′ with the appropriate parameters and properties. To this

end, we present a simple construction of an efficiently encodable and decodable inner code C′ with
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encoder Enc′ : {0, 1}m → {0, 1}m+r and redundancy r = O(logm). We can then obtain the desired

code by setting m = ⌈log2 n⌉. Our starting point is the following result.

Lemma 5.4. Let g : {0, 1}t → {0, 1}m be the function whose existence is guaranteed by Corollary 2.1

with ε = 2−10w for w = 100⌈logm⌉ (hence t = O(logm)). Fix some x ∈ {0, 1}m and consider the

random variable Y = x ⊕ g(Ut). Then, with probability at least 1 − 2/m, we have that Y satisfies the

following property:

Property 5.2. It holds that wgt(Y [a, a+ w)) ≥ 0.4w simultaneously for all a ∈ [m− w + 1].

Proof. Fix some a ∈ [m− w + 1]. Then, we have

Pr[wgt(Y [a, a+ w)) < 0.4w] =
∑︂

y:wgt(y)<0.4w

Pr[Y [a, a+ w) = y]

≤
∑︂

y:wgt(y)<0.4w

(2−w + ε)

≤ 2wh(0.4) · 2−w+1

≤ 2

m2
.

The first inequality holds because Y is ε-almost k-wise independent for every k ≤ m, and the second

inequality follows from a standard upper bound on the volume of the Hamming ball1 and the choice

of ε. Since there are at most m choices for a, a union bound implies that Y fails to satisfy the desired

property with probability at most m · 2/m2 = 2/m, as desired.

Given x ∈ {0, 1}m, we compute Enc′(x) as follows: First, iterate over all z ∈ {0, 1}t until we find a z

such that y = x⊕g(z) satisfies wgt(s[a, a+w)) ≥ 0.4w. Such a string z is known to exist by Lemma 5.4

and can be found in time poly(m) since t = O(logm) and g(z) is computable in time poly(m). Then,

set Enc′(x) = z∥[x⊕ g(z)].

Observe that the redundancy of C′ is exactly |z| = t = O(logm), and that we have encoders and

decoders for C′ running in time poly(m) since t = O(logm) and g(z) is computable in time poly(m).

To see that C′ satisfies the property required in this section, fix some substring s of Enc′(x) such that

|s| = ⌈
√
m⌉. Then, wgt(s) ≥ 0.4w · ⌊|s|/w⌋ − t ≥ 0.39|s| provided that m is large enough.

1A standard inequality on the volume of the radius-r N -dimensional Hamming ball Br = {x ∈ {0, 1}N : wgt(x) ≤ r}
states that |Br| ≤ 2N·h(r/N) when r ≤ N/2 [204, Proposition 3.3.1].
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5.3 Codes with balanced GC-content

We describe next how to adapt the ideas from Section 5.2 and combine them with techniques from [58]

in order to construct codes over the alphabet {A,C,G, T} that have balanced GC-content and provably

require few traces for reconstruction. A string c ∈ {A,C,G, T}n, for n even, has balanced GC-content

if ci ∈ {C,G} for exactly n/2 indices i. Strings with balanced GC-content are significantly easier to

be synthesised as DNA strands than their non-balanced counterparts [58]. Therefore, constructions

accommodating this constraint are well-suited for use in codes for DNA-based data storage. We prove

the following result.

Theorem 5.2. For n large enough there exists an efficiently encodable code C ⊆ {A,C,G, T}n+r

with redundancy r = O
(︂

n
logn

)︂
and balanced GC-content which can be efficiently reconstructed from

exp(O(log2/3 n)) traces for any constant deletion probability d < 1. Moreover, encoding can be per-

formed in nearly-linear time n · poly(log n) and reconstruction can be performed in nearly-linear time

n · exp(O(log2/3 n)).

The construction follows the approach outlined in Sections 5.2 (see also Figure 5.1). The only modi-

fications are the choice of markers and the definition of the inner code. We focus on discussing these

changes and their properties within the setting of Section 5.2.

We first describe the modified markers. The marker M used throughout the section is of the form

M = (AC)ℓ∥(TG)ℓ, where ℓ = 25⌈log n⌉ and n is the message length. Observe that this marker has

the same length as the original marker in Section 5.2 and has balanced GC-content.

In order to proceed as in Section 5.2 we need to design an efficiently encodable and decodable inner code

C′ ⊆ {A,C, T,G}m′ with balanced GC-content which satisfies a property analogous to Property 5.1.

Suppose that C′ has encoder Enc′ : {0, 1}m → {A,C, T,G}m′ and that m′ = m/2 + r, where m =

⌈log2 n⌉ as in Section 5.2 and r denotes the redundancy to be determined (if m is odd, we may pad

each block with a 0 while keeping the redundancy O
(︂

n
logn

)︂
). Given the composition ofM , the property

we wish C′ to satisfy is the following:

Property 5.3. For all c ∈ C′ and substrings s of c with |s| = ⌈
√
m⌉, it holds that at least |s|/3 symbols

of s are T or G.

Similarly to Lemma 5.2, it can be shown that if C′ satisfies Property 5.3, then with high probability a

trace of c ∈ C′ will not contain long runs consisting only of symbols A and C. As a result, with high
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probability we can split a trace into multiple sub-traces associated with different blocks as in Section 5.2

(see the high-level reconstruction procedure in Figure 5.1). This is accomplished by looking for all long

substrings of the trace consisting only of A’s and C’s in the trace. The reason is that, with high

probability, each such substring consists of the trace of an (AC)ℓ substring from a marker M possibly

with some extra symbols prepended. In that case we can correctly identify the separation between the

traces of (AC)ℓ and (TG)ℓ in all markers by looking for the first T or G after every sufficiently long

substring containing A’s and C’s only.

We proceed to describe the encoder Enc′ of the inner code C′ with redundancy r = O(logm). We

combine a technique from [58] with the code from Section 5.2.1. As an additional ingredient in the

construction, we require an efficiently encodable and decodable binary balanced code2 C1 with encoder

Enc1 : {0, 1}m/2 → {0, 1}m/2+r1 . Nearly-optimal efficient constructions of such codes are known with

redundancy r1 = O(logm) [205, 206, 207]. Let C2 ⊆ {0, 1}m/2+r2 denote the code from Section 5.2.1

with encoder Enc1 : {0, 1}m/2 → {0, 1}m/2+r2 and redundancy r2 = O(logm). By padding C1 and/or C2

appropriately, we may assume that m/2+r is even and r1 = r2 = r, i.e., that both codes have the same

even block length m/2+ r. To see this, note that we can pad every c ∈ C1 with a fixed balanced string

of even length r − r1 and every c ∈ C2 with the string 1r−r2 . The properties of the two codes are still

satisfied after padding. Similarly to [58], we define the bijection Ψ : {0, 1}ℓ × {0, 1}ℓ → {A,C,G, T}ℓ

as

Ψ(a, b)i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A, if (ai, bi) = (0, 0),

T, if (ai, bi) = (0, 1),

C, if (ai, bi) = (1, 0),

G, if (ai, bi) = (1, 1),

for i ∈ [ℓ]. The code C′ is defined via an encoding Enc′ : {0, 1}m → {A,C,G, T}m/2+r satisfying

Enc′(x) = Ψ(Enc1(x
(1)),Enc2(x

(2))),

where x = x(1)∥x(2) ∈ {0, 1}m/2 × {0, 1}m/2. Decoding x from Enc′(x) can be performed efficiently

since we can efficiently decode x(i) from Enci(x
(i)), i = 1, 2, and Ψ is a bijection. We have the following

lemma.

Lemma 5.5. The inner code C′ has balanced GC-content and satisfies Property 5.3.

2A code C ⊆ {0, 1}ℓ with ℓ even is said to be balanced if every c ∈ C has Hamming weight ℓ/2.
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Proof. Suppose that c = Ψ(c1, c2), where c1 ∈ C1 and c2 ∈ C2. To see that c has balanced GC-content,

note that the number of C’s and G’s in c equals wgt(c1). We have wgt(c1) = |c1|/2 since C1 is a

balanced code, and so c has balanced GC-content. To verify that C satisfies Property 5.3, note that

the number of T ’s and G’s within a substring c[i, j) equals wgt(c2[i, j)). Since C2 satisfies Property 5.1,

the desired statement follows.

Given Lemma 5.5, we can now proceed along the steps described in Section 5.2 by splitting a trace

of C into many short sub-traces associated with different blocks, and then applying a worst-case trace

reconstruction algorithm on each block. We remark that although the algorithm from Theorem 2.10

works for worst-case trace reconstruction over binary strings, it can be easily adapted to recover

quaternary strings with the same number of traces and twice the error probability as discussed in

Remark 5.3. Taking into account the previous discussion, applying the reasoning from Section 5.2 to

the marker M and inner code C′ defined in this section leads to Theorem 5.2.

5.4 Coded trace reconstruction from average-case trace reconstruc-

tion

In Section 5.2, we gave a construction of efficient marker-based codes. A simple property of the inner

code ensured that we could correctly identify all markers with high probability, effectively dividing

the global trace into many independent, shorter traces (see Figure 5.1). Subsequently, we applied the

state-of-the-art worst-case trace reconstruction algorithm from Theorem 2.10 on each short trace in

order to obtain the desired codes. It seems plausible, however, that one could design the inner code

more carefully so that significantly fewer traces are needed to recover the short codewords contained

between the markers. This is the main problem we address in this section. We design a code that, when

used as the inner code in the construction from Section 5.2, leads to an almost exponential reduction

of the number of traces required for reconstruction without hurting the rate, provided that the deletion

probability is a sufficiently small constant. The trace reconstruction algorithm we use is a variation of

the HMPW average-case trace reconstruction algorithm from [59] presented in Section 2.5.3.1.

Our starting point is a low redundancy code with the property that it can be reconstructed from

poly(n) traces. We discuss this construction in Section 5.4.1, and it leads to the following result.

Theorem 5.3. There is an absolute constant d⋆ ∈ (0, 1) such that the following holds for every constant
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d ≤ d⋆: For n large enough there is an efficiently encodable code C ⊆ {0, 1}n+r with redundancy

r = O (log n) which can be efficiently reconstructed with probability 1−exp(−Ω(n)) from poly(n) traces

with deletion probability d.

In Section 5.4.2, we show how to adapt this code so that it can be successfully used as an inner code in

the marker-based construction introduced in Section 5.2. Consequently, we obtain the following result.

Theorem 5.4. There is an absolute constant d⋆ ∈ (0, 1) such that the following holds for every constant

d ≤ d⋆: For n large enough there is an efficiently encodable code C ⊆ {0, 1}n+r with redundancy

r = O
(︂

n
logn

)︂
which can be efficiently reconstructed from poly(log n) traces with deletion probability d.

Moreover, encoding and reconstruction can be performed in nearly-linear time n · poly(log n).

5.4.1 Low redundancy codes reconstructible from polynomially many traces

We prove Theorem 5.3 in this section. Our code encodes n-bit messages into codewords that are almost

w-subsequence-unique for w = O(log n), in the sense that all but the first O(log n) bits of the codeword

comprise a w-subsequence-unique string (recall Definition 2.18). This is possible because an ε-almost

k-wise independent random variable over {0, 1}n with the appropriate parameters is w-subsequence-

unique with high probability. We make this statement rigorous in the following lemma, which uses a

standard derandomisation technique. For example, this technique has also been used in [19] to generate

strings satisfying related but different properties with high probability.

Lemma 5.6. Let g : {0, 1}t → {0, 1}m be the function guaranteed by Corollary 2.1 with ε = 2−10w

for w = 100⌈logm⌉ (hence t = O(logm)). Fix some x ∈ {0, 1}m and define the random variable

Y = x ⊕ g(Ut). Then, for m large enough it holds that Y is w-subsequence-unique with probability at

least 1−m−45.

Proof. First, note that Y is ε-almost k-wise independent for every k ≤ m. This proof follows along the

lines of the proof that a uniformly random string is w-subsequence-unique with high probability [59,

Lemma 2.4].

Without loss of generality we may fix a and b such that a < b (otherwise reverse Y ) and indices

b ≤ i1 < i2 < · · · < iw ≤ b + 1.1w − 1. Moreover, let S = {i1, . . . , iw} and α = |S ∩ [a, a + w)|. Note

that

Pr[YS = Y [a, a+ w)] =
∑︂

u∈{0,1}w
Pr[YS = u, Y [a, a+ w) = u]. (5.4)
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Call a string u consistent if Pr[YS = u, Y [a, a+ w) = u] > 0. We claim that the number of consistent

strings is at most 2w−α. To see this, suppose that yS = y[a, a + w). Note that if ij ∈ S ∩ [a, a + w),

then ij = ℓ for some ℓ ∈ [a, a + w), and so yℓ = yij = ya+j−1. Moreover, we have ℓ > a + j − 1 since

ℓ = ij ≥ b + j − 1 > a + j − 1. Consequently, all α bits yℓ for ℓ ∈ S ∩ [a, a + w) are deterministic

functions of bits of y[a, a+ w) outside S ∩ [a, a+ w). Observe also that

Pr[YS = u, Y [a, a+ w) = u] ≤ 2−2w+α + ε,

since Y is ε-almost k-wise independent for every k ≤ m and 2w − α bits of Y are fixed in this event.

Combining (5.4) with the observations above yields

Pr[YS = Y [a, a+ w)] ≤ 2w−α(2−2w+α + ε)

≤ 2−w + 2wε

≤ 2−w+1.

Since there are
(︁
1.1w
w

)︁
choices for S for each pair (a, b) and fewer than m2 possible pairs (a, b), the

probability that Y is not w-subsequence-unique is at most

m2

(︃
1.1w

w

)︃
2−w+1 ≤ m2(11e)0.1w2−w+1

≤ 2m2(1.415)−w

≤ m−45,

where the first inequality uses the fact that
(︁
n
k

)︁
≤
(︁
en
k

)︁k.

Lemma 5.6 leads to a simple, efficient candidate construction of the encoder Enc. Given x ∈ {0, 1}n,

we first iterate over all z ∈ {0, 1}t until we find z such that x ⊕ g(z) is w-subsequence-unique. Most

strings z satisfy this, according to Lemma 5.6. By the choice of parameters and Corollary 2.1, we have

t = O(log n) and g(z) computable in time poly(n). Therefore, we can iterate over all such z, compute

g(z) in time poly(n), and verify whether x⊕ g(z) is w-subsequence-unique for each z in time poly(n)

too. The latter can be accomplished by exhaustive search over all valid pairs of substrings [a, a + w)

and [b, b + 1.1w), which are fewer than n2, and over all
(︁
1.1w
w

)︁
= poly(n) length-w subsequences of

[b, b + 1.1w), since w = O(log n). Then, the encoder Enc for C maps a message x ∈ {0, 1}n to the
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codeword

Enc(x) = z∥[x⊕ g(z)] ∈ {0, 1}t+n,

where z is the first string (in lexicographic order) such that x⊕g(z) is w-subsequence-unique. Observe

that the redundancy of C is t = O(log n).

5.4.1.1 The trace reconstruction algorithm

We describe next an efficient trace reconstruction algorithm for C that works whenever the deletion

probability is a small enough constant, thus proving Theorem 5.3. This algorithm is a slight modifica-

tion of the HMPW algorithm from [59] discussed at a high level in Section 2.5.3.1. Before proceeding,

we introduce a definition and basic related results from [59]. Given integers i and j and a deletion

probability d, we denote the probability that the i-th bit of a string appears as the j-th bit of its trace

by P (i, j). Then, we have

P (i, j) =

(︃
i− 1

j − 1

)︃
(1− d)jdi−j .

The following lemma states some useful properties of P (i, j).

Lemma 5.7 ([59, Lemma 2.1]). If d < 1/3 and j ≤ (1− 3d)i, then
∑︁

i′>i P (i
′, j) ≤ 1

2P (i, j). Further-

more, if (1− 4d)i ≤ j ≤ (1− 3d)i we have P (i, j) ≥ exp(−7di).

Set w = 100⌈log n⌉, v = ⌈w/d⌉ = Θ(log n) and j = ⌊(v − 0.1w)(1 − 3d)⌋ = Θ(log n), where d is a

small enough constant. Given a codeword c = Enc(x) = z∥[x ⊕ g(z)], we begin by using the same

bootstrapping method as the HMPW algorithm: We apply the algorithm from Lemma 2.10 to recover z

and the first ℓ′ = 2v+1.1w+|z| = O(log n) bits of y = x⊕g(z) with probability at least 1−exp(−Ω(n))

using poly(n) traces and time. If n ≤ ℓ′, we are done, so assume from here onwards that n is large

enough so that n > ℓ′ ≥ 2. We note that when we later attempt to use this code as the inner code

of a marker-based construction, we will need to, among other things, modify both the code and the

bootstrapping method so that trace reconstruction is still possible with few traces.

Now, suppose that we know z and y1, . . . , yi−1 for i−1 ≥ ℓ′. We show how to recover yi with probability

at least 1− 2n exp(−n) using 21000w+1 = poly(n) traces and runtime upper bounded by some poly(n)

independent of i. Let T denote a trace of c. As in [59], we will look for a matching of y[i−v−w, i−v)

within T . However, we shall discard matchings that occur too early in T . More precisely, suppose that

y[i − v − w, i − v) is matched with T [u − w, u). We call such a matching good if u − w > |z|. This
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definition ensures that all trace bits in a good matching come from y. If T does not contain a good

matching of y[i−v−w, i−v), we discard it. Otherwise, if the first good matching occurs at T [u−w, u),

we let Suff = T [u :] and discard the remaining bits of T . The following two lemmas establish a result

analogous to [59, Lemma 2.2] via the same approach. We denote the event that a good matching of

y[i− v − w, i− v) occurs in T by Egood and by Last the position in y of the last bit appearing in the

first good matching within T (with Last = ⊥ if no good matching exists).

Lemma 5.8. Fix constant d < 1/2 and assume n is large enough. Then, we have Pr[Egood] ≥

Pr[Egood, Last < i] ≥ 2−(w+1) for every ℓ′ < i ≤ n.

Proof. First, observe that the probability that no bit in y[i−v−w, i−v) is deleted is exactly (1−d)w ≥

2−w if d < 1/2. Given this, suppose that yi−v−w appears in position TP for some random variable

P ∈ [|z| + n]. Then, the probability that the given matching is good equals Pr[P > |z|]. We have

i− v−w ≥ |z| since we have already learned the first ℓ′ = 2v+1.1w+ |z| bits of y. Therefore, we have

Pr[P ≤ |z|] ≤ Pr[Bin2|z|,1−d ≤ |z|] ≤ 1/2,

where the last inequality holds if d < 1/2. Concluding, Egood and Last < i hold with probability at

least 1/2 · 2−w = 2−(w+1).

Lemma 5.9. Fix constant d < 2−104

11e and assume n is large enough. Then, we have Pr[Last ̸∈ [i− v −

1, i− v − 1 + 0.1w]|Egood] ≤ 2−100w for every ℓ′ < i ≤ n.

Proof. Let E denote the event that Last ̸∈ [i− v− 1, i− v− 1+ 0.1w]. Then, we wish to upper bound

Pr[E|Egood]. By Lemma 5.8, we have Pr[E|Egood] =
Pr[E,Egood]
Pr[Egood]

≤ 2w+1 · Pr[E,Egood]. We now show

that Pr[E,Egood] ≤ 2−200w, which concludes the argument.

The probability that E and Egood hold simultaneously is at most the probability that more than 0.1w

bits are deleted from some substring y[b, b + 1.1w). To see this, first note that the bits in a good

matching must come from y. If at most 0.1w bits are deleted from every substring y[b, b+1.1w), then

the w bits of the good matching in T of y[i − v − w, i − v) must be a subsequence of y[b, b + 1.1w)

for some b, which means y[i − v − w, i − v) appears as a subsequence of y[b, b + 1.1w). Since y is w-

subsequence-unique, for this to happen we must have b ≤ i−v−w and b+1.1w ≥ i−v. Now, suppose

that Last ̸∈ [i− v − 1, i− v − 1 + 0.1w]. In particular, this implies that Last ̸∈ [i− v − 1, b+ 1.1w − 1]

because i−v−1+0.1w ≥ b+1.1w−1 ≥ i−v−1. Then, it must be the case that y[i−v−w, i−v) is a
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subsequence of y[b, i− v− 1). Hence, y[i− v−w, i− v) is a subsequence of y[i− v− 1− 1.1w, i− v− 1)

too since we know that b ≥ i−v−1.1w (note that i−v−1−1.1w ≥ v ≥ 1 since i ≥ 2v+1.1w+ |z|+1,

so this choice is well-defined). However, this violates the w-subsequence-uniqueness of y.

The probability that at least 0.1w bits are deleted from y[b, b+1.1w) for a fixed b is at most
(︁
1.1w
w

)︁
d0.1w ≤

(11ed)0.1w ≤ 2−1000w by the upper bound on d. Combining this with a union bound over the fewer

than n ≤ 2w choices for b, we conclude that Pr[E,Egood] ≤ n2−1000w ≤ 2−200w.

We proceed analogously to [59]. Fix a constant deletion probability d < 2−104

11e and assume n is large

enough. Then, for every ℓ′ < i ≤ n we may write

Pr[Suffj = 1|Egood] =
n∑︂

r=1

Pr[Last = r|Egood] Pr[Suffj = 1|Last = r, Egood]

= εi(c) +

i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood] Pr[Suffj = 1|Last = r, Egood] (5.5)

for some εi(c) ∈ [0, 2−100w] by Lemma 5.9. Note that once Last = r is fixed, the random variable Suff

corresponds to the trace of y[r + 1 :], which is unaffected by Egood. As a result, we have

Pr[Suffj = 1|Last = r, Egood] = Pr[Suffj = 1|Last = r] =
n∑︂

ℓ=r+1

P (ℓ− r, j) · yℓ, (5.6)

where we recall that P (ℓ, j) denotes the probability that the ℓ-th bit ends up in the j-th position of

the trace. Combining (5.5) and (5.6) yields

Pr[Suffj = 1|Egood] = εi(c) +
i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood]
n∑︂

ℓ=r+1

P (ℓ− r, j)yℓ

= εi(c) +
i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood]
i−1∑︂

ℓ=r+1

P (ℓ− r, j)yℓ

+
i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood] · P (i− r, j)yi

+
i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood] ·
n∑︂

ℓ=i+1

P (ℓ− r, j)yℓ.

Since (1− 3d)(i− r) > (1− 3d)(v − 0.1w) ≥ j when i− v − 1 ≤ r ≤ i− v − 1 + 0.1w, the first part of

Lemma 5.7 implies that
∑︁n

ℓ=i+1 P (ℓ− r, j) ≤
1
2P (i− r, j). Therefore, we have the threshold property
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yi = 0 =⇒ Pr[Suffj = 1|Egood] ≤ εi(c) +
i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood]
i−1∑︂

ℓ=r+1

P (ℓ− r, j)yℓ

+
1

2

i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood]P (i− r, j) (5.7)

and

yi = 1 =⇒ Pr[Suffj = 1|Egood] ≥ εi(c) +
i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood]
i−1∑︂

ℓ=r+1

P (ℓ− r, j)yℓ

+

i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood]P (i− r, j). (5.8)

By the choice j = ⌊(1− 3d)(v − 0.1w)⌋, we have

(1− 4d)(i− r) < j ≤ (1− 3d)(i− r)

for every ℓ′ < i ≤ n and i − v − 1 ≤ r ≤ i − v − 1 + 0.1w. Therefore, the second part of Lemma 5.7

implies that

P (i− r, j) ≥ e−7d(i−r) ≥ e−7d(v+1) ≥ e−8w ≥ 2−12w

for every such i and r, since i − r ≤ v + 1 ≤ w/d + 2. Since
∑︁i−v−1+0.1w

r=i−v−1 Pr[Last = r|Egood] ≥

1 − 2−100w > 1/2 by Lemma 5.9, this discussion shows that the gap between the right hand sides

of (5.7) and (5.8) is at least 2−12w · 12 ·
1
2 = 2−(12w+2).

Finally, we argue that we can produce good estimates of the terms Pr[Suffj = 1|Egood] and Pr[Last =

r|Egood] with high probability using poly(n) traces and time. This allows us to decide whether yi = 0

or yi = 1 based on (5.7) and (5.8).

Lemma 5.10. Fix constant d < 1/2 and assume n is large enough. Then, for every ℓ′ < i ≤ n,

with knowledge of z and y1, . . . , yi−1 we can output an estimate ˆ︁p of p = Pr[Suffj = 1|Egood] satisfying

|ˆ︁p−p| ≤ 2−100w with probability at least 1−2 exp(−n) using 21000w+1 = poly(n) traces in time at most

poly(n) independent of i.

Proof. If d < 1/2 is constant and n is large enough, Lemma 5.8 and the Hoeffding bound ensure that

for every ℓ′ < i ≤ n the corresponding event Egood holds for at least 2900w out of 21000w+1 i.i.d. traces

with probability at least 1−exp(−n). Assuming knowledge of z and y1, . . . , yi−1, we can check whether

Egood occurs for a given i in a given trace T in time at most poly(n) independent of i by looking for a
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matching of y[i− v − w, i− v) starting at some position u > |z| of T . Suppose we run this procedure

for a given i over all 21000w+1 traces and identify at least N = 2900w traces for which Egood holds; call

the first N such traces T (1), . . . , T (N). Then, we compute ˆ︁p = 1
N

∑︁N
ℓ=1 Suff

(ℓ)
j , where Suff

(ℓ)
j denotes

the value of Suffj in T (ℓ). We have E[ˆ︁p] = p, and so the Hoeffding bound yields

Pr[|ˆ︁p− p| > 2−100w] ≤ 2 exp(−2 · 2−200wN) ≤ 2 exp(−2700w) ≤ exp(−n).

A union bound over the two events above shows that the procedure succeeds for a given i with proba-

bility at least 1− 2 exp(−n), and its runtime is upper bounded by a polynomial poly(n) independent

of i.

Lemma 5.11. Fix constant d < 2−104

11e and assume n is large enough. Then, for every ℓ′ < i ≤ n and

1 ≤ r < i, with knowledge of z and y1, . . . , yi−1 we can output an estimate ˆ︁pr of pr = Pr[Last = r|Egood]

satisfying | ˆ︁pr−pr| ≤ 2−90w with probability at least 1−2 exp(−n) in time at most poly(n) independent

of i and r.

Proof. We begin by simulating 21000w+1 independent traces of the substring z∥(y1, y2, . . . , yi−1) in time

poly(n) assuming access to at most 2n · 21000w+1 = poly(n) i.i.d. samples of Berd, and record the value

of Last for each such trace featuring a good matching. Then, we select in time poly(n) a subset of

N = 2900w traces T (1), . . . , T (N) for which Egood and Last < i hold simultaneously. If d < 1/2 and n

is large enough, such a subset exists with probability at least 1 − exp(−n) for every ℓ′ < i ≤ n via

Lemma 5.8 and the Hoeffding bound. For any such i, we can check whether Egood and Last < i hold

for a given trace in time at most poly(n) independent of i using z∥(y1, y2, . . . , yi−1).

If this subset exists, we compute ˆ︁pr = 1
N

∑︁N
ℓ=1 1{Last(ℓ)=r}, where Last(ℓ) denotes the value of Last for

T (ℓ). Observe that E[ ˆ︁pr] = p′r = Pr[Last = r|Egood, Last < i]. Therefore, the Hoeffding bound ensures

that | ˆ︁pr − p′r| ≤ 2−100w with probability at least 1 − exp(−n). By Lemma 5.9 and the upper bound

on d, if n is large enough we have Pr[Last < i|Egood] ≥ 1 − 2−100w for every ℓ′ < i ≤ n. As a result,

it holds that |pr − p′r| ≤ 2 · 2−100w for n large enough, which combined with the above implies that

| ˆ︁pr − pr| ≤ 3 · 2−100w ≤ 2−90w. A union bound over the two events above ensures that the procedure

succeeds for a given i with probability at least 1− 2 exp(−n), and its runtime is upper bounded by a

polynomial poly(n) independent of i and r.

Fix constant d < 2−104

11e and suppose n is large enough independent of i (but depending on d). Then,
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Lemmas 5.10 and 5.11 along with a union bound imply that we can, for every ℓ′ < i ≤ n, approximate

the left and right hand sides of (5.7) and (5.8) to within additive error 2−100w and 2−100w+2n ·2−90w ≤

2−80w, respectively, using z and y1, . . . , yi−1 with probability at least 1 − 2n exp(−n) from 21000w+1

traces of c in time at most poly(n) independent of i. Recalling that the gap between the right hand

sides of (5.7) and (5.8) is at least 2−(12w+2) for every ℓ′ < i ≤ n, this means we can efficiently recover

each yi iteratively from 21000w+1 traces with probability at least 1 − 2n exp(−n). Applying a union

bound over all ℓ′ < i ≤ n implies that we correctly recover all remaining bits with probability at least

1− exp(−Ω(n)) in overall time poly(n) from n21000w+1 = poly(n) traces, which concludes the proof.

Remark 5.5. The procedure in Lemma 5.11 requires access to at most 2n ·21000w+1 i.i.d. samples from

Berd. Therefore, in total the reconstruction algorithm presented above must have access to at most

2n3 · 21000w+1 such i.i.d. samples. However, we can make the algorithm deterministic by extracting

this randomness efficiently from an extra poly(n) traces while adding an exp(−Ω(n)) term to the

reconstruction error probability.

First, we can sample B satisfying ∆(B;Berd) ≤ 2−n (recall that ∆ denotes statistical distance) from

n′ = n+1 i.i.d. samples of Ber1/2 in a standard manner: Let d′ be d truncated to the first n′ bits of its

binary expansion, i.e., d′ =
∑︁n′

i=1 bi2
−i if d =

∑︁∞
i=1 bi2

−i. Note that ∆(Berd′ ;Berd) = |d − d′| ≤ 2−n′ .

Now, let D1, D2, . . . , Dn′ be i.i.d. according to Ber1/2, and set B = 1 if
∑︁n′

i=1Di2
−i ≤

∑︁n′

i=1 bi2
−i =

d′ and B = 0 otherwise. Then, we have ∆(B;Berd′) = Pr[∀i ∈ [n′] : Di = bi] = 2−n′ , and so

∆(B;Berd) ≤ 2−n′
+ 2−n′

= 2−n by the triangle inequality. Second, we can sample B′ satisfying

∆(B′;Ber1/2) ≤
|1−2d|n

2 from one trace T of any n-bit string: It suffices to let B′ = 1 if |T | is even

and B′ = 0 otherwise. Since |T | ∼ Binn,1−d, we have that Pr[B′ = 1] = 1
2 + (2d−1)n

2 , which yields the

desired result.

To conclude, suppose the algorithm uses τ ≤ 2n3 · 21000w = poly(n) i.i.d. samples S1, S2, . . . , Sτ of

Berd in total. From the discussion above, for each i ∈ [τ ] we can use n′ extra traces to sample

i.i.d. random variables B′
i,1, . . . , B

′
i,n′ satisfying ∆((B′

i,1, . . . , B
′
i,n′);Un) ≤ n′|1−2d|n

2 by the triangle

inequality, where Un is uniformly distributed over {0, 1}n. Therefore, by the discussion above we can use

B′
i,1, . . . , B

′
i,n′ instead of n′ i.i.d. samples of Ber1/2 to sample Bi satisfying ∆(Bi;Si) ≤ n′|1−2d|n

2 +2−n by

the triangle inequality. In total, we use n′ · τ = poly(n) extra traces to sample i.i.d. bits B1, B2, . . . , Bτ

satisfying ∆((B1, . . . , Bτ ); (S1, . . . , Sτ )) ≤ τ
(︂
n′|1−2d|n

2 + 2−n
)︂
= exp(−n) when d is constant. Finally,

consider the modified deterministic reconstruction algorithm that first samples τ · n′ traces, computes

B1, B2, . . . , Bτ as above, and then runs the reconstruction algorithm described in this section using
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the Bi’s instead of the Si’s. This modified algorithm still uses poly(n) traces and runs in time poly(n).

Moreover, its reconstruction error probability is within ∆((B1, . . . , Bτ ); (S1, . . . , Sτ )) ≤ exp(−Ω(n)) of

that of the original reconstruction algorithm, meaning it is still exp(−Ω(n)).

5.4.2 Using the code within a marker-based construction

In this section, we combine the constructions from Sections 5.2 and 5.4.1 with some additional modi-

fications in order to prove Theorem 5.4. The basic idea is that we would like to use the code designed

in Section 5.4.1 as the instantiation of the inner code C′ in the construction of C in Section 5.2 (see

Figure 5.1). Then, we could combine the high-level trace reconstruction procedure illustrated there

with the trace reconstruction algorithm from Section 5.4.1.1 on each sub-trace and mitigate the use of

worst-case trace reconstruction algorithms. This idea does not work as is, but some modifications to

the code from Section 5.4.1 will allow the argument to go through.

The first issue we must address is that the inner code C′ must satisfy Property 5.1. If this property

holds, then the reasoning of Section 5.2 implies that we can focus on the trace reconstruction problem

for strings of the form 1ℓ∥c∥0ℓ, where c ∈ C′ has length Θ(log2 n) and ℓ = Θ(log n), as long as we use

fewer than n traces (recall Lemma 5.3 and (5.3)). If we were to directly apply the trace reconstruction

algorithm from Section 5.4.1.1, we would run into a problem. For the aforementioned algorithm to

work, we need to bootstrap it by recovering the first few bits of c using the procedure from Lemma 2.10.

However, in this case c only appears after a run of length ℓ = Θ(log n). Even though we know the

previous bits, we would still require poly(n) traces to recover the first bit of c in this way, which is not

acceptable as we want to use poly(log n) traces. Consequently, we need an alternative bootstrapping

method. Another issue we need to resolve is that the reconstruction algorithm from Section 5.4.1.1

assumed that all but the first few bits of c lead to a subsequence-unique string. However, this is not

the case here, as we must deal with a suffix of the form c∥0ℓ.

Before we proceed to describe a modified version of our code from Section 5.4.1 that avoids the issues

raised above, we prove the following lemma.

Lemma 5.12. Let g : {0, 1}t → {0, 1}m be the function guaranteed by Corollary 2.1 with ε = 2−10w

for w = 100⌈logm⌉ (hence t = O(logm)). For any ℓ ≤ m and x ∈ {0, 1}m, define the random variable

Y = [x ⊕ g(Ut)]∥0ℓ. Then, for m large enough we have that Y satisfies the following property with

probability at least 1−m−45.
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Property 5.4. For any a and b such that a+ w ≤ min(m+ 1, b) and b+ 1.1w ≤ m+ ℓ+ 1, we have

that Y [a, a+ w) is not a subsequence of Y [b, b+ 1.1w).

Proof. Fix a pair (a, b) satisfying a + w ≤ min(m + 1, b) and b + 1.1w ≤ m + ℓ + 1, and let S ⊆

{b, . . . , b+1.1w−1} be the set of w distinct indices i1 < · · · < iw. Moreover, let β = |S ∩ [m+1,m+ℓ]|.

Observe that

Pr[YS = Y [a, a+ w)] =
∑︂

u∈{0,1}w
Pr[YS = u, Y [a, a+ w) = u]. (5.9)

Call u ∈ {0, 1}w consistent if Pr[YS = u, Y [a, a+w) = u] > 0. Then, there are at most 2w−β consistent

strings, since we have yj = 0 whenever ij ≥ m+ 1 if y[m+ 1,m+ ℓ] = 0ℓ and yS = y[a, a+w). If u is

consistent, and setting S ′ = S \ [m+ 1,m+ ℓ] and u′ = (uj)ij≤m, it holds that

Pr[YS = u, Y [a, a+ w) = u] = Pr[YS′ = u′, Y [a, a+ w) = u] ≤ 2−2w+β + ε,

since x⊕ g(Ut) is ε-almost k-wise independent for every k ≤ m and 2w − β bits of x⊕ g(Ut) are fixed

in the event of the middle expression above. Combining (5.9) with the observations above yields

Pr[YS = Y [a, a+ w)] ≤ 2w−β(2−2w+β + ε)

≤ 2−w + 2wε

≤ 2−w+1.

Since there are fewer than 2m2 possible pairs (a, b) and
(︁
1.1w
w

)︁
choices of S for each pair, a union bound

shows that the probability that the desired event does not occur is at most 2m2
(︁
1.1w
w

)︁
2−w+1 ≤ m−45,

provided m is large enough.

Intuitively, Lemma 5.12 guarantees that x⊕ g(Ut) satisfies a stronger form of subsequence-uniqueness

with high probability. In fact, not only is x⊕ g(Ut) w-subsequence-unique with high probability based

on Lemma 5.6, but it is also impossible to find a substring of x ⊕ g(Ut) that is a subsequence of

[x⊕ g(Ut)]∥0ℓ elsewhere.

We are now ready to describe our modified inner code C′ with encoder Enc′ : {0, 1}m → {0, 1}m+r′ .

On input a message x ∈ {0, 1}m for m large enough, Enc′ operates as follows:

1. Set x′ = 0ℓ
′∥x for ℓ′ = 10ℓ = O(

√
m). Let m′ = |x′| and set w = 100⌈logm′⌉;
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2. Iterate over all z ∈ {0, 1}t for t = O(logm′) = O(logm) until a z such that x′ ⊕ g(z) is w-

subsequence-unique and also satisfies Properties 5.2 and 5.4 is found. Such a string z is guar-

anteed to exist because all such properties hold for x′ ⊕ g(Ut) with probability 1 − o(1) (see

Lemmas 5.4, 5.6, and 5.12). Moreover, computing g(z) and checking whether x′ ⊕ g(z) satisfies

all three properties can be done in time poly(m);

3. Obtain z′ from z by setting z′ = Encedit(0∥z), where Encedit is the efficient encoder of the

systematic code Cedit from Theorem 2.8 correcting |z|/10 edit errors with redundancy at most

βedit|z| = O(logm) for some constant βedit > 0. Here, d is assumed to be a constant satisfying

5d(1 + βedit) < 1/10, so that Cedit corrects a 5d-fraction of edit errors in z′;

4. Define Enc′(x) = z′∥[x′ ⊕ g(z)] = z′∥y′.

For a given message x ∈ {0, 1}m, we can compute Enc′(x) in time poly(m). Furthermore, recalling

that m = ⌈log2 n⌉ in the construction of Section 5.2, the redundancy of C′ is

r′ = |z′|+ ℓ′ = O(logm+
√
m) = O(

√
m) = O(log n).

If we use C′ as the inner code in the construction of C from Section 5.2, then according to (5.1) we

obtain overall redundancy r = O
(︂

n
logn

)︂
for C, as desired. Moreover, C′ satisfies Property 5.1. By the

choice of z, we have wgt(y′[a, a + w)) ≥ 0.4w for every a and w = 100⌈logm′⌉. Therefore, for any

substring s such that |s| = ⌈
√
m⌉ we have

wgt(s) ≥ 0.4w⌊|s|/w⌋ − |z′| ≥ 0.39|s|

provided that m is large enough, since |z′| and w are O(logm). As a result, the reasoning used in

Section 5.2 applies to this choice of C′. To prove Theorem 5.4, it remains to give a trace reconstruction

algorithm to recover strings of the form 1ℓ∥Enc′(x)∥0ℓ from poly(m) = poly(log n) traces with proba-

bility at least 1 − n−10. Suppose we already have such an algorithm, call it A. Recall (5.3) and the

definition of the event E(i)
indFail from Section 5.2. Instantiating E(i)

indFail with algorithm A leads to the

bound Pr[E
(i)
indFail] ≤ n−10, for all i. Combining this observation with (5.3) allows us to conclude that

the probability that we successfully recover c ∈ C from poly(log n) i.i.d. traces of c is at least 1− 2/n

for n large enough.
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5.4.2.1 The trace reconstruction algorithm

In this section, we analyse an algorithm for recovering strings of the form 1ℓ∥Enc′(x)∥0ℓ from poly(m) =

poly(log n) traces with probability 1 − 1/poly(n). As discussed before, we proceed by adapting the

algorithm from Section 5.4.1.1, which in turn is a slightly modified version of the algorithm from [59]

discussed in Section 2.5.3.1.

The first difference between the current and the previous setting is that the original bootstrapping

technique cannot be applied, as Enc′(x) is enclosed by two long runs. We show that the structure

of Enc′ allows for an alternative bootstrapping method. Recall that c = Enc′(x) = z′∥y′, where

y′ = x′ ⊕ g(z) and the first ℓ′ = O(
√
m) bits of x′ are zero. Therefore, if we can recover z from few

traces of 1ℓ∥c∥0ℓ, then we can recover the first O(
√
m) bits of y′, which suffice for bootstrapping, by

computing g(z). The following lemma states that we can recover z with high probability from O(log n)

traces.

Lemma 5.13. Fix constant d such that 5d(1 + βedit) < 1/10 and assume n is large enough. Then, we

can recover z from 400 log n traces of 1ℓ∥c∥0ℓ with probability at least 1− n−30 in time poly(log n).

Proof. Recall that z′ = Encedit(0∥z) and that Cedit is systematic. This means that z′1 = 0, and so with

probability 1−d the first 0 appearing in the trace will correspond to z′1. Given a trace T of 1ℓ∥c∥0ℓ, we

proceed as follows: Let u denote the position of the first 0 in T . Then, we take z̃ = T [u, u+(1−d)|z′|),

feed z̃ into Decedit, and let the corresponding output be our guess for z. The probability that this

procedure fails to yield z is at most the probability that z′1 was deleted plus the probability that z̃

is too far away in edit distance from z′ given that z′1 was not deleted. We proceed to bound both

probabilities. First, the probability that z′1 is deleted is exactly d. Second, we assume z′1 is not deleted

and let L denote the length of the trace of z′[2 :] within T . We have E[L] = (1− d)(|z′| − 1), and the

Hoeffding bound gives

Pr[L ≤ (1− 3d)(|z′| − 1)] ≤ exp
(︁
−8d2(|z′| − 1)

)︁
.

Since d is a constant, |z′| = Θ(logm), and L ≤ |z′| − 1 always, we conclude that for m large enough

we have

Pr[|L− (1− d)(|z′| − 1)| ≥ 2d(|z′| − 1)] < 1/5.

As a result, with probability at least 4/5 we have that z̃ is within edit distance 5d|z′| < |z|/10 from
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z′. If this condition holds, then Decedit(z̃) = z.

In sum, the procedure fails to return z with probability at most d+1/5 < 1/4. Repeating this procedure

400 log n times and taking the most common output ensures, via the Hoeffding bound, that we can

recover z from 400 log n traces with success probability at least 1− n−30 in time poly(log n).

As discussed before, once z has been recovered the bits of 1ℓ∥c∥0ℓ = 1ℓ∥z′∥y′∥0ℓ are known up to and

including the first ℓ′ = Θ(
√
m) bits of y′. Our last task is to recover the remaining bits of y′, and given

that we have sufficiently many initial bits from y′ we follow the approach from Section 5.4.1.1. The

differences with respect to Section 5.4.1.1 are the following:

• We use y′′ = y′∥0ℓ in place of y and 1ℓ∥z′ in place of z. In particular, this implies that the

threshold used to declare that a matching is good is now different. In this case, if T is a trace

of 1ℓ∥c∥0ℓ and y′′[i − v − w, i − v) is matched with T [u − w, u), then the matching is good if

u− w > ℓ+ |z′|. This ensures that the bits in a good matching always come from y′′;

• We are only interested in recovering y′′i for ℓ′ < i ≤ |y′|, as we already know the other bits of y′′.

The two lemmas below are analogous to Lemmas 5.8 and 5.9 with similar proofs. They show that the

modified HMPW trace reconstruction algorithm from Section 5.4.1.1 can also be used in this case to

recover the remaining bits of y′ with the changes itemised above. From here onwards, we use T to

denote a trace of 1ℓ∥c∥0ℓ, for every ℓ′ < i ≤ |y′| let Egood denote the event that a good matching of

y′′[i − v − w, i − v) occurs in T , and let Last denote the position in y′′ of the last bit appearing in

the first such good matching within T (with Last = ⊥ if no good matching exists). Moreover, we set

v = ⌈w/d⌉ and j = ⌊(v − 0.1w)(1− 3d)⌋ as before (recall w = 100⌈logm′⌉ and m′ = |y′|).

Lemma 5.14. Fix constant d < 1/2 and assume m is large enough. Then, we have Pr[Egood] ≥

Pr[Egood, Last < i] ≥ 2−(w+1) for every ℓ′ < i ≤ |y′|.

Proof. The probability that no bit in y′′[i − v − w, i − v) is deleted is at least 2−w if d < 1/2.

Given this, suppose that y′′i−v−w appears in position TP . Then, the matching is good with probability

Pr[P > ℓ+ |z′|]. Since i > ℓ′ = 10ℓ = Θ(
√
m), we have i− v−w ≥ ℓ+ |z′| for m large enough, because

v, w, and |z′| are all Θ(logm). In that case, it holds that

Pr[P ≤ ℓ+ |z′|] ≤ Pr[Bin2(ℓ+|z′|),1−d ≤ ℓ+ |z′|] ≤ 1/2
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whenever d < 1/2, and so the probability that Egood and Last < i hold is at least 1/2 · 2−w = 2−(w+1)

for all ℓ′ < i ≤ |y′|.

Lemma 5.15. Fix constant d < 2−104

11e and assume m is large enough. Then, we have Pr[Last ̸∈

[i− v − 1, i− v − 1 + 0.1w]|Egood] ≤ 2−100w for every ℓ′ < i ≤ |y′|.

Proof. Let E denote the event that Last ̸∈ [i− v− 1, i− v− 1+0.1w]. Then, by Lemma 5.14 it suffices

to show that Pr[E,Egood] ≤ 2−200w. As in the proof of Lemma 5.9, the probability that E and Egood

hold for any given i is upper bounded by the probability that more than 0.1w bits are deleted from

some substring y′′[b, b+1.1w), and the probability that this happens is at most 2m
(︁
1.1w
w

)︁
d0.1w ≤ 2−200w

for m large enough by the upper bound on d and a union bound over all choices of b. We explain why

this holds. First, note that the bits in a good matching must come from y′′. Suppose that at most 0.1w

bits are deleted from every substring y′′[b, b+1.1w). Then, y′′[i− v−w, i− v) must be a subsequence

of y′′[b, b+ 1.1w) for some 1 ≤ b ≤ |y′′| − 1.1w + 1. We distinguish two cases:

• b+ 1.1w > |y′|:

Recalling that v = ⌈w/d⌉ and the upper bound on d, we have i−v ≤ |y′|−⌈w/d⌉ ≤ |y′|−1.1w <

min(|y′|+ 1, b), and so Property 5.4 holds for y′′[i− v −w, i− v). Therefore, y′′[i− v −w, i− v)

cannot be a subsequence of y′′[b, b+ 1.1w) for any such b;

• b+ 1.1w ≤ |y′|:

Since y′ is w-subsequence-unique and y′′[i − v − w, i − v), y′′[b, b + 1.1w) are the substrings

y′[i− v−w, i− v), y′[b, b+1.1w), respectively, we must have b ≤ i− v−w and b+1.1w ≥ i− v.

The same argument from the proof of Lemma 5.9 (noting that i > ℓ′ ≥ 2v+1.1w+1 for m large

enough) shows that we cannot have Last ̸∈ [i− v − 1, i− v − 1 + 0.1w].

From here onwards fix a constant deletion probability d < min
(︂
2−104

11e , 1
50(1+βedit)

)︂
so that all relevant

lemmas hold for the choice of d and assume m is large enough independent of i (but depending on

d). Let T be a trace of 1ℓ∥c∥0ℓ = 1ℓ∥z′∥y′′ and, if there is a good matching of y′′[i − v − w, i − v) at

T [u−w, u), define Suff = T [u :]. Repeating the reasoning from Section 5.4.1.1 but replacing Lemma 5.9

by Lemma 5.15 yields

y′′i = 0 =⇒ Pr[Suffj = 1|Egood] ≤ εi +
i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood]

i−1∑︂
ℓ=r+1

P (ℓ− r, j)yℓ
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+
1

2

i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood]P (i− r, j) (5.10)

and

y′′i = 1 =⇒ Pr[Suffj = 1|Egood] ≥ εi +
i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood]

i−1∑︂
ℓ=r+1

P (ℓ− r, j)yℓ

+
i−v−1+0.1w∑︂
r=i−v−1

Pr[Last = r|Egood]P (i− r, j) (5.11)

for every ℓ′ < i ≤ |y′|, where εi ∈ [0, 2−100w], and that the gap between the right hand sides of (5.10)

and (5.11) is at least 2−(12w+2) for every such i.

The same reasoning used to prove Lemmas 5.10 and 5.11 but replacing Lemmas 5.8 and 5.9 by Lem-

mas 5.14 and 5.15, respectively, shows that, for every ℓ′ < i ≤ |y′|, knowledge of z′ and y′′1 , . . . , y
′′
i−1

allows us to compute estimates of Pr[Suffj = 1|Egood] and each Pr[Last = r|Egood] for 1 ≤ r < i to

within additive error 2−100w and 2−90w, respectively, from 21000w+1 traces of 1ℓ∥c∥0ℓ = 1ℓ∥z′∥y′′ with

probability at least 1−2 exp(−m) and runtime upper bounded by poly(m) independent of i, assuming

access to m2 ·21000w+1 = poly(m) i.i.d. samples of Berd. As before, this allows us to accurately estimate

both sides of (5.10) and (5.11), and thus recover y′′i correctly, with probability at least 1−2m exp(−m).

A union bound over all ℓ′ < i ≤ |y′| shows that we correctly recover all the remaining bits of y′ using

|y′| ·21000w+1 = poly(m) traces with probability at least 1− exp(−Ω(m)) in overall time poly(m) when

m is large enough. Recalling Lemma 5.13 and that m = ⌈log2 n⌉, we conclude that poly(log n) traces

and time are sufficient to recover c with probability at least 1 − n−20 when n is large enough, which

concludes the proof. Moreover, the reasoning from Remark 5.5 applies as is here, showing that the

reconstruction algorithm presented can be made deterministic while still using poly(m) traces and time

with reconstruction error exp(−Ω(m)) when d is constant.

5.5 Mean-based trace reconstruction over general repeat channels

In this section, we generalise the original analysis of mean-based algorithms for worst-case trace recon-

struction over the deletion channel by De, O’Donnell, and Servedio [60] and Nazarov and Peres [61],

which we discussed in some detail in Section 2.5.3.2, to trace reconstruction over a more general class

of repeat channels (of which the deletion channel is a particular example). In [60], the analysis was also
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generalised in an orthogonal direction to what is called the general channel, which was first studied

in [128]. This channel combines deletions, geometric insertions of random bits, and bit-flips. More

precisely, on input a bit xi, the general channel is a DMSC that behaves as follows:

1. Append a sequence of N ∼ Geom0,pins independent uniformly random bits to the output;

2. Delete xi with probability pdel;

3. If xi is not deleted, append xi to the output with probability 1 − perr, or append 1 − xi with

probability perr.

It was shown in [60] that, similarly to trace reconstruction over the deletion channel, exp(O(n1/3))

traces are sufficient for mean-based worst-case trace reconstruction over the general channel with

constant probabilities pins, pdel, perr. Nazarov and Peres [61] showed an analogous result for a closely

related channel: First, a geometric number of random bits is inserted before each input bit. Then,

deletions and bit-flips are applied to the resulting string. This was later extended to a setting combining

deletions, geometric insertions, and random shifts as an intermediate step in the design of average-case

trace reconstruction algorithms in [131, 57]. In yet another direction, the results from [60, 61] for

the deletion channel were also extended to the deletion channel with position- and symbol-dependent

deletion probabilities satisfying monotonicity and periodicity constraints in [134].

In contrast with the above, here we focus on the setting where each trace of the input x is obtained

by sending x through a repeat channel with an arbitrary finitely supported replication rule R, which

is incomparable to trace reconstruction over the “general channel” above. In this section, we analyse

the performance of mean-based trace reconstruction algorithms for trace reconstruction over arbitrary

repeat channels.

5.5.1 From the deletion channel to general repeat channels

We begin by extending some concepts from [60, 61] already discussed in Section 2.5.3.2 in a straight-

forward manner to the setting of general repeat channels. Then, we prove a lemma generalising (2.11),

which will allow us to obtain upper bounds on the number of traces required for worst-case trace

reconstruction over a large class of repeat channels. We use the convention that 00 = 1.
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To every x ∈ Rn we can associate a polynomial Px defined as

Px(z) =
n∑︂

i=1

xiz
i−1.

Letting Yx denote the output distribution of the repeat channel on input x,3 we denote by Y ′
x the

infinite string obtained by appending zeros to Yx. Then, we define the mean trace µx as

µx = (E[(Y ′
x)1],E[(Y

′
x)2], . . . )

along with the mean trace power series PR,x satisfying

PR,x(z) =

∞∑︂
i=1

(µx)iz
i−1.

Our first lemma relates Px and PR,x through a change of variable, generalising (2.11) for the deletion

channel.

Lemma 5.16. Let g denote the probability generating function of a replication rule R with convergence

radius r > 1. Then, for all z ̸= 1 in the disc of convergence of g and x ∈ Rn we have

PR,x(z) =
1− g(z)
1− z

· Px(g(z)),

and for z = 1 it holds that

PR,x(1) = E[R] · Px(1).

Proof. For i ∈ [n], define the random variable Ji as Ji = ∅ if xi is deleted and Ji = [a, a+ r − 1] if xi

ends up as (Y ′
x)a and is replicated r times in the output. Then, for every j ≥ 1 we have

(Y ′
x)j =

n∑︂
i=1

xi · 1{j∈Ji},

and consequently

PR,x(z) =
∞∑︂
j=1

(µx)j · zj−1 =
∞∑︂
j=1

n∑︂
i=1

xi · Pr[j ∈ Ji] · zj−1 =
n∑︂

i=1

xi

∞∑︂
j=1

Pr[j ∈ Ji] · zj−1,

3We extend the behaviour of the repeat channel to inputs x ∈ Rn in the natural manner: The repeat channel
independently outputs Ri copies of xi for each i.
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where the last equality is justified by the finiteness of
∑︁∞

j=1 Pr[j ∈ Ji] · zj−1 for all i and z in the disc

of convergence of g, which we show below. For R1, R2, . . . , Rn i.i.d. according to R and R0 = 0, denote

R(i) =
∑︁i

j=0Rj . Then, we have

∞∑︂
j=1

Pr[j ∈ Ji] · zj−1 =
∞∑︂
j=1

Pr[R(i−1) < j ≤ R(i)] · zj−1

=

∞∑︂
j=1

Pr[R(i−1) < j,Ri ≥ j −R(i−1)] · zj−1

=
∞∑︂
j=1

j−1∑︂
j′=0

Pr[R(i−1) = j′] · Pr[R ≥ j − j′] · zj−1

=
∞∑︂

j′=0

Pr[R(i−1) = j′]
∞∑︂

j=j′+1

Pr[R ≥ j − j′] · zj−1

=
∞∑︂

j′=0

Pr[R(i−1) = j′] · zj′ ·
∞∑︂
j=1

Pr[R ≥ j] · zj−1,

where the sum rearrangements are allowed due to absolute convergence, which we show below using

the fact that z is in the disc of convergence of g, and the last equality follows by replacing j with j−j′.

Recalling that g is the probability generating function of R, we have

∞∑︂
j′=0

Pr[R(i−1) = j′] · zj′ = g(z)i−1

for i ∈ [n]. Moreover, if z ̸= 1 it holds that

∞∑︂
j=1

Pr[R ≥ j] · zj−1 =

∞∑︂
j=1

zj−1
∞∑︂

j′=j

Pr[R = j′]

=
∞∑︂

j′=1

Pr[R = j′]

j′∑︂
j=1

zj−1

=
∞∑︂

j′=1

Pr[R = j′] · 1− z
j′

1− z

=
∞∑︂

j′=0

Pr[R = j′] · 1− z
j′

1− z

=
1− g(z)
1− z

,



194 Chapter 5. Coded trace reconstruction

while we have
∑︁∞

j=1 Pr[R ≥ j] · zj−1 = E[R] if z = 1. As a result, we conclude that

∞∑︂
j=1

Pr[j ∈ Ji] · zj−1 =
(1− g(z))g(z)i−1

1− z

when z ̸= 1, and thus

PR,x(z) =
1− g(z)
1− z

·
n∑︂

i=1

xi · g(z)i−1 =
1− g(z)
1− z

· Px(g(z))

for all z ̸= 1 in the disc of convergence of g, while PR,x(1) = E[R] · Px(g(1)) = E[R] · Px(1).

Remark 5.6. We can obtain (2.11) from Lemma 5.16 by noting that for the deletion channel we have

g(z) = d+(1−d)z, which implies that 1−g(z)
1−z = E[R] = 1−d, and so P x(z) = (1−d) ·Px(d+(1−d)z).

5.5.2 Mean-based trace reconstruction over finitely-supported repeat channels

In this section, we use the concepts and results from Section 5.5.1 to obtain an upper bound on the

number of traces required for worst-case trace reconstruction over any repeat channel with finitely

supported replication rule. The main difference with respect to [60, 61, 131, 57] is that while they

work directly with concrete and simple probability generating functions (Möbius transformations), our

analysis must handle an arbitrary probability generating function. Remarkably, this is accomplished

via a simple argument. Before we proceed, we generalise the notion of a worst-case trace reconstruction

algorithm to general repeat channels.

Definition 5.1. An algorithm Rec is said to be a (t, R)-worst-case trace reconstruction algorithm if

for n large enough and all x ∈ {0, 1}n it holds that

Pr[Rec(Y (1)
x , Y (2)

x , . . . , Y (t)
x ) = x] ≥ 1− 1/n,

where the Y (i)
x are i.i.d. according to the output distribution of the repeat channel with replication rule

R on input x.

In this section, we will be focusing on repeat channels whose replication rules have finite support. Put

differently, we assume there exists a constant u > 0 such that Pr[R ≤ u] = 1 and R(u) > 0. We prove

the following general result.
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Theorem 5.5. For every repeat channel with replication rule R having finite support, there exists a

(t, R)-worst-case mean-based trace reconstruction algorithm using t = exp(O(n1/3)) traces and time.

Remark 5.7. Theorem 5.5 cannot be improved, since we know that exp(Ω(n1/3)) traces are also

required for mean-based trace reconstruction over the deletion channel [60, 61]. Moreover, although

we do not expand on it here, this theorem can be generalised to all replication rules R with fast

decaying tails, such as the Poisson and geometric distributions, by truncating the mean trace up to

an appropriate threshold as done in [60, Appendix A.2] for the case of geometric insertions of random

bits.

In order to prove Theorem 5.5, we begin by focusing on distinguishing between traces of two arbitrary

distinct strings x, x′ ∈ {−1, 1}n. Our first goal is to show that there exists an absolute constant C > 0

such that

∥µx − µx′∥1 ≥ exp(−Cn1/3) (5.12)

for all distinct strings x, x′ ∈ {−1, 1}n when n is large enough via Lemma 5.16.

First, observe that the triangle inequality yields

|PR,x(z)− PR,x′(z)| ≤
un∑︂
i=1

|(µx)i − (µx′)i| · |z|i−1 ≤ ∥µx − µx′∥1 · max
1≤i≤un

|z|i−1. (5.13)

On the other hand, by Lemma 5.16 we have

|PR,x(z)− PR,x′(z)| =
⃓⃓⃓⃓
1− g(z)
1− z

⃓⃓⃓⃓
· |Px−x′(g(z))| (5.14)

for z ̸= 1. With (5.13) and (5.14) in mind, we will prove (5.12) by choosing z appropriately.

Noting that Px−x′ = 2p where p is a Littlewood polynomial, Lemma 2.11 ensures the existence of an

absolute constant c0 > 0 such that for any n,L ≥ 1 and distinct strings x, x′ ∈ {−1, 1}n there exists

wL = eiφL satisfying |φL| ≤ π
L and |Px−x′(wL)| ≥ exp(−c0L). By the continuity of Px−x′ , we may

assume that wL ̸= 1 by making c0 slightly larger. Let zL ̸= 1 satisfy g(zL) = wL. We show below that

an appropriate solution zL is guaranteed to exist for all probability generating functions g, provided L

is large enough. Setting z = zL in (5.13) and (5.14), we obtain

∥µx − µx′∥1 · max
1≤i≤un

|zL|i−1 ≥
⃓⃓⃓⃓
1− wL

1− zL

⃓⃓⃓⃓
· |Px−x′(wL)| ≥

⃓⃓⃓⃓
1− wL

1− zL

⃓⃓⃓⃓
· exp(−c0L). (5.15)
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In order to obtain the desired lower bound on ∥µx − µx′∥1, we need to control
⃓⃓⃓
1−wL
1−zL

⃓⃓⃓
and |zL|. We

show there is a choice of zL with good properties.

Lemma 5.17. There exist absolute constants c1, c2 > 0 such that for L large enough and any φ ∈[︁
− π

L ,
π
L

]︁
\ {0} we may choose zφ satisfying g(zφ) = eiφ,

0 < |1− zφ| ≤ c1|1− eiφ|,

and

|zφ| ≤ 1 + c2φ
2 ≤ exp

(︁
c2π

2/L2
)︁
.

Instantiating (5.15) with zL = zφL guaranteed by Lemma 5.17 with φ = φL implies that there is an

absolute constant L⋆ such that for all L ≥ L⋆, n, and distinct x, x′ ∈ {−1, 1}n we have

∥µx − µx′∥1 ≥
1

c1
· exp

(︁
−c0L− c2π2un/L2

)︁
.

Setting L = n1/3 yields (5.12), as desired.

It remains to prove Lemma 5.17. We do so by invoking the inverse function theorem for analytic

functions. Below, we denote the open radius-r disc around z by Dr(z) = {z′ ∈ C : |z′ − z| < r}.

Lemma 5.18 ([208, Section VIII.4], adapted). Suppose that a non-constant function g : Ω → C is

analytic on a connected open set Ω ⊆ C and g′(z) ̸= 0 for a given z ∈ Ω. Then, there exist radii ρ, δ > 0

such that for every w ∈ Dδ(g(z)) there exists a unique zw ∈ Dρ(z) satisfying g(zw) = w. Moreover, the

inverse function f : Dδ(g(z))→ Dρ(z) defined as f(w) = zw is analytic on Dδ(g(z)).

Proof of Lemma 5.17. Note that g is a non-constant analytic function on C which satisfies g(1) = 1

and g′(1) = E[R] > 0. As a result, we can apply Lemma 5.18 to g with z = 1. Let ρ, δ > 0 and

f : Dδ(1) → Dρ(1) be the analytic inverse function guaranteed to exist by Lemma 5.18. Since f is

analytic on Dδ(1), there is γ < δ such that we may write

f(y) = f(1) + f ′(1)(y − 1) +
∞∑︂
j=2

f (j)(1)

j!
(y − 1)j = 1 + f ′(1)(y − 1) +

∞∑︂
j=2

f (j)(1)

j!
(y − 1)j .

for all y ∈ Dγ(1), where the last equality follows from the fact that f(1) = 1, since g(1) = 1.

Recall that we must choose zφ such that g(zφ) = eiφ ̸= 1. Suppose L is large enough so that π
L ≤ 1
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and |1− eiφ| < γ/2 whenever |φ| ≤ π
L . Then, we set

zφ = f(eiφ) = 1 + f ′(1)(eiφ − 1) +
∞∑︂
j=2

f (j)(1)

j!
(eiφ − 1)j . (5.16)

This implies that g(zφ) = eiφ by the definition of f . Moreover, we have zφ ̸= 1 and

0 < |zφ − 1| ≤ |f ′(1)| · |eiφ − 1|+ c3|eiφ − 1|2 ≤ c1|eiφ − 1|

for all such φ, where c1, c3 > 0 are absolute constants, which implies the first statement of the lemma.

This follows from (5.16), the triangle inequality, and a standard upper bound on the remainder of the

Taylor series: Since |f(w)| ≤ 1 + ρ for all w ∈ Dδ(1), we have
⃓⃓⃓
f (j)(1)

j!

⃓⃓⃓
≤ 1+ρ

γj for all j (e.g., see [208,

Section V.4]), and so

∞∑︂
j=2

⃓⃓⃓⃓
⃓f (j)(1)j!

⃓⃓⃓⃓
⃓ · |eiφ − 1|j ≤ 2(1 + ρ)

γ2
· |eiφ − 1|2 = c3|eiφ − 1|2 (5.17)

for all w ∈ Dγ/2(1) and c3 =
2(1+ρ)

γ2 . Moreover, since both g and f are analytic on a neighbourhood of

1, the chain rule yields

f ′(1) =
1

g′(f(1))
=

1

g′(1)
=

1

E[R]
∈ R. (5.18)

Therefore, by (5.16), (5.17), (5.18), and the triangle inequality we have

|zφ| ≤
⃓⃓⃓⃓
1 +

eiφ − 1

E[R]

⃓⃓⃓⃓
+ c3|eiφ − 1|2.

Then, observing that

⃓⃓⃓⃓
1 +

eiφ − 1

E[R]

⃓⃓⃓⃓
=

√︄(︃
1 +

cos(φ)− 1

E[R]

)︃2

+

(︃
sin(φ)

E[R]

)︃2

≤

√︄
1 +

φ2

E[R]2
≤ 1 +

φ2

E[R]2

and

|eiφ − 1|2 ≤ φ2,

we conclude that

|zφ| ≤ 1 + c2φ
2 ≤ exp(c2π

2/L2)

for some absolute constant c2 > 0 and L large enough, since |φ| ≤ π
L .
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Concluding the proof and time complexity of mean-based trace reconstruction. In order

to conclude the proof of Theorem 5.5, we must argue from the above that exp(O(n1/3)) traces and

time are enough to reconstruct the unknown input string x with high probability. That all pairs

of distinct strings x, x′ ∈ {−1, 1}n satisfy (5.12) is already enough to show that exp(O(n1/3)) traces

suffice: If t = exp(Cn1/3) for a sufficiently large constant C and we have access to N = ⌈(un·t)3⌉ traces

T (1), . . . , T (N), we can estimate (µx)j by ˆ︁µj = 1
N

∑︁N
i=1 Y

′(i)
j . Then, the Hoeffding bound combined with

a union bound over all entries j = 1, 2, . . . , un shows that Pr
[︁
∥ˆ︁µ− µx∥1 ≥ 1

4t

]︁
≤ e−Ω(n). Coupling

this fact with (5.12) shows that ∥ˆ︁µ − µx′∥1 ≥ 3
4t simultaneously for all x′ ̸= x with probability at

least 1 − e−Ω(n). We can then recover the unknown input x by computing ˆ︁µ alongside µx′ for all

x′ ∈ {−1, 1}n, and returning the unique x′ such that ∥ˆ︁µ− µx′∥1 ≤ 1
4t , if it exists.

We now show that poly(t) time is also sufficient to recover x, following the discussion in [60, Section

3.2]. First, note that the definitions of the mean trace µx and the power series Px and PR,x can be

extended by linearity to all x ∈ [−1, 1]n, and that Lemma 5.16 holds for all x ∈ [−1, 1]n. In order to

show that poly(t) traces suffice, it is enough to prove that

∥µx∥1 ≥
1

t
(5.19)

for all x ∈ {0}i−1×{2}×[−2, 2]n−i and i = 1, 2, . . . , n. Then, provided we have an estimate ˆ︁µ satisfying

∥ˆ︁µ − µx∥1 < 1
4t for the true input x (which can be computed with probability 1 − exp(−Ω(n)) using

poly(t) traces and time as described above) and the ability to compute µx′ for any x′ ∈ [−1, 1]n (which

can be done in time poly(n) to poly(n) significant digits)4, a sequence of n linear programs recovers x

in time poly(n). Assuming that we have already recovered x1, x2, . . . , xi−1, consider the program

min
x′,µx′

∥µx′ − ˆ︁µ∥1
s.t. (µx′)j =

n∑︂
ℓ=1

x′ℓ · Pr[j ∈ Jℓ], j = 1, 2, . . . , un,

x′ℓ = xℓ, 1 ≤ ℓ < i,

x′i = 1,

x′ℓ ∈ [−1, 1], i < ℓ ≤ n,

4Note that computing µx′ efficiently reduces to the task of computing Pr[j ∈ Jℓ] efficiently for every ℓ ≤ n and j ≤ un.
Since Pr[j ∈ Jℓ] =

∑︁
j′<j Pr[R

(ℓ−1) = j′] · Pr[R ≥ j − j′], the desired statement follows if we can compute Pr[R(ℓ) = j′]

efficiently for every ℓ ≤ n and j′ ≤ un. This can be accomplished in time O(n3) via dynamic programming by exploiting
the fact that Pr[R(ℓ) = j′] =

∑︁
j′′≤j′ Pr[R

(ℓ−1) = j′′] · Pr[R = j′ − j′′].
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which is a direct generalisation of [59, Expression (3.6)]. By (5.19), the minimum of the program above

is smaller than 1
4t if xi = 1 and larger than 3

4t if xi = −1. Therefore, solving this program allows us to

decide whether xi = 1 or xi = −1. Analogously to [59], we can equivalently cast the program above

as a linear program in a standard manner by adding new variables a1, a2, . . . , aun ∈ R along with the

constraints aj ≥ (µx′)j − ˆ︁µj and aj ≥ −((µx′)j − ˆ︁µj) for each j = 1, 2, . . . , un, and minimising instead

the linear objective function
∑︁un

j=1 aj over a1, a2, . . . , aun, x′, and µx′ . This allows us to recover xi in

time poly(n) (using, e.g., Karmarkar’s algorithm [209]), assuming we have previously computed the

appropriate estimate ˆ︁µ.

We can prove (5.19) by following the same reasoning as above, but replacing Lemma 2.11 with the

following alternative lemma, also due to Borwein and Erdélyi [137].

Lemma 5.19 ([137]). There is an absolute constant c > 0 such that for any polynomial p with constant

coefficient 1 and all other coefficients bounded by 1 in modulus and every L ≥ 1 it holds that

max
z=eiφ:|φ|≤ π

L

|p(z)| ≥ exp(−cL).

Following the reasoning above we know that (recall (5.15))

∥µx∥1 ≥ |z|−un

⃓⃓⃓⃓
1− g(z)
1− z

⃓⃓⃓⃓
|Px(g(z))|

for every z ̸= 1 such that |z| ≥ 1, where x ∈ {0}i−1×{2}× [−2, 2]n−i. Noting that Px(w) = 2wi · p(w)

for p satisfying the hypotheses of Lemma 5.19, we have

max
w=eiφ:|φ|≤ π

L

|Px(w)| = 2 · max
w=eiφ:|φ|≤ π

L

|p(w)| ≥ exp(−cL).

As before, combining this observation with Lemma 5.17 guarantees that there are absolute constants

c0, c1, c2, L
⋆ > 0 such that for any L ≥ L⋆ and x ∈ {0}i−1 × {2} × [−2, 2]n−i for any n and i ∈ [n] we

can choose zL ̸= 1 satisfying

∥µx∥1 ≥ |zL|−un

⃓⃓⃓⃓
1− g(zL)
1− zL

⃓⃓⃓⃓
|Px(g(zL))| ≥

1

c1
exp(−c0L− c2π2un/L2) ≥ exp(−Cn1/3),

where C > 0 is an absolute constant. Setting L = n1/3 yields the complete statement of Theorem 5.5.
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5.5.3 Coded trace reconstruction over general repeat channels

In this section, we briefly discuss some implications of our results on mean-based trace reconstruction

over general repeat channels to coded trace reconstruction. Although our coded trace reconstruction

model described in Section 5.1 is specified for the deletion channel, it can be generalised in a straight-

forward way to the case where traces are obtained by sending the codeword through an arbitrary repeat

channel (or DMSC).

Consider the coded trace reconstruction problem over a given repeat channel with finitely supported

replication rule R. Using Theorem 5.5, we can modify the flexible marker-based code construction

from Section 5.2 so that it works for coded trace reconstruction over this repeat channel. By setting

the length of the markers to be C⌈log n⌉ for some sufficiently large constant C > 0 (depending on

the “deletion probability” d = R(0), the largest element of supp(R), and the hidden constant in Theo-

rem 5.5) and by replacing the worst-case trace reconstruction algorithm from Theorem 2.10 with that

from Theorem 5.5 for the repeat channel in question, we can follow the reasoning of Section 5.2 exactly

to obtain the result below.

Theorem 5.6. For every non-trivial replication rule R with finite support there exists an efficiently

encodable code C ⊆ {0, 1}n+r with redundancy r = O(n/ log n) that can be efficiently reconstructed from

exp(O(log2/3 n)) traces over the repeat channel with replication rule R.

5.6 Parallel and follow-up work

In this section, we briefly discuss some work on coded trace reconstruction that appeared either con-

currently or subsequently to our work [5].

In a parallel work, Abroshan, Venkataramanan, Dolecek, and Guillén i Fàbregas [210] studied a related

setting for coded trace reconstruction, but with key differences to the model considered here. First, they

consider a setting where the number of traces is fixed. In contrast, in our setting we allow the number

of traces to increase with the blocklength of the code. Moreover, they consider a constant upper bound

k on the number of deletions, whose positions are uniformly distributed. In contrast, we consider a

constant rate of i.i.d. deletions, meaning in particular that the expected number of deletions grows

linearly with the blocklength of the code. The authors study a code obtained by concatenating several
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blocks, with each block being a codeword of a Varshamov-Tenengolts code correcting one worst-case

deletion, and the results obtained are incomparable to those presented in this chapter.

Subsequently to the publication of our work, Brakensiek, Li, and Spang [211] built upon our model

and techniques, obtaining more results on coded trace reconstruction in several directions. Notably,

they present a connection between arbitrary average-case trace reconstruction algorithms and codes

in the coded trace reconstruction model, generalising our connection between codes for coded trace

reconstruction and the HMPW average-case trace reconstruction algorithm from Section 5.4. More

precisely, they show that if there exists an average-case trace reconstruction algorithm using t(n) traces

to recover n-bit strings, then, for a large range of ε > 0, there exist binary codes of rate 1 − ε that

can be reconstructed from t
(︁
O
(︁
1
ε log

1
ε

)︁)︁
traces with high probability. Plugging in the state-of-the-art

algorithm for average-case trace reconstruction from [57] (as opposed to the HMPW algorithm [59], a

modification of which we used in Section 5.4), the result above implies the existence of codes with rate

1− ε that can be reconstructed from exp(O(log1/3(1/ε))) traces for any constant deletion probability

d < 1. When ε = O(1/ log n), which corresponds to the setting considered in this chapter, their

result implies the existence of a code with rate 1−O(1/ log n) that requires only exp(O(log1/3(log n)))

traces, as opposed to poly(log n) = exp(O(log log n)) traces as in Section 5.4. However, we remark

that the codes obtained in [211] are not efficiently encodable when ε = o
(︂
log logn
logn

)︂
, and hence when

ε = O(1/ log n), since their code construction requires superpolynomial preprocessing in that case. As

a result, the codes we constructed in Section 5.4 remain the best efficiently encodable codes for coded

trace reconstruction in that regime.

There have also been some subsequent works on coded trace reconstruction from a fixed number of

traces with worst-case deletions, insertions, and substitutions. Kiah, Thahn Nguyen, and Yaakobi [212]

designed codes that can be decoded with access to a fixed number of traces, each corrupted by a

different worst-case deletion, insertion, or substitution. Later, Chrisnata, Kiah, and Yaakobi [213]

complemented the previous result by showing that, in the case of a single worst-case deletion, the

codes considered have optimal redundancy (up to a constant additive factor).



202 Chapter 5. Coded trace reconstruction



Chapter 6

Conclusions

6.1 Summary of the thesis

In this thesis, we have made progress on our understanding of the fundamental limits of coding against

synchronisation and related errors and on the design of efficient coding schemes for practically moti-

vated models with synchronisation errors.

We began by studying the capacity of the geometric sticky channel, which independently replicates

bits according to a Geom1,p distribution. This is an example of a sticky channel, a special class of

practically relevant channels which, due to their structure, are seen as a gateway towards understanding

more complex repeat channels. Prior to this thesis, the study of the capacity of sticky channels had

focused solely on devising purely numerical methods (based on genie-aided decoding and variants of

the Blahut-Arimoto algorithm) to produce sharp capacity bounds [32, 1]. However, this approach does

not aid our conceptual understanding of the channel, and, due to genie-aided decoding, cannot provide

an exact characterisation of the capacity. As a first step towards such an exact characterisation

without computer assistance, we undertook a different approach and applied a general framework

from [40] based on convex duality originally exploited to derive analytical upper bounds (given by the

supremum of an analytic function over (0, 1) which can be easily approximated to the desired accuracy)

on the capacity of the deletion and Poisson-repeat channels. This framework reduces the problem of

deriving capacity upper bounds for the geometric sticky channel to the problem of analytically designing

candidate distributions Y satisfying some relevant constraints. From experience, the tightness with

which the constraints are satisfied is directly related to the quality of the resulting analytical upper

203
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bound, and, in fact, satisfying an appropriate subset of the constraints with equality is a necessary

condition for determining the exact capacity of the channel. Candidate distributions designed for the

deletion and Poisson-repeat channels in [40] failed to satisfy all but one constraint with equality. For

the first time, we designed candidate distributions that satisfy all such constraints with equality for

some repeat channel. As a result, we obtained sharp analytical capacity upper bounds for the geometric

sticky channel which are not only close to the previously known numerical bounds, but actually surpass

them for some choices of the parameters. We believe that further study of the explicit distributions

we designed will lead to improved structural results for sticky channels.

Subsequently, we studied the geometric deletion channel, a natural extension of the geometric sticky

channel which also deletes input bits, again with the goal of moving towards a deeper analysis of the

channel without computer assistance. We began by adapting techniques from [40] to derive analytical

capacity upper bounds for the geometric deletion channel. Then, we showed how these upper bounds

can be significantly improved by combining them with the technique of modifying the mass of the

candidate distribution Y at y = 0 along with key properties of the geometric deletion channel. Sur-

prisingly, this approach uncovered connections between candidate distributions for the deletion and

geometric deletion channels. Using these connections, we were able to give a proof without computer

assistance that the capacity of the geometric deletion channel is at most 0.73 bits/channel use in the

large replication regime, and thus bounded well away from 1. In particular, this result shows that the

geometric deletion channel with replication parameter close to 1 (or, equivalently, deletion probabil-

ity close to 0) behaves radically different than the deletion and Poisson-repeat channels in analogous

regimes, which had only been suggested by numerical evidence.

Next, motivated by the study of the capacity of the Poisson-repeat channel, we were naturally led

to consider the continuous analogue of (the mean-limited DMC associated with) this channel. This

turns out to be the discrete-time Poisson (DTP) channel, a model of optical communication that has

received significant attention from the information theory community under different input constraints.

However, despite several prior efforts, we still do not know the exact capacity of the DTP channel,

and only loose upper bounds were known outside asymptotic regimes. Given this, we were interested

in investigating whether techniques originally developed to bound the capacity of the Poisson-repeat

channel could be adapted and combined with other techniques to yield improved and easy-to-compute

capacity upper bounds for the DTP channel in non-asymptotic regimes. We succeeded in deriving

significantly improved upper bounds for the DTP channel. For the case of nonzero dark current, we
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made key use of the technique of modifying the mass at y = 0, which we originally considered for

the geometric deletion channel. To complement our upper bounds, we also studied the structure of

capacity-achieving distributions for the DTP channel. More precisely, we were interested in showing

that, regardless of the peak-power constraint, the support of the capacity-achieving distribution is

discrete. This was proved for the case of a finite peak-power constraint in [42], but the case where

the peak-power constraint is infinite remained open, and it was only known that the support is an

unbounded set [54]. We succeeded in showing that the support is always a discrete set with a finite

number of mass points in every bounded interval, regardless of the peak-power constraint. This not

only settles the problem completely, but our argument also recovers the result for finite peak-power

constraint in an alternative way.

After studying capacity upper bounds for channels with synchronisation and related errors, we turned

to the complementary goal of designing efficient coding schemes with good parameters that protect

against random synchronisation errors. Motivated by prior work on DNA-based data storage systems

with nanopore-based sequencing and uncoded trace reconstruction, we introduced and studied the

problem of coded trace reconstruction. Here, the goal is to design low-redundancy, efficiently encodable

coding schemes which can be efficiently reconstructed provided access to multiple, but few, traces of the

codeword corrupted by i.i.d. deletions. In particular, one aims for the best possible tradeoff between

redundancy and number of traces required for reconstruction, and, as a stepping stone, one wishes

to utilise significantly fewer traces than state-of-the-art results on average-case trace reconstruction.

As a starting point, we analysed a low-redundancy marker-based construction combined with the best

worst-case trace reconstruction algorithms. Although the number of traces required for reconstruction

in this case is larger than the best results on average-case trace reconstruction, we showed that the con-

struction above is flexible and allows us to, for example, obtain a quaternary code with the additional

property that all codewords have balanced GC-content, an important constraint motivated by DNA-

based data storage applications, without affecting the redundancy and reconstruction properties. With

the goal of significantly reducing the number of traces required for reconstruction, we then showed how

to modify the construction above and leverage algorithms for average-case trace reconstruction to ob-

tain an efficiently encodable coding scheme with essentially the same rate as before, but whose efficient

reconstruction now requires exponentially fewer traces than the best average-case trace reconstruction

algorithms. Finally, motivated by extending coded trace reconstruction to more general types of syn-

chronisation errors beyond i.i.d. deletions (which is significant because errors introduced by nanopore

sequencers are more complex than i.i.d. deletions), we investigated whether mean-based worst-case
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trace reconstruction algorithms [59, 60, 61] can be extended to trace reconstruction over other repeat

channels. In particular, we proved that exp(O(n1/3)) traces are also sufficient for worst-case trace

reconstruction of n-bit strings over any repeat channel induced by a finitely-supported replication dis-

tribution, not just the deletion channel. As a bonus, we can also use this result to design, for any such

repeat channel, low-redundancy efficiently encodable codes that can be efficiently reconstructed from

subpolynomially many traces over that repeat channel.

6.2 Directions for future research

This thesis leaves open several interesting directions for future research. We discuss some of them

below.

6.2.1 Capacity of repeat channels

Exact capacity of sticky channels, or sharp elementary upper bounds. In Section 3.1, we

showed that it is possible to analytically design candidate distributions with zero KL-gap everywhere

for the geometric sticky channel to be used in conjunction with Theorems 2.3 and 2.5. Notably, these

distributions satisfy one of the two optimality conditions required to derive the exact capacity of the

geometric sticky channel which had not been achieved by previous works on capacity upper bounds

for both sticky and non-sticky repeat channels, and lead to sharp analytical upper bounds on the

capacity of the geometric sticky channel. However, although we do not have a formal proof of this

fact, numerical evidence suggests that the zero KL-gap distributions we designed cannot be realised

as output distributions of the DMC associated with the geometric sticky channel (we discuss this in

more detail below, along with other consequences). This means that the second optimality condition of

Theorem 2.5 is not satisfied, and thus we are not able to determine the exact capacity of this channel.

The state-of-affairs described in the paragraph above leaves open exciting possibilities for improving

upon our results from Section 3.1. For example, can we modify the zero KL-gap distributions we

designed in order to obtain distributions satisfying both conditions of optimality in Theorem 2.5, thus

deriving the exact capacity of the geometric sticky channel? Alternatively, as a more modest goal, can

we exploit the structure our capacity upper bounds to derive sharp elementary upper bounds on the

capacity of the geometric sticky channel? Such bounds would, for example, allow us to learn more
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about the behavior of the geometric sticky channel in asymptotic regimes where p→ 0 or p→ 1 (the

so-called “large replication regime,” which we also discuss below). In an orthogonal direction, it would

also be interesting to find an example of a non-trivial sticky channel for which our techniques do yield

the exact channel capacity.

Properties of capacity-achieving runlength distributions for sticky channels. Mitzenmacher

[32] presented numerical evidence suggesting that capacity-achieving runlength distributions for the

geometric sticky channel have sparse support. It would be interesting to rigorously prove a result

of this type, in line with the structural results we obtained in Chapter 4 for the DTP channel. For

example: Can we show that capacity-achieving runlength distributions for the geometric sticky channel

do not have full support over N?

We briefly discuss a viable approach to this problem exploiting the distributions we designed in Chap-

ter 3. For every p < 1/2 and output mean constraint µ ≥ 1
1−p , the distribution Y (q) given in (3.4) with

E[Y (q)] = µ is the unique valid distribution satisfying the mean constraint with KL-gap ∆(x) = 0 for

all x ∈ N. Moreover, if Y (q) is realisable as an output runlength distribution of the geometric sticky

channel, then the corresponding input runlength distribution X(q) is uniquely given by

X(q)(x) =

x−1∑︂
i=0

(−p)i
(︁
x−1
i

)︁
(1− p)x

Y (q)(x− i), x ∈ N.

Combining these observations with the optimality conditions from Theorem 2.5 implies that one of

two possibilities must hold:

1. Either X(q) is a valid probability distribution and is optimal among all input runlength distribu-

tions satisfying the output mean constraint, or;

2. No runlength distribution satisfying the output mean constraint with full support over N is

optimal.

This suggests the following approach towards showing the inexistence of a capacity-achieving runlength

distribution with full support for the geometric sticky channel: Prove that for every q ∈ (0, 1) such

that E[Y (q)] ≥ 1
1−p there is x such that X(q)(x) < 0, and so X(q) is not a probability distribution.

We currently do not have a proof of this fact, but we can derive partial results from Chapter 3.

Figure 6.1 shows that X(q)(22) < 0 for all q ≤ 0.6 when p = 1/3, or, equivalently, that for p = 1/3
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Figure 6.1: Plot of X(q)(22) for p = 1/3.

there are no full-support capacity-achieving runlength distributions under any output mean constraint

µ ≤ E[Y (0.6)] ≈ 1.92.

Zero KL-gap distributions for all sticky channels. As previously discussed in Section 3.1,

we were able to design distributions with zero KL-gap everywhere for the DMC associated with the

geometric sticky channel. It would be interesting to investigate whether this is an example of a more

general phenomenon. Namely, can we show that it is possible to design distributions with zero KL-gap

everywhere for every sticky channel? Although this does not guarantee an exact characterisation of the

capacity, we expect such a general method would lead to sharp analytical capacity upper bounds for

many sticky channels and eventually a general computer-unaided analysis of their capacity. Following

the reasoning of Section 3.1, this question can be answered affirmatively by showing that for every

DMC with transition rule Yx =
∑︁x

i=1Ri associated with a sticky channel with replication distribution

R (where the Ri are i.i.d. according to R) there exists a function f with appropriate growth satisfying

E[f(Yx)] = H(Yx), ∀x ∈ N.

A better understanding of the KL-gaps of candidate distributions for the geometric dele-

tion channel. In Section 3.2.3, we saw how to modify candidate distributions for the geometric

deletion channel in order to obtain significantly improved capacity upper bounds. However, in order

to undertake a deeper mathematical treatment of these bounds, it is imperative to have a good un-
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derstanding of the KL-gap of the original candidate distributions. More precisely, can we derive more

amenable expressions or sharp bounds for the quantities ∆δ(x) and ∆δ(x) defined in (3.67) and (3.71),

respectively, similarly to what was done for the DTP channel in Section 4.3? Or, as an intermediate

goal, can we derive sharp explicit bounds on the entropy of the negative binomial distribution, as was

done for the Poisson distribution in [214]?

The geometric sticky and deletion channels in the large replication regime. In Section 3.2.5,

we showed how previous techniques we developed for the geometric deletion channel lead us to a proof

without computer assistance that the capacity of this channel is at most 0.73 bits/channel use when the

replication parameter p is close to 1, or, equivalently, when the deletion probability d = 1− p is close

to 0. We believe that the large replication regime is interesting and merits further study, which could

lead to the development of new techniques for analysing other repeat channels. The first natural step

would be to improve our upper bound; numerical evidence presented in Section 3.2 suggests that the

true limit of the capacity when p→ 1 is at most 0.3 bits/channel use. The second step would be not

only to determine this limit, but to determine also higher-order terms of the asymptotic expansion of

the capacity in the large replication regime, making a parallel with results of Kalai, Mitzenmacher, and

Sudan [78] and Kanoria and Montanari [79] for the deletion channel with small deletion probability.

However, the large replication regime for the geometric sticky and deletion channels appears to be more

difficult to tackle. Indeed, the first-order term of the asymptotic expansion of C(d), the capacity of the

deletion channel, when d → 0 can already be derived by noting that a uniform input distribution is

nearly optimal in this regime (and higher-order terms can be determined by considering perturbations

of the uniform distribution). On the other hand, the structure of the optimal input distributions for

the geometric sticky and deletion channels in the large replication regime is not clear.

Capacity bounds for multi-trace repeat channels. Motivated by research on trace reconstruc-

tion, it would be interesting to extend the capacity upper bound techniques presented in this thesis to

a setting where the input is sent through a fixed number t > 1 of independent repeat channels (i.e., the

t-trace version of a repeat channel). If one knows an upper bound U on the capacity of some repeat

channel, then tU is a trivial upper bound on the capacity of the t-trace version of this repeat channel.

Therefore, the goal would be to derive capacity upper bounds beating this trivial bound. As discussed

in Chapter 2, results of this type are only known for the deletion channel, and even then they only

hold in the regime where the deletion probability approaches 0 [124].
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It is possible to generalise the discussion of Section 2.5.1.1, and in particular Theorems 2.3 and 2.5,

to the t-trace setting. We omit details, and briefly discuss the scenario for t-trace sticky channels. In

order to derive capacity upper bounds in this case, it suffices to consider the DMC which on input

x ∈ N outputs

Yx,t = (Y (1)
x , Y (2)

x , . . . , Y (t)
x ),

where the Y (i)
x are i.i.d. according to Yx, the output distribution of the DMC associated to the original

(1-trace) sticky channel. The output mean constraint in the t-trace setting then corresponds to only al-

lowing input distributionsX such that the corresponding output distribution Yt = (Y (1), Y (2), . . . , Y (t))

satisfies E[Y (1)] = µ.1 Analogously to Theorem 2.5, upper bounding the capacity of the mean-limited

DMC boils down to designing a candidate distribution Y over Yt such that

DKL(Yx,t∥Y ) ≤ aE[Yx] + b

for all x ∈ N. In turn, this inequality leads to the capacity upper bound aµ + b for the µ-limited

DMC. The first thing one may consider is to set Y = (ˆ︁Y (1), ˆ︁Y (2), . . . , ˆ︁Y (t)), where the ˆ︁Y (i) are i.i.d.

according to a distribution ˆ︁Y over Y that yields a good capacity upper bound for the 1-trace version

of the mean-limited DMC. However, this only leads to a trivial capacity upper bound, because in this

case we have

DKL(Yx,t∥Y ) = t ·DKL(Yx∥ˆ︁Y )

for all x ∈ N. Therefore, designing Y = (Y (1), Y (2), . . . , Y (t)) in order to obtain non-trivial analytical

capacity upper bounds on this channel requires that the Y (i) be carefully correlated with each other.

Given this, it would already be interesting to consider the case t = 2 and derive non-trivial analytical

capacity upper bounds in this setting. One possible approach would be to start with Y = (ˆ︁Y (1), ˆ︁Y (2))

as above, where ˆ︁Y (1) and ˆ︁Y (2) are i.i.d. according to a distribution ˆ︁Y that led to a good upper bound

in the case t = 1, and then modify the value of Y (0, 0) and renormalise Y . The new distribution would

now have two correlated coordinates (a prerequisite for obtaining non-trivial upper bounds), and an

appropriate choice of Y (0, 0) could lead to non-trivial upper bounds.

1In this case we actually have E[Y (i)] = µ for all i ∈ [t].
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6.2.2 Capacity of the discrete-time Poisson channel

Improved capacity upper bounds under a finite peak-power constraint. In Chapter 4,

we saw how the digamma distribution from [40] combined with techniques initially considered in

Section 3.2.3 for the geometric deletion channel can be used to derive improved non-asymptotic upper

bounds on the capacity C(λ, µ) of the DTP channel with dark current λ and average-power constraint

µ. Notably, these new bounds actually improve on known bounds on the capacity C(λ, µ,A) with a

finite peak-power constraint A for certain choices of λ and µ. It would be interesting to make use of

the finite peak-power constraint to derive even better upper bounds on C(λ, µ,A). Modifying the mass

of the digamma distribution at y = 0, as was done in Section 4.3, does not seem to yield useful results

in this setting. Instead, we believe that modifying the tail of the digamma distribution appropriately

as a function of the peak-power constraint A would be a viable approach towards achieving the goal

above.

Sparsity of the capacity-achieving distribution. In Section 4.4, we showed that the capacity-

achieving distribution for the DTP channel with dark current λ, average-power constraint µ, and peak-

power constraint A (where we may have A = ∞) has discrete support, with a finite number of mass

points in every bounded interval. However, our intuition suggests that an even stronger structural result

about the capacity-achieving distribution should hold. Since a Poisson distribution Poiλ has variance

λ, we conjecture that mass points x < x′ of the discrete capacity-achieving distribution should satisfy

|x−x′| = Ω(
√
x), provided x is large enough. We believe that a more careful analysis of the optimality

conditions from Theorem 4.1 could be used to prove this conjecture. This result would belong to a

new type of refined structural results about capacity-achieving distributions of stationary memoryless

channels. As discussed in Section 4.1.2, previous works have mostly focused only on showing the

finiteness or discreteness of the support of the capacity-achieving distribution, with some works also

deriving conditions for the optimality of certain binary input distributions (which are never optimal

for the DTP channel without a peak-power constraint), or that specific input symbols must be in the

support.
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6.2.3 Coded and uncoded trace reconstruction

Further derandomising average-case trace reconstruction. In Section 5.4, we showed that an

ε-almost k-wise independent string, for appropriate choices of ε and k, satisfies the assumptions required

by the HMPW average-case trace reconstruction. Coupling the fact that such strings can be generated

from a logarithmic number of uniformly random bits with a modified version of the HMPW algorithm

allowed us to obtain an efficiently encodable length n binary code with redundancy O(log n) that

can be efficiently reconstructed from poly(n) traces, effectively derandomising the HMPW algorithm.

Combining this code with our marker-based construction then led to an efficiently encodable code with

redundancy O(n/ log n) that can be efficiently reconstructed from poly(log n) traces. Alternatively, we

can combine the code above with the subsequent construction of Brakensiek, Li, and Spang [211] to

obtain the same result.

The situation in the previous paragraph leads us to wonder whether we can “derandomise” improved

average-case trace reconstruction algorithms, in particular those due to Peres and Zhai [131] and

Holden, Pemantle, and Peres [57]. In other words, starting with such an algorithm, can we design

an efficiently encodable length n binary code with redundancy O(log n) that can be efficiently recon-

structed from exp(O(log1/3 n)) traces? Besides being a natural coding-theoretic question by itself,

given that we achieved this with respect to the HMPW algorithm, combining such a code with the

construction from [211] would lead to efficiently encodable codes with rate 1− ε that can be efficiently

reconstructed from exp(O(log1/3(1/ε))) traces for ε much smaller than log logn
logn . This is significant

because the codes from [211] are not efficiently encodable when ε = o
(︂
log logn
logn

)︂
.

Trace reconstruction of k-wise independent strings. We can take another perspective on our

results from Section 5.4 by considering trace reconstruction of k-wise independent n-bit strings, which

interpolates between average-case (k = n) and worst-case (k = 0) trace reconstruction. In the two

extremes, we have sublinear upper bounds for average-case reconstruction, while we only have expo-

nential upper bounds in the worst-case setting. We have complemented this by showing that ε-almost

k-wise independent strings, with k = O(log n), can be reconstructed from poly(n) traces. Two natural

questions remain: First, what is the smallest k⋆ for which trace reconstruction of k⋆-wise independent

strings is possible with poly(n) traces? We know that k⋆ = O(log n), but even k⋆ = 0 is possible.

Second, what is the smallest k⋆ for which a sublinear number of traces suffices? Here, we know that

k⋆ > 0 via known lower bounds for worst-case trace reconstruction [140].
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Coded trace reconstruction beyond repeat channels. In Chapter 5, we focused mostly on coded

trace reconstruction from i.i.d. deletions, and also briefly considered this problem over more general

repeat channels. As previously discussed, this setting is motivated by nanopore-based sequencing in

portable DNA-based data storage, and is a simplified model of the actual biological process. In fact,

the real scenario introduces other errors not considered in Chapter 5, such as insertions of random

symbols and substitutions. Moreover, the errors are not necessarily independent of each other.

Given the above, it would be interesting to extend our work on coded trace reconstruction to handle

different or more general types of (not necessarily i.i.d.) synchronisation errors. In particular, it

would be interesting to design new codes that handle i.i.d. insertions of random bits coupled with i.i.d.

deletions, as it is not clear how to extend our marker-based constructions to this setting. Finally, we

note that there has been no work on trace reconstruction under non-i.i.d. random errors. It would be

interesting to define and study such non-i.i.d. settings capturing key properties of the nanopore-based

sequencing process.

Narrowing the gap between bounds for coded and uncoded trace reconstruction. As dis-

cussed in Chapter 2, even disregarding efficient encoding and reconstruction, the gaps between known

upper and lower bounds for both coded and uncoded (worst-case and average-case) trace reconstruc-

tion of binary strings are still exponentially large. Of these, we believe that the lower bounds are

generally loose, and can be improved significantly, especially in the case of coded and worst-case trace

reconstruction.
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Appendix A

Proofs from Chapter 3

A.1 Proof of (3.51)

In this section, we show that

E[Λ1(Yx)] =

∫︂ 2p
1+2p

0
E[f1(Yx, t)]dt

for all x ≥ 1, where Λ1(y) =
∫︁ 2p

1+2p

0 f1(y, t)dt with

f1(y, t) =
1 + t− ty(1− p)/p−

(︂
p−t

p(1−t)

)︂y
/(1− t)

t ln(1− t)
.

Note that f1(y, ·) is continuous on
(︂
0, 2p

1+2p

]︂
and can be extended by continuity to

[︂
0, 2p

1+2p

]︂
for all

y ≥ 0. As in the proof of Lemma 3.2, the desired result follows by Fubini’s theorem (Lemma 3.1) if we

show that f1(y, t) ≥ 0 for all t ∈
(︂
0, 2p

1+2p

)︂
and y large enough depending only on p.

Defining h1 as

h1(y, t) = 1 + t− ty(1− p)/p−
(︃

p− t
p(1− t)

)︃y

/(1− t),

it suffices to show that h1(y, t) ≤ 0 for all t when y is large enough. First, we consider the case t < p.

Noting that h1(y, 0) = 0 and ∂h1
∂t (y, 0) = 0, the desired result follows if we show that ∂2h1

∂t2
(y, t) ≤ 0 for

all t < p when y is large enough independent of t. When t < p, we can write

∂2h1
∂t2

(y, t) = −(1− t/p)y−2

p2(1− t)y+3
· (2(p− t)2 − (1− p)(1 + 3p− 4t)y + (1− p)2y2).
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Now, it suffices to observe that

2(p− t)2 − (1− p)(1 + 3p− 4t)y + (1− p)2y2 ≥ (1− p)2y2 − 4y > 0

for every t ∈ [0, p) when y > 4
(1−p)2

. On the other hand, when p ≤ 1/2 (otherwise p > 2p
1+2p ≥ t) and

t ∈
[︂
p, 2p

1+2p

]︂
we have

h1(y, t) ≤ 1 + 1− y(1− p) + (1 + 2p) ≤ 5− y(1− p),

where we have also used the fact that
⃓⃓⃓

p−t
p(1−t)

⃓⃓⃓
≤ 1. Therefore, we have h1(y, t) ≤ 0 for all such t when

y > 5
1−p , which concludes the argument.

A.2 Proof of (3.52)

In this section, we show that

E[Λ2(Yx)] =

∫︂ 2p
1+2p

0
E[f2(Yx, t)]dt

for all x ≥ 1, where Λ2(y) =
∫︁ 2p

1+2p

0 f2(y, t)dt with

f2(y, t) =
1 + t− ty/p−

(︂
p−t(1+p)
p(1−t)

)︂y
/(1− t)

t ln(1− t)
.

Note that f2(y, ·) is continuous on
(︂
0, 2p

1+2p

]︂
and can be extended by continuity to

[︂
0, 2p

1+2p

]︂
. As in

the proof of Lemma 3.2, the desired result follows by Fubini’s theorem (Lemma 3.1) if we show that

f2(y, t) ≥ 0 for all t ∈
(︂
0, 2p

1+2p

)︂
and y large enough depending only on p.

Defining h2 as

h2(y, t) = 1 + t− ty/p−
(︃
p− t(1 + p)

p(1− t)

)︃y

/(1− t),

it suffices to show that h2(y, t) ≤ 0 for all t when y is large enough. First, we consider the case t < p
1+p .

Noting that h2(y, 0) = 0 and ∂h2
∂t (y, 0) = 0, the desired result follows if we show that ∂2h2

∂t2
(y, t) ≤ 0 for

all such t when y is large enough. For t < p
1+p , we have

∂2h2
∂t2

(y, t) = −

(︂
1− t(1+p)

p

)︂y−2

p2(1− t)y+3
· (2(t− p(1− t))2 − (1 + 4p(1− t)− 4t)y + y2).
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Provided t < p
1+p , it suffices to observe that

2(t− p(1− t))2 − (1 + 4p(1− t)− 4t)y + y2 ≥ y2 − 5y > 0

when y > 5. On the other hand, when t ∈
[︂

p
1+p ,

2p
1+2p

]︂
we have

h2(y, t) ≤ 1 + 1− y

1 + p
+ (1 + 2p) ≤ 5− y

1 + p
,

where we have used the fact that t ≥ p
1+p and

⃓⃓⃓
p−t(1+p)
p(1−t)

⃓⃓⃓
≤ 1 when t ∈

[︂
p

1+p ,
2p

1+2p

]︂
. We have h2(y, t) ≤ 0

for all such t when y > 5(1 + p), which concludes the argument.

A.3 Proof of Lemma 3.9

In this section, we prove that

Λ1(y) = lnΓ

(︃
y(1− p)

p

)︃
+
y(1− p)

p
· li
(︃

1

1 + 2p

)︃
− η

(︃
1

1 + 2p

)︃
+O(1), (A.1)

Λ2(y) = lnΓ

(︃
y

p

)︃
+
y

p
· li
(︃

1

1 + 2p

)︃
− η

(︃
1

1 + 2p

)︃
+O(1) (A.2)

as y → ∞, where O(1) depends only on p, li(z) =
∫︁ z
0

dt
ln t is the logarithmic integral and η(z) =∫︁ z

0
dt

(1−t) ln t , with Λ1 and Λ2 defined as in (3.49) and (3.50). The second part of Lemma 3.9 follows

from the above by recalling that

g(y) = Λ2(y)− Λ1(y)− ln(y!)− y · li
(︃

1

1 + 2p

)︃

and invoking the asymptotic expansion of the log gamma function from Lemma 2.8, analogously to

the proof of Lemma 3.3.

A.3.1 Proof of (A.1)

Making use of the integral representation of the log gamma function from Lemma 2.7, we have

Λ1(y)− ln Γ

(︃
y(1− p)

p

)︃
=
y(1− p)

p
· li
(︃

1

1 + 2p

)︃
− η

(︃
1

1 + 2p

)︃
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+

∫︂ 2p
1+2p

0

(1− t)
y(1−p)

p −
(︂

p−t
p(1−t)

)︂y
t(1− t) ln(1− t)

dt+

∫︂ 1

2p
1+2p

(1− t)
y(1−p)

p

t(1− t) log(1− t)
dt.

Observe that ⃓⃓⃓⃓
⃓⃓∫︂ 1

2p
1+2p

(1− t)
y(1−p)

p

t(1− t) log(1− t)
dt

⃓⃓⃓⃓
⃓⃓→ 0

when y →∞. Therefore, it suffices to show that

0 ≤
∫︂ 2p

1+2p

0

(1− t)
y(1−p)

p −
(︂

p−t
p(1−t)

)︂y
−t ln(1− t)

dt = O(1).

We prove this following the lines of the proof of Lemma 3.3. First, we have that

∫︂ 2p
1+2p

p/2

(1− t)
y(1−p)

p −
(︂

p−t
p(1−t)

)︂y
−t ln(1− t)

dt ≤
∫︂ 2p

1+2p

p/2

(1− t)
y(1−p)

p +
⃓⃓⃓

p−t
p(1−t)

⃓⃓⃓y
−t ln(1− t)

dt = O(1)

when y →∞, since
⃓⃓⃓

p−t
p(1−t)

⃓⃓⃓
≤ 1 whenever t ≤ 2p

1+2p . As a result, it is now enough to show that

∫︂ p/2

0

(1− t)
y(1−p)

p −
(︂

p−t
p(1−t)

)︂y
−t ln(1− t)

dt = O(1).

As before, we follow the approach of Pinelis [170]. Define a1(t) = ln
(︂

p−t
p(1−t)

)︂
, a2(t) = 1−p

p · ln(1 − t),

and α(t) = a2(t)− a1(t). Note that α(t) ≥ 0 for all t ∈ [0, p/2]. Then, we have

∫︂ p/2

0

(1− t)
y(1−p)

p −
(︂

p−t
p(1−t)

)︂y
−t ln(1− t)

dt =

∫︂ p/2

0

ea2(t)y − ea1(t)y

−t ln(1− t)
dt

≤
∫︂ p/2

0

α(t)yea2(t)y

−t ln(1− t)
dt

≤ 2(1− p)
p2

·
∫︂ p/2

0
yea2(t)ydt

≤ 2(1− p)
p2

·
∫︂ p/2

0
ye

− ty(1−p)
p dt

≤ 2(1− p)
p2

·
∫︂ ∞

0
ye

− ty(1−p)
p dt

= 2/p. (A.3)

The first equality holds because eb − ea ≤ (b− a)eb when b ≥ a. The second inequality holds because

α(t) ≤ 2(1−p)t2

p2
when t ∈ [0, p/2], and ln(1 − t) ≤ −t. The third inequality holds also because

ln(1− t) ≤ −t.
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A.3.2 Proof of (A.2)

The proof proceeds analogously to the proof of (A.1). The only step where they differ is that here one

must show that ∫︂ p/2

0

(1− t)y/p −
(︂
p−t(1+p)
p(1−t)

)︂y
−t ln(1− t)

dt = O(1).

We show this holds following Pinelis [170]. Define b1(t) = ln
(︂
p−t(1+p)
p(1−t)

)︂
, b2(t) = 1

p · ln(1 − t), and

β(t) = b2(t) − b1(t). Note that β(t) ≥ 0 for all t ∈ [0, p
1+p) and β(t) ≤ 2(1+p)t2

p2(1−p)
when t ≤ p/2. Then,

following the reasoning used to obtain (A.3), we have

∫︂ p/2

0

(1− t)y/p −
(︂
p−t(1+p)
p(1−t)

)︂y
−t ln(1− t)

dt =

∫︂ p/2

0

eb2(t)y − eb1(t)y

−t ln(1− t)
dt

≤
∫︂ p/2

0

β(t)yeb2(t)y

−t ln(1− t)
dt

≤ 2(1 + p)

p2(1− p)
·
∫︂ p/2

0
yeb2(t)ydt

≤ 2(1 + p)

p2(1− p)
·
∫︂ p/2

0
ye−ty/pdt

≤ 2(1 + p)

p2(1− p)
·
∫︂ ∞

0
ye−ty/pdt

=
2(1 + p)

p(1− p)
.

A.4 Proof of (3.74) and (3.75)

In this section, we prove (3.74) and (3.75) following exactly the approach from Section 3.1.3.

Recall that we are dealing with distributions Y (q) of the form

Y (q)(y) = y0q
y exp(g(y)− yh(e)(p)), y = 0, 1, 2, . . .

with g satisfying

CL/
√
y ≤ exp(g(y)− yh(e)(p)) ≤ CU/

√
y

for some constants CL, CU > 0 and all integers y ≥ 1. We set δ = 1 here for ease of exposition, but

the proof goes through in the same way for any δ ∈ (0, 1]. Our goal is to show that for every µ > 0
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there exists q ∈ (0, 1) such that E[Y (q)] = µ. As in Section 3.1.3, it suffices to show that

lim
q→0+

E[Y (q)] = 0 (A.4)

and

lim
q→1−

E[Y (q)] =∞. (A.5)

To see (A.4), observe that

0 ≤ E[Y (q)] =

∑︁∞
y=1 yq

y exp(g(y)− yh(e)(p))∑︁∞
y=0 q

y exp(g(y)− yh(e)(p))

≤
∑︁∞

y=1 yq
y exp(g(y)− yh(e)(p))
exp(g(0))

≤ CU

∑︁∞
y=1

√
yqy

exp(g(0))
→ 0

when q → 0+. It remains to show (A.5). Similarly to Section 3.1.3, this follows from the fact that

E[Y (q)] ≥
CL
∑︁∞

y=1

√
yqy

exp(g(0)) + CU
∑︁∞

y=1 q
y/
√
y

≥
CL

√
k
∑︁∞

y=k q
y

exp(g(0)) + CU
∑︁∞

y=1 q
y

≥
CL

√
k · qk

1−q

exp(g(0)) + CU
1−q

≥ CL

√
kqk

exp(g(0)) + CU

for all k > 0 and q ∈ (0, 1).



Appendix B

On capacity-achieving distributions for

the DTP channel

B.1 A crash course on weak convergence

In order to prove the existence of capacity-achieving distributions for the DTP channel under an

average-power constraint only in Section B.2, some basic concepts related to measure-theoretic proba-

bility and weak convergence of distributions are required. We introduce them here so that the exposition

is mostly self-contained, requiring only basic familiarity with the concept of integration with respect to

a measure. For an enjoyable and complete introduction to measure-theoretic probability, the book of

Williams [215] is recommended, especially [215, Chapter 5]. For a deeper and more general treatment

of weak convergence, the book of Billingsley [216] is recommended.

We denote by F the set of all cumulative distribution functions (cdfs) F . More precisely, F consists

of all non-decreasing, right-continuous functions F : R → [0, 1] satisfying limx→+∞ F (x) = 1 and

limx→−∞ F (x) = 0. To each cdf F we can associate the probability measure µF on R with the Borel

σ-algebra uniquely determined by the requirement that µF ((a, b]) = F (b) − F (a). Then, we write∫︁
g(x)dF (x) for the Lebesgue integral of the function g : R → R with respect to the measure µF

induced by the cdf F .

We can now proceed to define the notion of weak convergence for cdfs.

Definition B.1 (Weak convergence). A sequence of cdfs (Fn)n∈N is said to be weakly convergent to

241
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F , denoted Fn
w−→ F , if for all bounded continuous functions g : R→ R it holds that

∫︂
g(x)dFn(x)→

∫︂
g(x)dF (x).

The following lemma collects some well known properties of weak convergence that we will require in

the next section.

Lemma B.1 ([216, Theorem 2.1], [217, Theorem 4.4.4 and following remark], [218, Section 11.4.A]).

Suppose that Fn
w−→ F . Then, the following hold:

1. If I ⊆ R is an open interval, then

∫︂
I
dF (x) ≤ lim inf

n→∞

∫︂
I
dFn(x);

2. If g : R→ R is continuous and bounded below, then

∫︂
g(x)dF (x) ≤ lim inf

n→∞

∫︂
g(x)dFn(x);

3. If g : R→ R is continuous and uniformly integrable in (Fn)n∈N, meaning that for b large enough

we have ∫︂
|x|>b

|g(x)|dFn(x) ≤ ε(b)

for all n with limb→∞ ε(b) = 0, then

∫︂
g(x)dFn(x)→

∫︂
g(x)dF (x).

It is known that weak convergence of cdfs is equivalent to convergence in the Lévy-Prokhorov metric,

which allows us to define compactness and continuity in a more useful manner. Since we only use

this result indirectly, we refrain from defining these concepts and state only the useful consequences

(see [216, Section 6] for more details).

Definition B.2 (Weak compactness). A set Ω ⊆ F is said to be weakly compact if for every sequence

(Fn)n∈N in Ω there exists a subsequence (Fnj )j∈N such that Fnj

w−→ F for some F ∈ Ω.

A related and useful definition is that of tightness.
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Definition B.3 (Tightness). A set Ω ⊆ F is said to be tight if for every ε > 0 there exists a constant

C > 0 such that F (−C) + (1− F (C)) ≤ ε for every F ∈ Ω.

There is a well known relation between tightness and relative compactness, as made precise in the

following lemma.

Lemma B.2 (Prokhorov’s theorem [216, Theorem 5.1], adapted). If Ω ⊆ F is tight, then for every

sequence (Fn)n∈N in Ω there exists a subsequence (Fnj )j∈N such that Fnj

w−→ F for some F ∈ F .

Definition B.4 (Weak continuity). A functional J : Ω → R is said to be weakly continuous on Ω if

for every F ∈ Ω and sequence (Fn)n∈N in Ω such that Fn
w−→ F we have J(Fn)→ J(F ).

The following lemma generalises Weierstrass’ extreme value theorem, and is key for proving the exis-

tence of capacity-achieving distributions.

Lemma B.3 ([219, Section 5.10]). If J : Ω→ R is weakly continuous on a weakly compact set Ω ⊆ F ,

then J is bounded and achieves its maximum over Ω.

B.2 Existence of capacity-achieving distributions for the DTP chan-

nel

In this section, we argue that capacity-achieving distributions exist for the DTP channel under an

average-power constraint. For simplicity, we will assume that λ = 0. The proof proceeds analogously

for all λ ≥ 0. Shamai [42] showed that capacity-achieving distributions exist for the DTP channel

under a peak-power constraint (using the same approach as Smith [52]). Proving the existence of such

distributions under an average-power constraint only requires a somewhat different approach, such as

the one used in [196, Appendix I] for Rayleigh-fading channels. Our approach follows [196, Appendix

I] closely with only minor differences. We provide it here for completeness.

Before we proceed, we define some relevant concepts. Let

Ωµ =

{︃
F ∈ F : lim

x→0−
F (x) = 0,

∫︂
xdF (x) ≤ µ

}︃
.

In other words, Ωµ (seen as a subset of the vector space over R consisting of all functions f : R → R

with pointwise addition and scalar multiplication) is the convex set1 of cdfs associated to non-negative
1A subset Ω of a vector space over R is convex if λx+ (1− λ)y ∈ Ω for all λ ∈ [0, 1] whenever x, y ∈ Ω.
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random variables with expected value at most µ. We also define

Ω=
µ =

{︃
F ∈ F : lim

x→0−
F (x) = 0,

∫︂
xdF (x) = µ

}︃
,

which is the convex set of cdfs associated to non-negative random variables with expected value exactly

µ. Given some cdf F ∈ Ωµ, we denote by I(F ) the functional which maps F to the mutual information

I(XF ;YF ), where XF has cdf F and is the input to the DTP channel, and YF is the corresponding

output satisfying

YF (y) =

∫︂
Yx(y)dF (x), y = 0, 1, . . . .

Then, we can write

C(µ) = sup
F∈Ωµ

I(F ).

Our goal is to use Lemma B.3 with Ω = Ωµ and J(F ) = I(F ) in order to conclude that the supremum

is achieved by some F ⋆, the capacity-achieving distribution. We accomplish this via the following two

lemmas.

Lemma B.4. The set Ωµ is weakly compact.

Proof. First, we show that Ωµ is tight. Then, Lemma B.2 ensures that every sequence (Fn) in Ωµ has

a weakly convergent subsequence Fnj

w−→ F , and it suffices to show that F ∈ Ωµ.

To see that Ωµ is tight, it is enough to observe that 1−F (C) ≤ µ/C for every F ∈ Ωµ and C > 0 by the

average-power constraint, as otherwise
∫︁
xdF (x) ≥ C(1− F (C)) > µ. Then, we can take C = µ/ε for

each ε > 0. Therefore, Lemma B.2 ensures that every sequence (Fn)n∈N in Ωµ has a weakly convergent

subsequence Fnj

w−→ F for some F ∈ F . We show that F ∈ Ωµ. First, by Lemma B.1, for the open

interval I = (−∞, 0) we have

0 ≤ lim
x→0−

F (x) =

∫︂
I
dF (x) ≤ lim inf

n→∞

∫︂
I
dFn(x) = 0.

Second, since the function g(x) = max(0, x) is continuous and bounded from below over R, again by

Lemma B.1 we have

∫︂
xdF (x) =

∫︂
g(x)dF (x) ≤ lim inf

n→∞

∫︂
g(x)dFn(x) ≤ µ.

These two observations show that F ∈ Ωµ, as desired.
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Lemma B.5. I(·) is weakly continuous on Ωµ.

Proof. For F ∈ Ωµ we have

I(F ) = H(YF )−
∫︂
H(Yx)dF (x),

where YF is the output distribution induced by F . We show that the two terms in the right hand side

are weakly continuous.

First, we show that F ↦→
∫︁
H(Yx)dF (x) is weakly continuous on Ωµ. This follows by Lemma B.1 if we

show that x ↦→ H(Yx) is uniformly integrable, i.e., that for b large enough we have

∫︂
x>b

H(Yx)dQ(x) ≤ ε(b)

for every Q ∈ Ωµ with limb→∞ ε(b) = 0, given that H(Yx) (with H(Yx) = 0 when x < 0) is a non-

negative and continuous function of x. Since H(Yx) = O(log(1+ x)) = O(
√
x) [214], it suffices to note

that for b large enough we have H(Yx) < C
√
x when x > b for some absolute constant C > 0, and so

∫︂
x>b

H(Yx)dQ(x) ≤ C
∫︂
x>b

√
xdQ(x) ≤ C√

b

∫︂
x>b

xdQ(x) ≤ Cµ√
b

by the average-power constraint on Q.

It remains to show that F ↦→ H(YF ) is weakly continuous on Ωµ. Fix a sequence Fn
w−→ F . Then, we

have

lim
n→∞

H(YFn) = − lim
n→∞

∞∑︂
y=0

YFn(y) log YFn(y)

= −
∞∑︂
y=0

lim
n→∞

YFn(y) log YFn(y) (B.1)

= −
∞∑︂
y=0

YF (y) log YF (y) (B.2)

= H(YF ).

The first and last equalities follow by definition. To show (B.2), note that, for fixed y, the function

x ↦→ Yx(y) is a bounded, continuous function of x. Therefore, weak convergence implies that

YFn(y) =

∫︂
Yx(y)dFn(x)→

∫︂
Yx(y)dF (x) = YF (y).
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Since x ↦→ x log x is continuous on [0, 1], we conclude that (B.2) holds. It remains to prove (B.1).

It suffices to show that we are in a condition to apply the dominated convergence theorem. More

specifically, we need to prove that

|YQ(y) log YQ(y)| ≤ f(y) (B.3)

for all Q ∈ Ωµ and y ∈ N0, where f satisfies
∑︁∞

y=0 f(y) <∞. Fix Q ∈ Ωµ, and note that

YQ(y) =

∫︂
e−xx

y

y!
dQ(x) =

∫︂
x<y−y0.9

e−xx
y

y!
dQ(x) +

∫︂
x≥y−y0.9

e−xx
y

y!
dQ(x). (B.4)

We analyse the two terms. First, since x ↦→ Yx(y) is increasing for x < y and decreasing for x > y, we

have ∫︂
x<y−y0.9

e−xx
y

y!
dQ(x) ≤ Yy−y0.9(y) ≤ e−Ω(y0.8), (B.5)

where the last inequality follows from the concentration bound for the Poisson distribution from

Lemma 2.4. For fixed y, we have that Yx(y) is maximised when x = y. Furthermore, we have

Yy(y) = O(1/
√
y) by Lemma 2.8. Since Q ∈ Ωµ, we have 1−Q(x) ≤ µ/x for all x > 0, and so

∫︂
x≥y−y0.9

e−xx
y

y!
dQ(x) ≤ µYy(y)

y − y0.9
= O(y−3/2) (B.6)

when y ≥ 2. Combining (B.4) with (B.5) and (B.6) implies that there exist absolute constants C0, C1 >

0 such that for all y ≥ C0 and Q ∈ Ωµ we have

YQ(y) ≤
C1

y3/2
. (B.7)

Observe that, due to (B.7), for every ε > 0 there is a constant yε (possibly depending on µ, but

independent of Q) such that YQ(y) ≤ ε for all Q ∈ Ωµ when y ≥ yε. Therefore, there exist absolute

constants C2, C3 > 0 such that for all y ≥ C2 and Q ∈ Ωµ we have

|YQ(y) log YQ(y)| ≤ YQ(y)0.7 ≤
C3

y1.05
,

where we used (B.7) in the last inequality. Consequently, (B.3) follows by noting that
∑︁∞

y=1 y
−1.05 <∞

and setting f(y) = C3
y1.05

when y ≥ C2 and f(y) = 1 ≥ maxp∈[0,1] |p log p| when y < C2.

Combining Lemmas B.3, B.4, and B.5 implies that for every µ ≥ 0 there exists a capacity-achieving

F ⋆ ∈ Ωµ such that C(µ) = I(F ⋆), as desired. However, we can show more: If F ⋆ ∈ Ωµ is capacity-
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achieving, then E[XF ⋆ ] = µ. This is trivial for µ = 0, so assume that µ > 0. Suppose that E[XF ⋆ ] =

µ′ < µ. Then, we must have C(µ′′) = I(F ⋆) for all µ′′ ∈ [µ′, µ]. Since C(µ) is concave and non-

decreasing in µ, this implies that C(µ′′) = I(F ⋆) for all µ′′ ≥ µ′. However, we know from (4.3) that

C(µ) is unbounded when µ→∞. This is a contradiction, and so E[XF ⋆ ] = µ necessarily.

B.3 Proof of Theorem 4.1

In this section, we prove Theorem 4.1 for the DTP channel, although our proof can be easily extended

to a broad class of well-behaved channels. As we already saw in Chapter 4, the first part of the theorem

(capacity upper bounds) is an immediate consequence of general duality-based results [201]. However,

the second part (optimality conditions) requires a more careful discussion. We follow the approach used

to obtain analogous results for other constrained channels in [52, 42, 196] with minor modifications

only, and we focus on [196, Appendix II] in particular.

Before we proceed with the proof of Theorem B.1, we need some auxiliary definitions and results.

Given a functional J : Ω→ R, where Ω is a convex subset of a vector space over R, the weak derivative

of J at F ∈ Ω in the direction of Q ∈ Ω, denoted by J ′
F (Q), is defined as

J ′
F (Q) = lim

θ→0+

J((1− θ)F + θQ)− J(F )
θ

.

The functional J is said to be weakly differentiable on Ω at F if J ′
F (Q) exists for all Q ∈ Ω. If J is

weakly differentiable on Ω at F for all F ∈ Ω, then we simply say J is weakly differentiable on Ω. We

have the following result.

Lemma B.6. Fix a functional J : Ω → R on a convex subset Ω of a vector space over R. If F ⋆ ∈ Ω

is a maximiser of J in Ω and J ′
F ⋆(Q) exists, then J ′

F ⋆(Q) ≤ 0.

Proof. Fix J satisfying the conditions of the lemma statement, and let F ⋆ ∈ Ω be a maximiser of J

over Ω. Therefore,
J((1− θ)F ⋆ + θQ)− J(F ⋆)

θ
≤ 0

for every θ ∈ (0, 1], since (1− θ)F ⋆+ θQ ∈ Ω by the convexity of Ω and J(F ⋆) ≥ J(F ) for every F ∈ Ω

by hypothesis. As a result, if J ′
F ⋆(Q) exists, then we must have J ′

F ⋆(Q) ≤ 0.



248 Chapter B. On capacity-achieving distributions for the DTP channel

The following lemma states a form of convex duality.

Lemma B.7 ([219, Section 8.3, Theorem 1, specialised]). Let J,G : Ω → R be convex functionals,

where Ω is a convex subset of a vector space. Suppose there exists F ∈ Ω such that G(F ) < 0 and that

inf{J(F ) : G(F ) ≤ 0, F ∈ Ω} is finite. Then, there is z ≥ 0 such that

inf{J(F ) : G(F ) ≤ 0, F ∈ Ω} = inf{J(F ) + zG(F ) : F ∈ Ω}.

Moreover, if the infimum on the left hand side is achieved by some F ⋆, then F ⋆ also achieves the

infimum on the right hand side and zG(F ⋆) = 0.

The following lemma characterises the weak derivative of I(·). A proof of this result can be found

in [53, Appendix A], but its presentation is specialised for noise-additive channels. For completeness,

we present a proof using our notation and following their reasoning with minor modifications. Before

we proceed, we define the convex set

Ωfin =

{︃
F ∈ F : lim

x→0−
F (x) = 0,

∫︂
xdF (x) <∞

}︃

of cdfs associated to non-negative random variables with finite expectation.

Lemma B.8 (Implicit in [53, Appendix A]). Fix cdfs F,Q ∈ Ωfin and suppose that

∫︂
DKL(Yx||YF )dQ(x) <∞ and

∫︂
H(Yx)dQ(x) <∞.

Then, I ′F (Q) exists and is given by

I ′F (Q) =

∫︂
DKL(Yx∥YF )dQ(x)− I(F ).

Proof. Let Fθ = (1− θ)F + θQ for θ ∈ [0, 1]. Denote the discrete channel output associated to Fθ by

Yθ = (1− θ)Y0 + θY1, where Y0 and Y1 denote the discrete channel outputs of F and Q, respectively.

For θ ∈ (0, 1] we have

I(Fθ)− I(F )
θ

=
H(Yθ)−H(Y0)

θ
+

∫︂
H(Yx)dF (x)−

∫︂
H(Yx)dQ(x)

=
1− θ
θ

⎛⎝− ∑︂
y∈supp(Y0)

Y0(y) log Yθ(y)−H(Y0)

⎞⎠− ∑︂
y∈supp(Y1)

Y1(y) log Yθ(y)
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−
∫︂
H(Yx)dQ(x)− I(F ). (B.8)

First, we show that

− lim
θ→0+

∑︂
y∈supp(Y1)

Y1(y) log Yθ(y) = −
∑︂

y∈supp(Y1)

Y1(y) log Y0(y). (B.9)

This follows by the dominated convergence theorem and the hypothesis of the lemma. Observe that

0 ≤ − log Yθ(y) = − log((1− θ)Y0(y) + θY1(y)) ≤ − log((1− θ)Y0(y)) ≤ − log Y0(y) + 2 (B.10)

for all y, provided that θ is small enough. It suffices to show that
∑︁

y∈supp(Y1)
Y1(y)f(y) < ∞ for

f(y) = − log Y0(y) + 2. Note that
∫︁
H(Yx)dQ(x) <∞ by hypothesis, and

∞ >

∫︂
DKL(Yx||Y0)dQ(x) = −

∫︂
H(Yx)dQ(x)−

∫︂ ∞∑︂
y=0

Yx(y) log Y0(y)dQ(x)

= −
∫︂
H(Yx)dQ(x)−

∑︂
y∈supp(Y1)

Y1(y) log Y0(y).

The first inequality follows by hypothesis, the first equality holds under the convention that 0 log 0 = 0,

and the second equality follows by applying Fubini’s theorem to exchange integral and sum. Conse-

quently, it holds that

−
∑︂

y∈supp(Y1)

Y1(y) log Y0(y) <∞.

In particular, we have supp(Y1) ⊆ supp(Y0) and
∑︁

y∈supp(Y1)
Y1(y)f(y) <∞. As a result, the dominated

convergence theorem yields

− lim
θ→0+

∑︂
y∈supp(Y1)

Y1(y) log Yθ(y) = −
∑︂

y∈supp(Y1)

Y1(y) lim
θ→0+

log Yθ(y) = −
∑︂

y∈supp(Y1)

Y1(y) log Y0(y).

We now show that

lim
θ→0+

1− θ
θ

⎛⎝− ∑︂
y∈supp(Y0)

Y0(y) log Yθ(y)−H(Y0)

⎞⎠ = 0. (B.11)
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Let h(θ, y) = − log Yθ(y). Then, we have

∂h

∂θ
(θ, y) =

Y0(y)− Y1(y)
(1− θ)Y0(y) + θY1(y)

for all θ ∈ (0, 1) and y ∈ supp(Y0). In particular, h(·, y) is continuous on [0, 1/2] and differentiable on

(0, 1/2) for every y ∈ supp(Y0). Moreover, we have

⃓⃓⃓⃓
∂h

∂θ
(θ, y)

⃓⃓⃓⃓
≤ 1

1− θ

⃓⃓⃓⃓
1− Y1(y)

Y0(y)

⃓⃓⃓⃓
≤ 2

(︃
1 +

Y1(y)

Y0(y)

)︃
(B.12)

for all y ∈ supp(Y0), provided that θ ∈ (0, 1/2). Let g(y) = 2
(︂
1 + Y1(y)

Y0(y)

)︂
. Observe that

∑︂
y∈supp(Y0)

Y0(y)g(y) = 2

⎛⎝1 +
∑︂

y∈supp(Y0)

Y1(y)

⎞⎠ = 4 (B.13)

since supp(Y1) ⊆ supp(Y0), and so g is integrable with respect to Y0. We can write the left hand side

of (B.11) as

lim
θ→0+

∑︂
y∈supp(Y0)

Y0(y) ·
h(θ, y)− h(0, y)

θ
.

Since h(·, y) is continuous on [0, 1/2] and differentiable on (0, 1/2) for every y ∈ supp(Y0), from the

mean value theorem we have that for every θ ∈ (0, 1/2] and y ∈ supp(Y0) there exists some z ∈ (0, θ)

such that
∂h

∂θ
(z, y) =

h(θ, y)− h(0, y)
θ

.

Taking into account (B.12), it follows that

⃓⃓⃓⃓
h(θ, y)− h(0, y)

θ

⃓⃓⃓⃓
≤ g(y)

for all y ∈ supp(Y0) and θ ∈ (0, 1/2]. Recalling (B.13) and the fact that supp(Y1) ⊆ supp(Y0), the

dominated convergence theorem implies that

lim
θ→0+

∑︂
y∈supp(Y0)

Y0(y) ·
h(θ, y)− h(0, y)

θ
=

∑︂
y∈supp(Y0)

Y0(y) lim
θ→0+

h(θ, y)− h(0, y)
θ

=
∑︂

y∈supp(Y0)

Y0(y)

(︃
1− Y1(y)

Y0(y)

)︃

= 0,
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which yields (B.11). The desired result follows by combining (B.8), (B.9), and (B.11).

We are now ready to prove the optimality conditions of Theorem 4.1.

Theorem B.1 (Optimality conditions of Theorem 4.1). Fix λ ≥ 0 and µ > 0. An input X is capacity-

achieving for the channel DTPλ,µ if and only if E[X] = µ and there exist constants a ∈ R+
0 , b ∈ R such

that

D
(e)
KL(Yx∥YX) ≤ ax+ b

for every x ∈ R+
0 , with equality when x ∈ supp(X), where YX denotes the output of DTPλ,µ on input

X and Yx ∼ Poiλ+x. In this case, we have C(λ, µ) = aµ+ b.

Proof. First, suppose that X⋆ with cdf F ⋆ ∈ Ωµ is capacity-achieving (by the discussion at the end

of Appendix B.2, we know that E[X⋆] = µ). Instantiate Lemma B.7 with Ω = Ωfin, J(F ) = −I(F ),

and G(F ) = E[XF ] − µ. Note that I(F ), G(F ) ∈ R for every F ∈ Ωfin and that there exists F ∈ Ωfin

with G(F ) < 0 whenever µ > 0. Moreover, Ωfin is a convex subset of a vector space over R (the set

of all functions f : R → R with pointwise addition and scalar multiplication), and both −I and G

are convex on Ωfin. Therefore, there exists z ≥ 0 such that F ⋆ minimises −I(·) + zG(·) over Ωfin, or,

equivalently, maximises the functional

α(·) = I(·)− zG(·)

over Ωfin, and zG(F ⋆) = 0. As a result, according to Lemma B.6 we must have

α′
F ⋆(Q) = I ′F ⋆(Q)− zG′

F ⋆(Q) ≤ 0 (B.14)

for all Q ∈ Ωfin, provided I ′F ⋆(Q) and G′
F ⋆(Q) exist. For x ≥ 0, define the unit step function Qx ∈ Ωfin

as

Qx(x) =

⎧⎪⎪⎨⎪⎪⎩
0, if x < x,

1, otherwise.

Since DKL(Yx||YF ⋆) is finite for every x ≥ 0 because YF ⋆ has full support and − log YF ⋆(y) = O(y log y)

and H(Yx) is also finite for x ≥ 0, Lemma B.8 implies that I ′F ⋆(Qx) exists and is given by

I ′F ⋆(Qx) =

∫︂
DKL(Yx||YF ⋆)dQx(x)− I(F ⋆)
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= DKL(Yx||YF ⋆)− I(F ⋆). (B.15)

Furthermore, since G is linear on Ωfin we have

G′
F ⋆(Qx) = lim

θ→0+

G(Fθ)−G(F ⋆)

θ
= G(Qx)−G(F ⋆) = x− E[X⋆]. (B.16)

Combining (B.14), (B.15), and (B.16), we must have

DKL(Yx||YF ⋆)− I(F ⋆)− z(x− E[X⋆]) ≤ 0

for every x ≥ 0. Equivalently,

DKL(Yx||YF ⋆) ≤ I(F ⋆) + z(x− µ) (B.17)

must hold for every x ≥ 0. This inequality holds because, according to Lemma B.7, if G(F ⋆) ̸= 0 (i.e.,

E[XF ⋆ ] ̸= µ), then z = 0 and the inequality would still be true in this case. Suppose now that there

is x ∈ supp(F ⋆) such that

DKL(Yx||YF ⋆) < I(F ⋆) + z(x− µ). (B.18)

All terms in the inequality above are continuous functions of x on [0,∞). As a result, (B.18) must hold

for all x′ ∈ I ∩ [0,∞), where I is some open interval containing x. Since x ∈ supp(F ⋆), by definition of

supp(F ⋆) and the fact that limx→0− F
⋆(x) = 0 we have

∫︁
I∩[0,∞) dF

⋆(x) =
∫︁
I dF

⋆(x) > 0. Therefore,

recalling (B.17), it holds that

I(F ⋆) =

∫︂
DKL(Yx||YF ⋆)dF ⋆(x)

< I(F ⋆) + z

(︃∫︂
xdF ⋆(x)− µ

)︃
≤ I(F ⋆),

where the second inequality follows because E[X⋆] =
∫︁
xdF ⋆(x) ≤ µ and z ≥ 0, which leads to a

contradiction. Consequently, letting a = z ≥ 0 and b = I(F ⋆)− zµ, we must have

DKL(Yx||YF ⋆) ≤ ax+ b
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for every x ∈ R+
0 , with equality for x ∈ supp(F ⋆), as desired. In particular, this implies that C(λ, µ) =

I(F ⋆) = aµ+ b.

For the converse, suppose there are constants a ∈ R+
0 , b ∈ R such that F ∈ Ω=

µ satisfies

DKL(Yx||YF ) ≤ ax+ b (B.19)

for every x ∈ R+
0 , with equality for x ∈ supp(F ). Since DKL(Yx||YF ) = ax+ b for all x ∈ supp(F ), we

have

I(F ) =

∫︂
DKL(Yx||YF )dF (x) = aE[XF ] + b = aµ+ b,

where the last equality holds because F ∈ Ω=
µ . Combining this observation with (B.19) and the first

part of Theorem 4.1 with Y = YF implies that

aµ+ b = I(F ) ≤ C(λ, µ) ≤ aµ+ b

and F is capacity-achieving.

B.3.1 Extension to other channels

The argument used to prove Theorem B.1 above goes through for a broad class of stationary memoryless

channels under mild assumptions. Consequently, such channels enjoy analogous optimality conditions

under a mean constraint. To illustrate this, we discuss the case of DMCs, which yields the optimality

conditions from Theorem 2.5.

Suppose the input alphabet is N. We define the convex sets Ωµ, Ω=
µ , and Ωfin consisting of all distri-

butions X over N satisfying E[X] ≤ µ, E[X] = µ, and E[X] < ∞, respectively, and consider a DMC

Ch with input alphabet N and output alphabet N0 which maps each x ∈ N to an output Yx. We are

interested in the constrained capacities

C(µ) = sup
X∈Ωµ

I(X;YX) and C=(µ) = sup
X∈Ω=

µ

I(X;YX),

where YX denotes the output of Ch on input X, which are concave, non-negative functions of µ ≥ 1.

The lemma below states that these two quantities coincide always.

Lemma B.9. We have C(µ) = C=(µ) for every µ ≥ 1. Moreover, if C(·) is unbounded and X⋆ ∈ Ωµ
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satisfies I(X⋆;YX⋆) = C(µ), then E[X⋆] = µ.

Proof. Regarding the first statement, note that it is trivial for µ = 1. Therefore, suppose that C(µ) >

C=(µ) for some µ > 1. Then, there is X satisfying E[X] = µ′ < µ such that C=(µ′) ≥ I(X;YX) >

C=(µ). As a result, by concavity of C=, the quantity C=(µ′′) must lie below the negative-slope

line defined by (µ′, C=(µ′)) and (µ,C=(µ)) for µ′′ > µ, and so C=(µ′′) < 0 for µ′′ large enough,

contradicting the fact that C=(·) is non-negative.

To see the second statement, suppose that I(X⋆;YX⋆) = C(µ) and E[X⋆] = µ′ < µ. Then, we have

C(µ′) = C(µ). Since C is concave and non-decreasing, it must hold that C(µ′′) = C(µ) for all µ′′ > µ,

contradicting the fact that C(·) is unbounded.

The argument from Appendix B.3 (with only one minor modification which we discuss below) yields

analogous optimality conditions for a broad class of DMCs.

Theorem B.2. Fix µ > 1 and suppose that the DMC Ch satisfies H(YX) <∞ for every X ∈ Ωfin. If

an input distribution X ∈ Ωµ satisfies I(X;YX) = C(µ), there exist constants a ∈ R+
0 , b ∈ R such that

DKL(Yx∥YX) ≤ ax+ b (B.20)

for every x ∈ N with equality when x ∈ supp(X). Moreover, if X ∈ Ω=
µ and (B.20) holds for all x ∈ N

with equality when x ∈ supp(X), then I(X;YX) = aµ+ b = C(µ).

Proof. The argument proceeds exactly like in the proof of Theorem B.1, except that we employ a more

general approach to show that DKL(Yx∥YX⋆) <∞ for all x ∈ N if X⋆ ∈ Ωµ is capacity-achieving. Since

Ωµ is convex, it holds that (see [178, Theorem 4.4]) for every Z ∈ Ωµ we have

∑︂
x∈supp(Z)

Z(x)DKL(Yx∥YX⋆) ≤ I(X⋆;YX⋆) = C(µ) <∞. (B.21)

If we consider the singleton distribution Zx with support {x} for integer x ∈ [1, µ], it follows that

DKL(Yx∥YX⋆) <∞ for all such x. For integer x > µ consider Wx = λZ1 + (1− λ)Zx with λ = x−µ
x−1 ∈

(0, 1) so that E[Wx] = λ+ (1− λ)x = µ. From (B.21) with Z =Wx, we conclude that

λDKL(Y1∥YX⋆) + (1− λ)DKL(Yx∥YX⋆) <∞,
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and so DKL(Yx∥YX⋆) <∞.

It remains to see that Theorem B.2 yields the optimality conditions from Theorem 2.5 (the capacity

upper bounds of that theorem can also be obtained from Lemma 4.1). Fix a replication ruleR with finite

expected value λ > 0 and let ChR be the associated DMC with input alphabet N and output alphabet

N0. First, note that E[YX ] = λE[X] for any input distribution X. Therefore, imposing an output mean

constraint E[YX ] = µ > λ is equivalent to imposing an input mean constraint E[X] = µ/λ > 1, and so

Capµ(ChR) = C=(µ/λ). Moreover, we have E[YX ] < ∞ when X ∈ Ωfin, and so H(YX) < ∞. Finally,

if X ∈ Ω=
µ/λ achieves C=(µ/λ), then Lemma B.9 ensures that X also achieves C(µ/λ). Combining

these properties with Theorem B.2 leads to the optimality conditions of Theorem 2.5.
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