2,308 research outputs found

    Capacity bounds and estimates for the finite scatterers MIMO wireless channel

    Get PDF
    We consider the limits to the capacity of the multiple-input–multiple-output wireless channel as modeled by the finite scatterers channel model, a generic model of the multipath channel which accounts for each individual multipath component. We assume a normalization that allows for the array gain due to multiple receive antenna elements and, hence, can obtain meaningful limits as the number of elements tends to infinity. We show that the capacity is upper bounded by the capacity of an identity channel of dimension equal to the number of scatterers. Because this bound is not very tight, we also determine an estimate of the capacity as the number of transmit/receive elements tends to infinity which is asymptotically accurate

    Massive MIMO performance evaluation based on measured propagation data

    Full text link
    Massive MIMO, also known as very-large MIMO or large-scale antenna systems, is a new technique that potentially can offer large network capacities in multi-user scenarios. With a massive MIMO system, we consider the case where a base station equipped with a large number of antenna elements simultaneously serves multiple single-antenna users in the same time-frequency resource. So far, investigations are mostly based on theoretical channels with independent and identically distributed (i.i.d.) complex Gaussian coefficients, i.e., i.i.d. Rayleigh channels. Here, we investigate how massive MIMO performs in channels measured in real propagation environments. Channel measurements were performed at 2.6 GHz using a virtual uniform linear array (ULA) which has a physically large aperture, and a practical uniform cylindrical array (UCA) which is more compact in size, both having 128 antenna ports. Based on measurement data, we illustrate channel behavior of massive MIMO in three representative propagation conditions, and evaluate the corresponding performance. The investigation shows that the measured channels, for both array types, allow us to achieve performance close to that in i.i.d. Rayleigh channels. It is concluded that in real propagation environments we have characteristics that can allow for efficient use of massive MIMO, i.e., the theoretical advantages of this new technology can also be harvested in real channels.Comment: IEEE Transactions on Wireless Communications, 201

    The Practical Challenges of Interference Alignment

    Full text link
    Interference alignment (IA) is a revolutionary wireless transmission strategy that reduces the impact of interference. The idea of interference alignment is to coordinate multiple transmitters so that their mutual interference aligns at the receivers, facilitating simple interference cancellation techniques. Since IA's inception, researchers have investigated its performance and proposed improvements, verifying IA's ability to achieve the maximum degrees of freedom (an approximation of sum capacity) in a variety of settings, developing algorithms for determining alignment solutions, and generalizing transmission strategies that relax the need for perfect alignment but yield better performance. This article provides an overview of the concept of interference alignment as well as an assessment of practical issues including performance in realistic propagation environments, the role of channel state information at the transmitter, and the practicality of interference alignment in large networks.Comment: submitted to IEEE Wireless Communications Magazin

    Fundamental Limits in Correlated Fading MIMO Broadcast Channels: Benefits of Transmit Correlation Diversity

    Full text link
    We investigate asymptotic capacity limits of the Gaussian MIMO broadcast channel (BC) with spatially correlated fading to understand when and how much transmit correlation helps the capacity. By imposing a structure on channel covariances (equivalently, transmit correlations at the transmitter side) of users, also referred to as \emph{transmit correlation diversity}, the impact of transmit correlation on the power gain of MIMO BCs is characterized in several regimes of system parameters, with a particular interest in the large-scale array (or massive MIMO) regime. Taking the cost for downlink training into account, we provide asymptotic capacity bounds of multiuser MIMO downlink systems to see how transmit correlation diversity affects the system multiplexing gain. We make use of the notion of joint spatial division and multiplexing (JSDM) to derive the capacity bounds. It is advocated in this paper that transmit correlation diversity may be of use to significantly increase multiplexing gain as well as power gain in multiuser MIMO systems. In particular, the new type of diversity in wireless communications is shown to improve the system multiplexing gain up to by a factor of the number of degrees of such diversity. Finally, performance limits of conventional large-scale MIMO systems not exploiting transmit correlation are also characterized.Comment: 29 pages, 8 figure

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201
    • …
    corecore