14 research outputs found

    On the Bit Complexity of Sum-of-Squares Proofs

    Get PDF
    It has often been claimed in recent papers that one can find a degree d Sum-of-Squares proof if one exists via the Ellipsoid algorithm. In a recent paper, Ryan O\u27Donnell notes this widely quoted claim is not necessarily true. He presents an example of a polynomial system with bounded coefficients that admits low-degree proofs of non-negativity, but these proofs necessarily involve numbers with an exponential number of bits, causing the Ellipsoid algorithm to take exponential time. In this paper we obtain both positive and negative results on the bit complexity of SoS proofs. First, we propose a sufficient condition on a polynomial system that implies a bound on the coefficients in an SoS proof. We demonstrate that this sufficient condition is applicable for common use-cases of the SoS algorithm, such as Max-CSP, Balanced Separator, Max-Clique, Max-Bisection, and Unit-Vector constraints. On the negative side, O\u27Donnell asked whether every polynomial system containing Boolean constraints admits proofs of polynomial bit complexity. We answer this question in the negative, giving a counterexample system and non-negative polynomial which has degree two SoS proofs, but no SoS proof with small coefficients until degree sqrt(n)

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure

    A note on the computational complexity of the moment-SOS hierarchy for polynomial optimization

    Full text link
    The moment-sum-of-squares (moment-SOS) hierarchy is one of the most celebrated and widely applied methods for approximating the minimum of an n-variate polynomial over a feasible region defined by polynomial (in)equalities. A key feature of the hierarchy is that, at a fixed level, it can be formulated as a semidefinite program of size polynomial in the number of variables n. Although this suggests that it may therefore be computed in polynomial time, this is not necessarily the case. Indeed, as O'Donnell (2017) and later Raghavendra & Weitz (2017) show, there exist examples where the sos-representations used in the hierarchy have exponential bit-complexity. We study the computational complexity of the moment-SOS hierarchy, complementing and expanding upon earlier work of Raghavendra & Weitz (2017). In particular, we establish algebraic and geometric conditions under which polynomial-time computation is guaranteed to be possible.Comment: 10 page

    The power of sum-of-squares for detecting hidden structures

    Full text link
    We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time

    Ideal Membership Problem for Boolean Minority and Dual Discriminator

    Get PDF
    corecore