1,679 research outputs found

    Source localization and denoising: a perspective from the TDOA space

    Full text link
    In this manuscript, we formulate the problem of denoising Time Differences of Arrival (TDOAs) in the TDOA space, i.e. the Euclidean space spanned by TDOA measurements. The method consists of pre-processing the TDOAs with the purpose of reducing the measurement noise. The complete set of TDOAs (i.e., TDOAs computed at all microphone pairs) is known to form a redundant set, which lies on a linear subspace in the TDOA space. Noise, however, prevents TDOAs from lying exactly on this subspace. We therefore show that TDOA denoising can be seen as a projection operation that suppresses the component of the noise that is orthogonal to that linear subspace. We then generalize the projection operator also to the cases where the set of TDOAs is incomplete. We analytically show that this operator improves the localization accuracy, and we further confirm that via simulation.Comment: 25 pages, 9 figure

    Informed Sound Source Localization for Hearing Aid Applications

    Get PDF

    Three-Dimensional Geometry Inference of Convex and Non-Convex Rooms using Spatial Room Impulse Responses

    Get PDF
    This thesis presents research focused on the problem of geometry inference for both convex- and non-convex-shaped rooms, through the analysis of spatial room impulse responses. Current geometry inference methods are only applicable to convex-shaped rooms, requiring between 6--78 discretely spaced measurement positions, and are only accurate under certain conditions, such as a first-order reflection for each boundary being identifiable across all, or some subset of, these measurements. This thesis proposes that by using compact microphone arrays capable of capturing spatiotemporal information, boundary locations, and hence room shape for both convex and non-convex cases, can be inferred, using only a sufficient number of measurement positions to ensure each boundary has a first-order reflection attributable to, and identifiable in, at least one measurement. To support this, three research areas are explored. Firstly, the accuracy of direction-of-arrival estimation for reflections in binaural room impulse responses is explored, using a state-of-the-art methodology based on binaural model fronted neural networks. This establishes whether a two-microphone array can produce accurate enough direction-of-arrival estimates for geometry inference. Secondly, a spherical microphone array based spatiotemporal decomposition workflow for analysing reflections in room impulse responses is explored. This establishes that simultaneously arriving reflections can be individually detected, relaxing constraints on measurement positions. Finally, a geometry inference method applicable to both convex and more complex non-convex shaped rooms is proposed. Therefore, this research expands the possible scenarios in which geometry inference can be successfully applied at a level of accuracy comparable to existing work, through the use of commonly used compact microphone arrays. Based on these results, future improvements to this approach are presented and discussed in detail

    Towards End-to-End Acoustic Localization using Deep Learning: from Audio Signal to Source Position Coordinates

    Full text link
    This paper presents a novel approach for indoor acoustic source localization using microphone arrays and based on a Convolutional Neural Network (CNN). The proposed solution is, to the best of our knowledge, the first published work in which the CNN is designed to directly estimate the three dimensional position of an acoustic source, using the raw audio signal as the input information avoiding the use of hand crafted audio features. Given the limited amount of available localization data, we propose in this paper a training strategy based on two steps. We first train our network using semi-synthetic data, generated from close talk speech recordings, and where we simulate the time delays and distortion suffered in the signal that propagates from the source to the array of microphones. We then fine tune this network using a small amount of real data. Our experimental results show that this strategy is able to produce networks that significantly improve existing localization methods based on \textit{SRP-PHAT} strategies. In addition, our experiments show that our CNN method exhibits better resistance against varying gender of the speaker and different window sizes compared with the other methods.Comment: 18 pages, 3 figures, 8 table

    Reflection-Aware Sound Source Localization

    Full text link
    We present a novel, reflection-aware method for 3D sound localization in indoor environments. Unlike prior approaches, which are mainly based on continuous sound signals from a stationary source, our formulation is designed to localize the position instantaneously from signals within a single frame. We consider direct sound and indirect sound signals that reach the microphones after reflecting off surfaces such as ceilings or walls. We then generate and trace direct and reflected acoustic paths using inverse acoustic ray tracing and utilize these paths with Monte Carlo localization to estimate a 3D sound source position. We have implemented our method on a robot with a cube-shaped microphone array and tested it against different settings with continuous and intermittent sound signals with a stationary or a mobile source. Across different settings, our approach can localize the sound with an average distance error of 0.8m tested in a room of 7m by 7m area with 3m height, including a mobile and non-line-of-sight sound source. We also reveal that the modeling of indirect rays increases the localization accuracy by 40% compared to only using direct acoustic rays.Comment: Submitted to ICRA 2018. The working video is available at (https://youtu.be/TkQ36lMEC-M
    • …
    corecore