431 research outputs found

    On the Aubin property of a class of parameterized variational systems

    Get PDF
    The paper deals with a new sharp criterion ensuring the Aubin property of solution maps to a class of parameterized variational systems. This class includes parameter-dependent variational inequalities with non-polyhedral constraint sets and also parameterized generalized equations with conic constraints. The new criterion requires computation of directional limiting coderivatives of the normal-cone mapping for the so-called critical directions. The respective formulas have the form of a second-order chain rule and extend the available calculus of directional limiting objects. The suggested procedure is illustrated by means of examples.Comment: 20 pages, 1 figur

    On the Aubin property of solution maps to parameterized variational systems with implicit constraints

    Get PDF
    In the paper, a new sufficient condition for the Aubin property to a class of parameterized variational systems is derived. In these systems, the constraints depend both on the parameter as well as on the decision variable itself and they include, e.g. parameter-dependent quasi-variational inequalities and implicit complementarity problems. The result is based on a general condition ensuring the Aubin property of implicitly defined multifunctions which employs the recently introduced notion of the directional limiting coderivative. Our final condition can be verified, however, without an explicit computation of these coderivatives. The procedure is illustrated by an example. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.The research of the first author was supported by the Austrian Science Fund (FWF) under grant P29190-N32. The research of the second author was supported by the Grant Agency of the Czech Republic, Project 17-04301S and the Australian Research Council, Project 10.13039/501100000923DP160100854

    On computation of limiting coderivatives of the normal-cone mapping to inequality systems and their applications

    Full text link
    The paper concerns the computation of the limiting coderivative of the normal-cone mapping related to C2C^{2} inequality constraints under weak qualification conditions. The obtained results are applied to verify the Aubin property of solution maps to a class of parameterized generalized equations

    Stability analysis for parameterized variational systems with implicit constraints

    Get PDF
    In the paper we provide new conditions ensuring the isolated calmness property and the Aubin property of parameterized variational systems with constraints depending, apart from the parameter, also on the solution itself. Such systems include, e.g., quasi-variational inequalities and implicit complementarity problems. Concerning the Aubin property, possible restrictions imposed on the parameter are also admitted. Throughout the paper, tools from the directional limiting generalized differential calculus are employed enabling us to impose only rather weak (non- restrictive) qualification conditions. Despite the very general problem setting, the resulting conditions are workable as documented by some academic examples. © 2019, The Author(s)

    Dynamic Management of Portfolios with Transaction Costs under Tychastic Uncertainty.

    Get PDF
    We use in this chapter the viability/capturability approach for studying the problem of dynamic valuation and management of a portfolio with transaction costs in the framework of tychastic control systems (or dynamical games against nature) instead of stochastic control systems. Indeed, the very definition of the guaranteed valuation set can be formulated directly in terms of guaranteed viable-capture basin of a dynamical game. Hence, we shall “compute” the guaranteed viable-capture basin and find a formula for the valuation function involving an underlying criterion, use the tangential properties of such basins for proving that the valuation function is a solution to Hamilton-Jacobi-Isaacs partial differential equations. We then derive a dynamical feedback providing an adjustment law regulating the evolution of the portfolios obeying viability constraints until it achieves the given objective in finite time. We shall show that the Pujal—Saint-Pierre viability/capturability algorithm applied to this specific case provides both the valuation function and the associated portfolios.dynamic games; dynamic valuation; tychastic control systems; management of portfolio;
    • …
    corecore