6 research outputs found

    On the Asymptotic Validity of the Decoupling Assumption for Analyzing 802.11 MAC Protocol

    Get PDF
    Performance evaluation of the 802.11 MAC protocol is classically based on the decoupling assumption, which hypothesizes that the backoff processes at different nodes are independent. This decoupling assumption results from mean field convergence and is generally true in transient regime in the asymptotic sense (when the number of wireless nodes tends to infinity), but, contrary to widespread belief, may not necessarily hold in stationary regime. The issue is often related with the existence and uniqueness of a solution to a fixed point equation; however, it was also recently shown that this condition is not sufficient; in contrast, a sufficient condition is a global stability property of the associated ordinary differential equation. In this paper, we give a simple condition that establishes the asymptotic validity of the decoupling assumption for the homogeneous case. We also discuss the heterogeneous and the differentiated service cases and formulate a new ordinary differential equation. We show that the uniqueness of a solution to the associated fixed point equation is not sufficient; we exhibit one case where the fixed point equation has a unique solution but the decoupling assumption is not valid in the asymptotic sense in stationary regime.Comment: 16 pages, 4 figures, accepted for publication in IEEE Transactions on Information Theor

    How CSMA/CA With Deferral Affects Performance and Dynamics in Power-Line Communications

    Get PDF
    Power-line communications (PLC) are becoming a key component in home networking, because they provide easy and high-throughput connectivity. The dominant MAC protocol for high data-rate PLC, the IEEE 1901, employs a CSMA/CA mechanism similar to the backoff process of 802.11. Existing performance evaluation studies of this protocol assume that the backoff processes of the stations are independent (the so-called decoupling assumption). However, in contrast to 802.11, 1901 stations can change their state after sensing the medium busy, which is regulated by the so-called deferral counter. This mechanism introduces strong coupling between the stations and, as a result, makes existing analyses inaccurate. In this paper, we propose a performance model for 1901, which does not rely on the decoupling assumption. We prove that our model admits a unique solution for a wide range of configurations and confirm the accuracy of the model using simulations. Our results show that we outperform current models based on the decoupling assumption. In addition to evaluating the performance in steady state, we further study the transient dynamics of 1901, which is also affected by the deferral counter.Comment: To appear, IEEE/ACM Transactions on Networking 201

    Age of Information in Ultra-Dense IoT Systems: Performance and Mean-Field Game Analysis

    Full text link
    In this paper, a dense Internet of Things (IoT) monitoring system is considered in which a large number of IoT devices contend for channel access so as to transmit timely status updates to the corresponding receivers using a carrier sense multiple access (CSMA) scheme. Under two packet management schemes with and without preemption in service, the closed-form expressions of the average age of information (AoI) and the average peak AoI of each device is characterized. It is shown that the scheme with preemption in service always leads to a smaller average AoI and a smaller average peak AoI, compared to the scheme without preemption in service. Then, a distributed noncooperative medium access control game is formulated in which each device optimizes its waiting rate so as to minimize its average AoI or average peak AoI under an average energy cost constraint on channel sensing and packet transmitting. To overcome the challenges of solving this game for an ultra-dense IoT, a mean-field game (MFG) approach is proposed to study the asymptotic performance of each device for the system in the large population regime. The accuracy of the MFG is analyzed, and the existence, uniqueness, and convergence of the mean-field equilibrium (MFE) are investigated. Simulation results show that the proposed MFG is accurate even for a small number of devices; and the proposed CSMA-type scheme under the MFG analysis outperforms two baseline schemes with fixed and dynamic waiting rates, with the average AoI reductions reaching up to 22% and 34%, respectively. Moreover, it is observed that the average AoI and the average peak AoI under the MFE do not necessarily decrease with the arrival rate.Comment: Fixed typos in Equations (4) and (7). 30 pages, 9 figure

    A Refined Mean Field Approximation

    Get PDF
    International audienceMean field models are a popular means to approximate large and complex stochastic models that can be represented as N interacting objects. Recently it was shown that under very general conditions the steady-state expectation of any performance functional converges at rate O(1/N) to its mean field approximation. In this paper we establish a result that expresses the constant associated with this 1/N term. This constant can be computed easily as it is expressed in terms of the Jacobian and Hessian of the drift in the fixed point and the solution of a single Lyapunov equation. This allows us to propose a refined mean field approximation. By considering a variety of applications, that include coupon collector, load balancing and bin packing problems, we illustrate that the proposed refined mean field approximation is significantly more accurate that the classic mean field approximation for small and moderate values of N: relative errors are often below 1% for systems with N=10

    On Occupancy Based Randomized Load Balancing for Large Systems with General Distributions

    Get PDF
    Multi-server architectures are ubiquitous in today's information infrastructure whether for supporting cloud services, web servers, or for distributed storage. The performance of multi-server systems is highly dependent on the load distribution. This is affected by the use of load balancing strategies. Since both latency and blocking are important features, it is most reasonable to route an incoming job to a server that is lightly loaded. Hence a good load balancing policy should be dependent on the states of servers. Since obtaining information about the remaining workload of servers for every arrival is very hard, it is preferable to design load balancing policies that depend on occupancy or the number of progressing jobs of servers. Furthermore, if the system has a large number of servers, it is not practical to use the occupancy information of all the servers to dispatch or route an arrival due to high communication cost. In large-scale systems that have tens of thousands of servers, the policies which use the occupancy information of only a finite number of randomly selected servers to dispatch an arrival result in lower implementation cost than the policies which use the occupancy information of all the servers. Such policies are referred to as occupancy based randomized load balancing policies. Motivated by cloud computing systems and web-server farms, we study two types of models. In the first model, each server is an Erlang loss server, and this model is an abstraction of Infrastructure-as-a-Service (IaaS) clouds. The second model we consider is one with processor sharing servers that is an abstraction of web-server farms which serve requests in a round-robin manner with small time granularity. The performance criterion for web-servers is the response time or the latency for the request to be processed. In most prior works, the analysis of these models was restricted to the case of exponential job length distributions and in this dissertation we study the case of general job length distributions. To analyze the impact of a load balancing policy, we need to develop models for the system's dynamics. In this dissertation, we show that one can construct useful Markovian models. For occupancy based randomized routing policies, due to complex inter-dependencies between servers, an exact analysis is mostly intractable. However, we show that the multi-server systems that have an occupancy based randomized load balancing policy are examples of weakly interacting particle systems. In these systems, servers are interacting particles whose states lie in an uncountable state space. We develop a mean-field analysis to understand a server's behavior as the number of servers becomes large. We show that under certain assumptions, as the number of servers increases, the sequence of empirical measure-valued Markov processes which model the systems' dynamics converges to a deterministic measure-valued process referred to as the mean-field limit. We observe that the mean-field equations correspond to the dynamics of the distribution of a non-linear Markov process. A consequence of having the mean-field limit is that under minor and natural assumptions on the initial states of servers, any finite set of servers can be shown to be independent of each other as the number of servers goes to infinity. Furthermore, the mean-field limit approximates each server's distribution in the transient regime when the number of servers is large. A salient feature of loss and processor sharing systems in the setting where their time evolution can be modeled by reversible Markov processes is that their stationary occupancy distribution is insensitive to the type of job length distribution; it depends only on the average job length but not on the type of the distribution. This property does not hold when the number of servers is finite in our context due to lack of reversibility. We show however that the fixed-point of the mean-field is insensitive to the job length distributions for all occupancy based randomized load balancing policies when the fixed-point is unique for job lengths that have exponential distributions. We also provide some deeper insights into the relationship between the mean-field and the distributions of servers and the empirical measure in the stationary regime. Finally, we address the accuracy of mean-field approximations in the case of loss models. To do so we establish a functional central limit theorem under the assumption that the job lengths have exponential distributions. We show that a suitably scaled fluctuation of the stochastic empirical process around the mean-field converges to an Ornstein-Uhlenbeck process. Our analysis is also valid for the Halfin-Whitt regime in which servers are critically loaded. We then exploit the functional central limit theorem to quantify the error between the actual blocking probability of the system with a large number of servers and the blocking probability obtained from the fixed-point of the mean-field. In the Halfin-Whitt regime, the error is of the order inverse square root of the number of servers. On the other hand, for a light load regime, the error is smaller than the inverse square root of the number of servers
    corecore