700 research outputs found

    The critical Z-invariant Ising model via dimers: the periodic case

    Full text link
    We study a large class of critical two-dimensional Ising models namely critical Z-invariant Ising models on periodic graphs, example of which are the classical square, triangular and honeycomb lattice at the critical temperature. Fisher introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model. We prove that the dimer characteristic polynomial is equal (up to a constant) to the critical Laplacian characteristic polynomial, and defines a Harnack curve of genus 0. We prove an explicit expression for the free energy, and for the Gibbs measure obtained as weak limit of Boltzmann measures.Comment: 35 pages, 8 figure

    Bounds on the eigenvalues of graphs with cut vertices or edges

    Get PDF
    AbstractIn this paper, we characterize the extremal graph having the maximal Laplacian spectral radius among the connected bipartite graphs with n vertices and k cut vertices, and describe the extremal graph having the minimal least eigenvalue of the adjacency matrices of all the connected graphs with n vertices and k cut edges. We also present lower bounds on the least eigenvalue in terms of the number of cut vertices or cut edges and upper bounds on the Laplacian spectral radius in terms of the number of cut vertices

    Fastest mixing Markov chain on graphs with symmetries

    Full text link
    We show how to exploit symmetries of a graph to efficiently compute the fastest mixing Markov chain on the graph (i.e., find the transition probabilities on the edges to minimize the second-largest eigenvalue modulus of the transition probability matrix). Exploiting symmetry can lead to significant reduction in both the number of variables and the size of matrices in the corresponding semidefinite program, thus enable numerical solution of large-scale instances that are otherwise computationally infeasible. We obtain analytic or semi-analytic results for particular classes of graphs, such as edge-transitive and distance-transitive graphs. We describe two general approaches for symmetry exploitation, based on orbit theory and block-diagonalization, respectively. We also establish the connection between these two approaches.Comment: 39 pages, 15 figure
    corecore