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1. Introduction

Throughout this paper all graphs are finite and simple. Let G = (V(G), E(G)) be a graph with n

vertices and V(G) = {v1, v2, . . . , vn}. The adjacency matrix of G is A(G) = (aij)n×n, where aij = 1 if

the edge vivj ∈ E(G) and aij = 0 otherwise. Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix

of vertex degrees of G. Recall that the matrices L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) are

called Laplacian matrix and signless Laplacian matrix of G, respectively. Clearly, A(G), L(G) and Q(G)
are real symmetric matrices, which imply that all eigenvalues of A(G), L(G) and Q(G) are real. The

largest eigenvalue of A(G) is called the spectral radius of G. The least eigenvalue of A(G) is denoted by

λmin(G). Assume that x = (xv1 , xv2 , . . . , xvn)
T ∈ R

n and x is a unit eigenvector of A(G) corresponding
to λmin(G). Then by the Rayleigh–Ritz Theorem,
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λmin(G) = min
y∈R

n

||y||=1

yTA(G)y = xTA(G)x = 2
∑

vivj∈E(G)

xvi xvj (1.1)

and

λmin(G)xv = ∑
u∈NG(v)

xu, for each v ∈ V(G). (1.2)

Similarly, the largest eigenvalue of L(G) is called the Laplacian spectral radius of G, denoted byμ(G),
and the signless Lapalcian spectral radius (Q-spectral radius), ρ(G), of G is the largest eigenvalue of

Q(G). Moreover, by the Perron–Frobenius Theorem, we know that the Q-spectral radius ρ(G) is sim-

ple and has a unique (up to amultiplication by a scalar) positive eigenvector if G is connected.We shall

refer to such an eigenvector as the Perron vector of Q(G). Note that the Q-spectral radius increases if

we add an edge to the connected graph G. Let R be the vertex-edge incidence matrix of a graph G. It

is well-known that RRT = D(G) + A(G). Thus, if x is a unit Perron vector of Q(G), then we also have

ρ(G) = max
y∈R

n

||y||=1

yTQ(G)y = xTQ(G)x = xTRRTx = ∑
vivj∈E(G)
1�i<j�n

(xi + xj)
2. (1.3)

A cut edge in a connected graph G is an edge whose deletion breaks the graph into two parts. A

vertex of a graph is said to be pendant vertex if its neighborhood contains exactly one vertex. An edge

is called pendant edge if one end vertex of it is a pendant vertex. A cut vertex in a connected graph G is

a vertex whose deletion breaks the graph into two or more parts. Denote by NG(v) (or N(v) for short)
the set of all neighbors of v in G. For other notation in graph theory, we follow [4].

The investigation of the spectral radius of graphs is an important topic in the theory of graph

spectra. In [5], Brualdi and Solheid proposed the following problem: Given a set of graphs G, find an

upper bound for the spectral radii of graphs in G and characterize the graphs in which the maximal

spectral radius is attained. Recently, the similar problems on the Laplacian spectral radius, the signless

Laplacian spectral radius and the least eigenvalue of graphs have also attracted researchers’ attention.

These problems has been extensively studied, see [1–3,14,17–19] for example.

The aim of this paper is twofold. First, we investigate the extremal graphs having the maximal

Laplacian spectral radius of Bk
n, the set of all connected bipartite graphs with n vertices and k cut

vertices. Second, we study the structures of the extremal graphs with the minimal least eigenvalue of

Gn,k, the set of all connected graphs with n vertices and k cut edges. The paper is organized as follows.

In Section 2, some preliminary results are presented. In Section 3, we characterize the extremal graph

having the maximal Laplacian spectral radius of Bk
n. In Section 4, we study the extremal graph having

the minimal least eigenvalue of Gn,k and obtain a lower bound for the least eigenvalue of a connected

graph in terms of the number of cut edges.

2. Preliminaries

In this section, we state some necessary results and notation used in this paper.

Lemma 1 [16]. For a connected graph, μ(G) � ρ(G), with equality if and only if G is a bipartite graph.

By the lemma above, μ(G) = ρ(G) for any connected bipartite graph G. Thus we can study Q(G)
and its spectral radius ρ(G) instead of L(G) and μ(G), where ρ(G) is also denoted by ρ for simplicity.

Lemma 2 [12]. Let G be a connected bipartite graph and H be a subgraph of G. Then μ(H) � μ(G), and
equality holds if and only if G = H.

Lemma 3 [8, Theorem 4.7]. Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn and q1(G)
be the largest eigenvalue of Q(G). Then
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min
vivj∈E(G)

(di + dj) � q1(G) � max
vivj∈E(G)

(di + dj), (2.1)

For a connectedgraphG, equality holds in either of these inequalities if andonly ifG is regular or semi-regular

bipartite.

If f (x) is a polynomial in the variable x and let ρ1(f ) denote the largest real root of equation

f (x) = 0, then the following result is well known: Let f (x) and g(x) be monic polynomials with real

roots. If f (x) < g(x) for all x � ρ1(g), then ρ1(f ) > ρ1(g). We will use this fact later.

Lemma 4. Assume that the complete bipartite graph Km,n has the vertex bipartition (V1, V2), where

V1 = {v1, v2, . . . , vn} and V2 = {vn+1, . . . , vn+m}. Suppose that the graph Kb,a
m,n (see Fig. 1) is obtained

from Km,n by adding a pendant edges {sivi}ai=1 to V1 and b pendant edges {tivn+i}bi=1 to V2, where the

integers a and b satisfy 0 � a � n and 0 � b � m (a = 0 or b = 0 means that the corresponding

pendant edges do not exist ). Assume that m � 1, n � 1 and a + b � 1. Then

(i) if ρ is the signless Laplacian spectral radius of Kb,a
m,n, then ρ is the largest root of the equation

− amn − bmn − m2n − mn2 − abx + 2amx + 2m2x + 2bnx + 5mnx + amnx

+ bmnx + 2m2nx + 2n2x + 2mn2x − 6mx2 − amx2 − 3m2x2 − 6nx2 − bnx2

− 8mnx2 − m2nx2 − 3n2x2 − mn2x2 + 4x3 + 7mx3 + m2x3 + 7nx3 + 3mnx3

+ n2x3 − 4x4 − 2mx4 − 2nx4 + x5 = 0;

(ii) ifρ is the signless Laplacian spectral radius of Kb,a
m,n, then n+m < ρ < n+m+1.1 for n+m � 10;

(iii) for the fixed N and k, if N � 10 and 1 � k � 9N
10

, then ρ
(
K
b,k−b
m,N−m

)
� ρ

(
K
1,k−1
1,N−1

)
for 1 � m �

N/2 and 0 � b � k, where equality holds if and only if m = b = 1.

Proof. (i) Let x = (x1, x2, . . . , xn+m+a+b)
T be a unit Perron vector of Q

(
Kb,a
m,n

)
, where xi corresponds

to the vertex vi for 1 � i � n + m, the vertex si−n−m for n + m + 1 � i � n + m + a and the

Fig. 1. Kb,a
m,n .
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vertex ti−n−m−a for n + m + a + 1 � i � n + m + a + b, respectively. By the symmetry of Kb,a
m,n and

Q
(
Kb,a
m,n

)
x = ρx, it is not hard to obtain the equation

(ρ − n)(ρ − m)[(ρ − 1)(ρ − m − 1) − 1][(ρ − 1)(ρ − n − 1) − 1]
−[m(ρ − 1)(ρ − n − 1) − m + bρ][n(ρ − 1)(ρ − m − 1) − n + aρ] = 0,

that is,

ρ(−amn − bmn − m2n − mn2 − abρ + 2amρ + 2m2ρ + 2bnρ + 5mnρ + amnρ

+ bmnρ + 2m2nρ + 2n2ρ + 2mn2ρ − 6mρ2 − amρ2 − 3m2ρ2 − 6nρ2 − bnρ2

− 8mnρ2 − m2nρ2 − 3n2ρ2 − mn2ρ2 + 4ρ3 + 7mρ3 + m2ρ3 + 7nρ3 + 3mnρ3

+ n2ρ3 − 4ρ4 − 2mρ4 − 2nρ4 + ρ5) = 0.

Hence we complete the proof of (i). In the following, we suppose that

f (m, n, a, b, x) := −amn − bmn − m2n − mn2 − abρ + 2amx + 2m2x + 2bnx + 5mnx

+ amnx + bmnx + 2m2nx + 2n2x + 2mn2x − 6mx2 − amx2 − 3m2x2

− 6nx2 − bnx2 − 8mnx2 − m2nx2 − 3n2x2 − mn2x2 + 4x3 + 7mx3

+m2x3 + 7nx3 + 3mnx3 + n2x3 − 4x4 − 2mx4 − 2nx4 + x5.

(ii) By Lemma 2, we have n + m = ρ(Km,n) < ρ � ρ
(
Km,n
m,n

)
. By (i), we obtain that ρ

(
Km,n
m,n

)
is

the largest root of the equation

f (m, n, n,m, x) = (x − m)(x − n)(x − 2)[x2 − (m + n + 2) + m + n] = 0.

Since n + m < ρ
(
Km,n
m,n

)
, we have

ρ
(
Km,n
m,n

)
= m + n + 2 +

√
(m + n)2 + 4

2
< n + m + 1.1 (2.2)

for n + m � 10, which is desired.

In what follows, in order to show (iii), we first obtain the following three facts, whose proofs are

similar. Thus, here we only give the proof of the first fact and omit the proofs of the other two for

brevity.

Fact 1. For the fixed m, n and k, if m � n and n � 3, then ρ
(
Kb,k−b
m,n

)
is a strictly increasing function with

respect to b.

Proof. Since m � n, we have

f (m, n, k − b − 1, b + 1, x) − f (m, n, k − b, b, x) = x[1 + 2b − k − (2n − m)(x − 2)]
� x[1 + m + k − k − (2m − m)(x − 2)]
= x[m(3 − x) + 1]
< 0

for x > n + m, which implies that ρ
(
Kb+1,k−b−1
m,n

)
> ρ

(
Kb,k−b
m,n

)
. Hence ρ

(
Kb,k−b
m,n

)
is a strictly

increasing function with respect to b. �
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Fact 2. For the fixed N and k, if 1 � k � 9N
10

and N � 10, then ρ
(
K
m,k−m
m,N−m

)
is a strictly decreasing

function with respect to m for m ∈ [1, k] ⋂[1, N
2
].

Fact 3. For the fixedN and k,ρ
(
K
k,0
m,N−m

)
is a strictly decreasing functionwith respect tom form ∈ [k, N

2
].

In the following, we begin to show (iii). Since m � N − m, for the fixed m, we can obtain that

ρ
(
K
m,k−m
m,N−m

)
� ρ

(
K
b,k−b
m,N−m

)
for b � m � k by Fact 1, where equality holds if and only if b = m.

Further, we divide the discussion into two cases for k. If �N
2
� � k � 9N

10
, then we have

ρ
(
K
1,k−1
1,N−1

)
> ρ

(
K
2,k−2
2,N−2

)
> ρ

(
K
3,k−3
3,N−3

)
> · · · > ρ

(
K

� N
2
�,k−� N

2
�

� N
2
�,� N

2
�

)

in view of Fact 2; If 1 � k < �N
2
�, then we have

ρ
(
K
1,k−1
1,N−1

)
> ρ

(
K
2,k−2
2,N−2

)
> ρ

(
K
3,k−3
3,N−3

)
> · · · > ρ

(
K
k,0
k,N−k

)
by virtue of Fact 2 and

ρ
(
K
k,0
k,N−k

)
> ρ

(
K
k,0
k+1,N−k−1

)
> ρ

(
K
k,0
k+2,N−k−2

)
> · · · > ρ

(
K
k,0

� N
2
�,� N

2
�
)

by Fact 3. Thus ρ
(
K
1,k−1
1,N−1

)
� ρ

(
K
b,k−b
m,N−m

)
, where equality holds if and only if b = m = 1. The proof

is complete. �

Let Tn,k denote a tree with n vertices and k pendant vertices obtained from a star K1,k by adding k

paths of almost equal lengths to each pendant vertex of K1,k . The following result was obtained in [13].

Lemma 5 [13]. Of all trees on n vertices and k pendant vertices, the maximal Laplacian spectral radius is

obtained only at Tn,k.

Thus the following corollary is immediate.

Corollary 1. Of all trees on n vertices and k cut vertices, the maximal Laplacian spectral radius is obtained

only at Tn,n−k.

We also use the next lemma in the proof of Theorem 1 in Section 3.

Lemma 6 [10]. Let u and v be two adjacent vertices of the connected graphG and for positive integers k and

l. Let G(k, l) denote the graph obtained fromG by adding pendant paths of length (by the length of a path,we

mean the number of its vertices ) k at u and length l at v. If k � l � 2, thenρ(G(k, l)) > ρ(G(k+1, l−1)).

Finally, recall an operation of graphs. A graph is called nontrivial if it contains at least two vertices.

Let G1, G2 be two disjoint connected graphs, and let v1 ∈ G1, v2 ∈ G2. The coalescence of G1 and G2,

denoted by G1(v1) · G2(v2), is obtained from G1 and G2 by identifying v1 with v2 and forming a new

vertex v; see [7] or [11]. The graph G1(v1) · G2(v2) is also written as G1vG2.

To prove Proposition 1 and Theorem 4 in Section 4, the following two lemmas are needed, respec-

tively.

Lemma 7 [11]. Let G1, G2 be two disjoint nontrivial connected graphs, and let {v1, v2} ∈ V(G1), u ∈
V(G2). Let G = G1(v2) · G2(u) and G∗ = G1(v1) · G2(u). If there exists an eigenvector x of A(G)
corresponding to λmin(G) such that |xv1 | � |xv2 |, then λmin(G

∗) � λmin(G), where the equality holds if

and only if x is an eigenvector of A(G∗) corresponding to λmin(G
∗) and xv1 = xv2 and

∑
w∈NG2

(u) xw = 0.
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Lemma 8 [15, Lemma 2.6]. Let A be an n × n real symmetric matrix and λ be the least eigenvalue of A. If

λ = xTAx, where x ∈ R
n is a unit vector, then Ax = λx.

3. Maximizing the Laplacian spectral radius in BB k
n

In this section, we will characterize the extremal graph having the maximal Laplacian spectral

radius of all the connected bipartite graphs with n vertices and k cut vertices.

Theorem 1. Let Bk
n be the set of the connected bipartite graphs with n vertices and k cut vertices and

G ∈ Bk
n. Then we have the following results.

(i) For 1 � k � n − 2, ρ(G) < n − k + 1 + 1
n−k−1

.

(ii) For 10 � n and 1 � k � n
2
, if G has the maximal Laplacian spectral radius, then G has to be in{

K
b,a
m,n−k−m

}n−k−1

m=1
. In particular, for 19 � n and 1 � k � 9n

19
, if G has the maximal Laplacian

spectral radius, then G is unique and G ∼= K
1,k−1
1,n−k−1.

Proof. Note that G + e ∈ Bk
n and ρ(G + e) > ρ(G) if we add an edge to G. Thus we can assume that

each cut vertex of G connects some blocks and that all of these blocks are complete bipartite graphs.

Choose G ∈ Bk
n such that ρ(G) is as large as possible. We first show the following three facts.

Fact 4. There does not exist a cut vertex of G connecting two complete bipartite graphs Kn1,m1
and Kn2,m2

with min {n1,m1, n2,m2} � 2.

Proof. Assume, to the contrary, that V(Kn1,m1
) = {v1, v2, . . . , vn1+m1

} and V(Kn2,m2
) =

{vn1+m1
, vn1+m1+1, . . . , vn1+m1+n2+m2−1} with min {n1,m1, n2,m2} � 2, where vn1+m1

is a cut ver-

tex. Let x = (x1, x2, . . . , xn)
T be a unit Perron vector of Q(G), where xi corresponds to the vertex vi for

1 � i � n. Without loss of generality, let x1 = min{xi : vi ∈ NG(vn1+m1
), 1 � i � n1 + m1 + n2 +

m2−1}. Nowwe canobtain a graphG∗ fromG bydeleting edges v1vi ∈ E(Kn1,m1
) and adding edges vivj

for vj ∈ NKn2,m2
(vn1+m1

), where 2 � i � n1 +m1 −1 and n1 +m1 +1 � j � n1 +m1 +n2 +m2 −1.

It is obvious that G∗ ∈ Bk
n. Clearly,

xT (Q(G∗) − Q(G))x = ∑
v1vi∈E(Kn1,m1

),

vj∈NKn2,m2
(vn1+m1

)

(xi + xj)
2 − ∑

v1vi∈E(Kn1,m1
),

vi 	=vn1+m1

(xi + x1)
2

> 0.

Thus

ρ(G∗) = max
y∈R

n

||y||=1

yTQ(G∗)y

� xTQ(G∗)x
> xTQ(G)x

= ρ(G),

which contradicts the choice of G. So this fact holds. �

Fact 5. There does not exist a cut vertex of G connecting two complete bipartite graphs Kn1,m1
and K1,m2

with min {n1,m1,m2} � 2, where the cut vertex is obtained by identifying the center of K1,m2
with one

vertex of Kn1,m1
.
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Proof. Assume for the contradiction that V(Kn1,m1
) = {v1, v2, . . . , vn1+m1

} and V(K1,m2
) =

{vn1+m1
, vn1+m1+1, . . . , vn1+m1+m2

} with min {n1,m1,m2} � 2, where the cut vertex vn1+m1
is the

center of K1,m2
. Let e = vn1+m1+1vi, where vi is a vertex in Kn1,m1

nonadjacent to vn1+m1
. Then we

have G + e ∈ Bk
n and ρ(G + e) > ρ(G), a contradiction. �

Actually, with the help of [9, Theorem 2.9], the next general fact can be obtained by the similar

method. We omit its proof for brevity.

Fact 6. If G contains a block Kn1,m1 with n1 � m1 � 2, then each cut vertex of G exactly connects two

blocks.

Assume that all the blocks of G are Km1,n1 , Km2,n2 , . . . , Kmk+1,nk+1
. Let ai := mi + ni. Order the

cardinalities of these complete bipartite graphs a1 � a2 � · · · � ak+1 � 2. Note that a1 =
n + k − (a2 + a3 + · · · + ak+1) � n − k and a1 + a2 � n − k + 2. Since Kn1,m1

is a block, we have

n1 = m1 = 1 or n1 � 2 andm1 � 2. So we divide the following discussion into two cases.

Case 1. If n1 = m1 = 1, then we obtain that G is a tree because 2 = a1 � a2 � · · · � ak+1 � 2.
Thus we have ρ(G) � ρ(Tn,n−k) by Corollary 1, where equality holds if and only if G ∼= Tn,n−k .

Case 2. If n1 � 2 and m1 � 2, then by Facts 4 and 5, we can obtain dv � n1 + 1 and du � m1 + 1

for any vu ∈ E(Kn1,m1
). On the other hand, if a cut edge uv connects two blocks Kmi,ni and Kmj,nj with

min{ni,mi, nj,mj} � 2, then

dv + du � ai − 1 + aj − 1 � a1 + a2 − 2 � n − k.

Hence, in view of Lemma 3 and Fact 6, we have

ρ(G) � max
ij∈E(G)

di + dj � max
vu∈E(Kn1,m1

)
dv + du � n1 + m1 + 2 = a1 + 2.

Thus, if a1 � n− k − 2, then we have ρ(G) � n− k < ρ
(
K
b,a
m,n−k−m

)
, which contradicts the choice

of G. Consequently, we have to consider only the cases a1 = n − k − 1 and a1 = n − k.

If a1 = n−k−1, then a2 = 3 and a3 = · · · = ak+1 = 2. Sincewe demand that complete bipartite

graphs are blocks, it does not exist for a2 = 3. Hence this case does not occur.

If a1 = n − k, then a2 = · · · = ak+1 = 2. Let V(Km,n−k−m) = {v1, v2, . . . , vn−k}. So G =
Km,n−k−mv1P1v2P2 · · · vn−kPn−k for some integerm ∈ [2, n− k− 2], where P1, . . . , Pn−k are disjoint

paths, Pi is a path of length of �i,V(Pi)
⋂

V(Km,n−k−m) = vi and
∑n−k

i=1 li = n. Thus,we have |�i−�j| �
1 by Lemma 6 if vi and vj lie in two different bipartite sets of the vertices of Km,n−k−m, which implies

|�i − �j| � 2 for vi and vj lying in the same bipartite set of the vertices of Km,n−k−m.

Consequently, in view of Cases 1 and 2, we obtain that G can be written as Km,n−k−mv1
P1v2P2 · · · vn−kPn−k for some integerm ∈ [1, n− k−1], where |�i − �j| � 2 for any 1 � i, j � n− k.

We can easily obtain that (i) follows by computing the limit point of the ρ(G) for the fixed n − k,

the method of which is similar to that of Theorem 4 [19]. Next we continue to show that (ii) holds.

We claim that |�i − �j| � 1 for 1 � i, j � n − k. Let Km,n−k−m with vertex bipartition (V1, V2).
Thus, it suffices to show that �i−�j = 2 is impossible form � 2. Otherwise, without loss of generality,

we can assume that �i = 3 and �j = 1 for some two vertices vi, vj ∈ V1 since k � n
2
. Let the vertex

set of Pi be {u1, u2, u3}, where u1 and u3 = vi are two end vertices of Pi. Let the vertex set of Pj be

{s}, where s = vj . Let x = (x1, . . . , xn)
T be a Perron vector of Q(G), where xi corresponds to the

vertex ui for 1 � i � 3, the vertex s for i = 4 and the remainder vertices. From Q(G)x = ρx, we have

x2 = (ρ−1)x1, x3 = (ρ−2)x2−x1,ρx3 = (m+1)x3+x2+∑
v∈V2

xv andρx4 = (m+1)x4+∑
v∈V2

xv.

Thus we obtain[
(ρ − m − 1)

(
ρ − 2 − 1

ρ − 1

)
− 1

]
x2 = (ρ − m − 1)x4.

In the following, we want to show x2 < x4. Consequently, we only need to prove

(ρ − m − 1)

(
ρ − 2 − 1

ρ − 1

)
− 1 > ρ − m − 1,
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that is,

(ρ − 1)

(
ρ − 2 − 1

ρ − 1

)
− ρ − m

(
ρ − 3 − 1

ρ − 1

)
> 0.

Since m � n − k − 2 < ρ − 2 and ρ − 3 − 1
ρ−1

> 0, it suffices to show

(ρ − 1)

(
ρ − 2 − 1

ρ − 1

)
− ρ − (ρ − 2)

(
ρ − 3 − 1

ρ − 1

)
� 0,

which is equivalent to

ρ − 1

ρ − 1
� 4.

It follows from ρ > n − k > n
2

� 5. Consequently, we have x4 > x2. Now we can obtain a new graph

G∗ from G by deleting the edge u1u2 and adding a new edge u1s. So

xT (Q(G∗) − Q(G))x = (2x1 + x2 + x4)(x4 − x2) > 0.

Thus

ρ(G∗) = max
y∈R

n

||y||=1

yTQ(G∗)y

� xTQ(G∗)x
> xTQ(G)x

= ρ(G),

a contraction. So we have |�i − �j| � 1 for 1 � i, j � n− k. Hence we obtain G ∈
{
K
b,a
m,n−k−m

}n−k−1

m=1
,

which is the first result of (ii). Further, the second result follows from Lemma 4 (iii). The proof is

complete. �

Remark 1. By a simple calculation or simplifying the Equation of Lemma 4 (i), we know that

μ
(
K
1,k−1
1,n−k−1

)
is the largest root of the equation

x3 − (n + 4 − k)x2 + (3n − 3k + 4)x − n = 0.

By the proofs of Theorem 1 and Lemma 4 (iii), we also have the following result.

Theorem 2. Let T k
n be the set of trees with n vertices and k cut vertices and Bk

n be the set of connected

bipartite graphs with n vertices and k cut vertices. Assume G ∈ Bk
n\T k

n for n � 19. If G has the maximal

Laplacian spectral radius, then G is unique for 1 � k � 9n
19
, and G ∼= K

2,k−2
2,n−k−2 for 2 � k � 9n

19
and

G ∼= K
1,0
2,n−3 for k = 1.

The next result immediately follows from (ii) of Theorem 1 and Equality (2.2).

Theorem 3. Let Bk
n be the set of the connected bipartite graphs with n (n � 10) vertices and

k
(
1 � k < n

2

)
cut vertices and G ∈ Bk

n. Then ρ(G) <
n−k+2+

√
(n−k)2+4

2
.

Let G k
n denote the set of the connected graphs with n vertices and k cut vertices. In [17], Theorem

3.3 tells that if a graph G ∈ G k
n and G has the minimal least eigenvalue, then G is a bipartite graph.
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Note that the spectral radius of a graph is at most a half of its signless Lapalacian spectral radius [6].

Thus, we have the following corollary in view of Theorems 1 and 3.

Corollary 2. Let G k
n denote the set of the connected graphs with n vertices and k cut vertices and G ∈ G k

n .

Then

λmin(G) > −1

2

(
n − k + 1 + 1

n − k − 1

)

for 1 � k � n − 2. Further,

λmin(G) > −n − k + 2 +
√

(n − k)2 + 4

4

for 1 � k < n
2
.

4. The least eigenvalues of graphs with n vertices and k cut edges

The purpose of this section is to investigate the extremal graph having theminimal least eigenvalue

of all the connected graphswith n vertices and k cut edges.We also present a lower bound for the least

eigenvalue of a connected graph in terms of the number of cut edges.

Let Gn,k denote the set of the connected graphs with n vertices and k cut edges. For convenience,

a graph is called minimizing in Gn,k if its least eigenvalue attains the minimum among all graphs

in Gn,k.

Proposition 1. Let G be a minimizing graph in Gn,k and let x be an eigenvector of A(G) corresponding to

λmin(G). Assume that e = uv is any cut edge of G and G− e = G1

⋃
G2, where u ∈ V(G1) and v ∈ V(G2).

Then

(i) |xu| = maxw∈V(G1) |xw| and |xv| = maxw∈V(G2) |xw|;
(ii) |V(G1)| = 1 or |V(G2)| = 1. In addition, if |V(G1)| > 1, then |xu| > |xw| for all w ∈ V(G1) \ {u}.

Proof. Let K2 = uv. Assume that H = G1(u) · K2(u) and H∗ = G2(v) · K2(v).
(i) If there exists a vertex w ∈ V(G1) with |xu| < |xw|, then we view G1 and H∗ as G1 and G2 of

Lemma 7, respectively. Thus we get a graph G∗ ∈ Gn,k and λmin(G
∗) < λmin(G), a contradiction. Thus

|xu| = maxw∈V(G1) |xw|. Similarly, we have |xv| = maxw∈V(G2) |xw|.
(ii) Assume, to the contrary, that |V(G1)| > 1 and |V(G2)| > 1. If we view H and G2 as G1 and G2

of Lemma 7, respectively, then we can obtain xu = xv and
∑

w∈NG2
(v) xw = 0; If we view H∗ and G1 as

G1 and G2 of Lemma 7, respectively, then we get xu = xv and
∑

w∈NG1
(u) xw = 0. Otherwise, we have

a graph G∗ ∈ Gn,k and λmin(G
∗) < λmin(G), a contradiction. Thus xu = xv,

∑
w∈NG1

(u) xw = 0 and∑
w∈NG2

(v) xw = 0. Hence we get λmin(G)xu = xv by the eigenvalue Equation (1.2) for the vertex u. If

xu = xv = 0, then we obtain that x is a zero vector by (i), which is impossible. Thus xu = xv 	= 0,
which implies λmin(G) = 1, a contradiction. Therefore, we have |V(G1)| = 1 or |V(G2)| = 1. As-

sume that |V(G1)| > 1 and there is a vertex w ∈ V(G1) with |xu| � |xw|. Then we view G1 and

H∗ as G1 and G2 of Lemma 7, respectively. Thus we get a graph G∗ ∈ Gn,k and λmin(G
∗) � λmin(G).

Since G is a minimizing graph, we obtain that the equality holds, which implies xu = xw = xv = 0.

Hence x is a zero vector, a contradiction. Consequently, if |V(G1)| > 1, then |xu| > |xw| for all

w ∈ V(G1) \ {u}. �

Remark 2. Let G be a minimizing graph in Gn,k and let x be an eigenvector of A(G) corresponding to

λmin(G). By Proposition 1, we obtain that all k cut edges of G are pendant edges and all cut edges of

G are appended at some vertex u with |xu| being maximal. Thus we can assume that G is obtained by
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Fig. 2. Kk
m,n .

identifying some vertex u of a graph G1 with the center of the star K1,k . Denote by V+ = {v ∈ V(G1) :
xv > 0}, V− = {v ∈ V(G1) : xv < 0} and V0 = {v ∈ V(G1) : xv = 0}. Let Hn,k denote the set of the

graphs in Gn,k with only one of |V+| and |V−| being equal to 1 and |V0| = 0.

Let Kk
m,n denote the graph obtained by identifying the center of a star K1,k (k � 1) with one vertex

of degree n of Km,n, where k,m and n are integers (see Fig. 2).

Theorem 4. Let G be a minimizing graph in Gn,k. Then

(i) G = K1,n for k = n − 1;

(ii) G = K1,n−1 + e for k = n − 3;

(iii) G ∈
{
Kk
p,n−k−p

}n−k−2

p=2

⋃
Hn,k for 1 � k � n − 4, where Hn,k is defined in Remark 2.

Proof. Assume that G is a minimizing graph in Gn,k. Let λmin(G) be the least eigenvalue and x be a

unit eigenvector of A(G) corresponding to λmin(G). By Remark 2, we can assume that G is obtained

by identifying some vertex u of a graph G1 with the center of the star K1,k . Thus it is obvious for (i)

and (ii). In what follows, we will prove that (iii) holds. Denote by V+ = {v ∈ V(G1) : xv > 0},
V− = {v ∈ V(G1) : xv < 0} and V0 = {v ∈ V(G1) : xv = 0}. It is clear that V+ 	= ∅ and V− 	= ∅.
Then each vertex of V+ has to be adjacent to each vertex of V−, otherwise we would obtain a graph

G∗ ∈ Gn,k by adding such edges with λmin(G
∗) < λmin(G), a contradiction. In the following, we first

prove V0 = ∅. Assume to the contrary that V0 	= ∅.
Case 1. If |V+| > 1 or |V−| > 1, without loss of generality, letting |V+| > 1, then we can obtain a

bipartite graphG∗ ∈ Gn,k by deleting all edges in V0, V+, V− and between V0 and V− (if they exist) and

adding all possible edges between V0 and V+. However, λmin(G
∗) � xTA(G∗)x � xTA(G)x = λmin(G),

which implies λmin(G
∗) = λmin(G) since G is a minimizing graph. Hence by Lemma 8, we obtain that

x is also an eigenvector of A(G∗) corresponding to λmin(G
∗), which is impossible as x contains no zero

entries for any connected bipartite graph.

Case 2. If |V+| = |V−| = 1, then we can assume that V+ = {v1}, V− = {v2} and u1 ∈ V0. Now
we would get a bipartite graph G∗ ∈ Gn,k by deleting all the edges whose end vertex (vertices) is in

V0, and adding the edge u1v2 and all edges between V0 \ {u1} and {u1, v1}. However, λmin(G
∗) �

xTA(G∗)x = xTA(G)x = λmin(G), which implies λmin(G
∗) = λmin(G) since G is a minimizing graph.

Hence x is also an eigenvector of A(G∗) corresponding to λmin(G
∗), a contradiction.

Thus we have V0 = ∅. We will divide the next proof into two cases.

Case 1. If |V+| � 2 and |V−| � 2, then the graph G has no edges joining vertices within V+ or V−.

Otherwise by deleting such edges we would obtain a graph G∗ ∈ Gn,k with xTA(G∗)x < xTA(G)x and

hence λmin(G
∗) < λmin(G), a contradiction. Therefore G1 contains a complete bipartite subgraphwith

the vertex bipartition (V+, V−). Consequently, G ∈
{
Kk
p,n−k−p

}n−k−2

p=2
.
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Case 2. If only one of |V+| and |V−| equals to 1, without loss of generality, assuming that |V+| = 1

and v ∈ V+, thenwe know that each vertex of V− must be adjacent to vertex v and G1 has no cut edge.

Thus G ∈ Hn,k . This completes the proof. �

Remark 3. Assume that G ∈ Hn,k and |V+| = 1. If we delete all edges within V−, then we get a tree

T . Hence we have λmin(G) > λmin(T) � −√
n − 1.

Remark 4. Given the fixed k ∈
[
1, 2n−6

3

]
, one can obtain

λmin(K
k
p,n−k−p) = −

√√√√k + p(n − k − p) +
√

[k − p(n − k − p)]2 + 4k(n − k − p)

2
,

which is strictly increasing and decreasing with respect to p for p ∈
[
n−k−1

2
, n − k − 2

]
and p ∈[

2, n−k−1
2

)
, respectively. Thus, if 1 � k � 2n−6

3
, then

λmin(K
k
p,n−k−p) � min

{
λmin

(
Kk

� n−k
2

�,� n−k
2

�
)

, λmin

(
Kk

� n−k
2

�−1,� n−k
2

�+1

)}

= λmin

(
Kk

� n−k
2

�,� n−k
2

�
)

for p ∈ [2, n − k − 2], where equality holds if and only if p = � n−k
2

�.

Finally, by a direct computation, one can easily show that λmin

(
Kk

� n−k
2

�,� n−k
2

�
)

< −√
n − 1 for

1 � k � 2n−6
3

. Consequently, we immediately have the next result in view of Theorem 4, Remarks 3

and 4.

Theorem 5. Let G be a connected graph of order n with k cut edges, where 1 � k � 2n−6
3

. Then

λmin(G) � λmin

(
Kk

� n−k
2

�,� n−k
2

�
)
, where equality holds if and only if G ∼= Kk

� n−k
2

�,� n−k
2

�.

Note that the spectral radius of a bipartite graph G equals −λmin(G) (see [7]). Since Kk

� n−k
2

�,� n−k
2

� is

a connected bipartite graph, as an application of Theorem 5, the following result is immediate.

Theorem 6. Let 1 � k � 2n−6
3

. Of all the connected bipartite graphs of order n with k cut edges, the

maximal spectral radius is attained only at Kk

� n−k
2

�,� n−k
2

�.
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