228,705 research outputs found

    Audio Classification from Time-Frequency Texture

    Full text link
    Time-frequency representations of audio signals often resemble texture images. This paper derives a simple audio classification algorithm based on treating sound spectrograms as texture images. The algorithm is inspired by an earlier visual classification scheme particularly efficient at classifying textures. While solely based on time-frequency texture features, the algorithm achieves surprisingly good performance in musical instrument classification experiments

    Multi-resolution texture classification based on local image orientation

    Get PDF
    The aim of this paper is to evaluate quantitatively the discriminative power of the image orientation in the texture classification process. In this regard, we have evaluated the performance of two texture classification schemes where the image orientation is extracted using the partial derivatives of the Gaussian function. Since the texture descriptors are dependent on the observation scale, in this study the main emphasis is placed on the implementation of multi-resolution texture analysis schemes. The experimental results were obtained when the analysed texture descriptors were applied to standard texture databases

    SVM-based texture classification in optical coherence tomography

    Get PDF
    This paper describes a new method for automated texture classification for glaucoma detection using high resolution retinal Optical Coherence Tomography (OCT). OCT is a non-invasive technique that produces cross-sectional imagery of ocular tissue. Here, we exploit information from OCT im-ages, specifically the inner retinal layer thickness and speckle patterns, to detect glaucoma. The proposed method relies on support vector machines (SVM), while principal component analysis (PCA) is also employed to improve classification performance. Results show that texture features can improve classification accuracy over what is achieved using only layer thickness as existing methods currently do. Index Terms — classification, support vector machine, optical coherence tomography, texture 1

    Texture Segmentation by Evidence Gathering

    No full text
    A new approach to texture segmentation is presented which uses Local Binary Pattern data to provide evidence from which pixels can be classified into texture classes. The proposed algorithm, which we contend to be the first use of evidence gathering in the field of texture classification, uses Generalised Hough Transform style R-tables as unique descriptors for each texture class and an accumulator is used to store votes for each texture class. Tests on the Brodatz database and Berkeley Segmentation Dataset have shown that our algorithm provides excellent results; an average of 86.9% was achieved over 50 tests on 27 Brodatz textures compared with 80.3% achieved by segmentation by histogram comparison centred on each pixel. In addition, our results provide noticeably smoother texture boundaries and reduced noise within texture regions. The concept is also a "higher order" texture descriptor, whereby the arrangement of texture elements is used for classification as well as the frequency of occurrence that is featured in standard texture operators. This results in a unique descriptor for each texture class based on the structure of texture elements within the image, which leads to a homogeneous segmentation, in boundary and area, of texture by this new technique

    Robust Adaptive Median Binary Pattern for noisy texture classification and retrieval

    Full text link
    Texture is an important cue for different computer vision tasks and applications. Local Binary Pattern (LBP) is considered one of the best yet efficient texture descriptors. However, LBP has some notable limitations, mostly the sensitivity to noise. In this paper, we address these criteria by introducing a novel texture descriptor, Robust Adaptive Median Binary Pattern (RAMBP). RAMBP based on classification process of noisy pixels, adaptive analysis window, scale analysis and image regions median comparison. The proposed method handles images with high noisy textures, and increases the discriminative properties by capturing microstructure and macrostructure texture information. The proposed method has been evaluated on popular texture datasets for classification and retrieval tasks, and under different high noise conditions. Without any train or prior knowledge of noise type, RAMBP achieved the best classification compared to state-of-the-art techniques. It scored more than 90%90\% under 50%50\% impulse noise densities, more than 95%95\% under Gaussian noised textures with standard deviation σ=5\sigma = 5, and more than 99%99\% under Gaussian blurred textures with standard deviation σ=1.25\sigma = 1.25. The proposed method yielded competitive results and high performance as one of the best descriptors in noise-free texture classification. Furthermore, RAMBP showed also high performance for the problem of noisy texture retrieval providing high scores of recall and precision measures for textures with high levels of noise

    Evaluation of local orientation for texture classification

    Get PDF
    The aim of this paper is to present a study where we evaluate the optimal inclusion of the texture orientation in the classification process. In this paper the orientation for each pixel in the image is extracted using the partial derivatives of the Gaussian function and the main focus of our work is centred on the evaluation of the local dominant orientation (which is calculated by combining the magnitude and local orientation) on the classification results. While the dominant orientation of the texture depends strongly on the observation scale, in this paper we propose to evaluate the macro-texture by calculating the distribution of the dominant orientations for all pixels in the image that sample the texture at micro-level. The experimental results were conducted on standard texture databases and the results indicate that the dominant orientation calculated at micro-level is an appropriate measure for texture description

    An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation

    No full text
    In statistical model based texture feature extraction, features based on spatially varying parameters achievehigher discriminative performances compared to spatially constant parameters. In this paper we formulate anovel Bayesian framework which achieves texture characterization by spatially varying parameters based onGaussian Markov random fields. The parameter estimation is carried out by Metropolis-Hastings algorithm.The distributions of estimated spatially varying parameters are then used as successful discriminant texturefeatures in classification and segmentation. Results show that novel features outperform traditional GaussianMarkov random field texture features which use spatially constant parameters. These features capture bothpixel spatial dependencies and structural properties of a texture giving improved texture features for effectivetexture classification and segmentation
    corecore