210 research outputs found

    DeformNet: Free-Form Deformation Network for 3D Shape Reconstruction from a Single Image

    Full text link
    3D reconstruction from a single image is a key problem in multiple applications ranging from robotic manipulation to augmented reality. Prior methods have tackled this problem through generative models which predict 3D reconstructions as voxels or point clouds. However, these methods can be computationally expensive and miss fine details. We introduce a new differentiable layer for 3D data deformation and use it in DeformNet to learn a model for 3D reconstruction-through-deformation. DeformNet takes an image input, searches the nearest shape template from a database, and deforms the template to match the query image. We evaluate our approach on the ShapeNet dataset and show that - (a) the Free-Form Deformation layer is a powerful new building block for Deep Learning models that manipulate 3D data (b) DeformNet uses this FFD layer combined with shape retrieval for smooth and detail-preserving 3D reconstruction of qualitatively plausible point clouds with respect to a single query image (c) compared to other state-of-the-art 3D reconstruction methods, DeformNet quantitatively matches or outperforms their benchmarks by significant margins. For more information, visit: https://deformnet-site.github.io/DeformNet-website/ .Comment: 11 pages, 9 figures, NIP

    DiME: Maximizing Mutual Information by a Difference of Matrix-Based Entropies

    Full text link
    We introduce an information-theoretic quantity with similar properties to mutual information that can be estimated from data without making explicit assumptions on the underlying distribution. This quantity is based on a recently proposed matrix-based entropy that uses the eigenvalues of a normalized Gram matrix to compute an estimate of the eigenvalues of an uncentered covariance operator in a reproducing kernel Hilbert space. We show that a difference of matrix-based entropies (DiME) is well suited for problems involving the maximization of mutual information between random variables. While many methods for such tasks can lead to trivial solutions, DiME naturally penalizes such outcomes. We compare DiME to several baseline estimators of mutual information on a toy Gaussian dataset. We provide examples of use cases for DiME, such as latent factor disentanglement and a multiview representation learning problem where DiME is used to learn a shared representation among views with high mutual information

    To Compress or Not to Compress -- Self-Supervised Learning and Information Theory: A Review

    Full text link
    Deep neural networks have demonstrated remarkable performance in supervised learning tasks but require large amounts of labeled data. Self-supervised learning offers an alternative paradigm, enabling the model to learn from data without explicit labels. Information theory has been instrumental in understanding and optimizing deep neural networks. Specifically, the information bottleneck principle has been applied to optimize the trade-off between compression and relevant information preservation in supervised settings. However, the optimal information objective in self-supervised learning remains unclear. In this paper, we review various approaches to self-supervised learning from an information-theoretic standpoint and present a unified framework that formalizes the \textit{self-supervised information-theoretic learning problem}. We integrate existing research into a coherent framework, examine recent self-supervised methods, and identify research opportunities and challenges. Moreover, we discuss empirical measurement of information-theoretic quantities and their estimators. This paper offers a comprehensive review of the intersection between information theory, self-supervised learning, and deep neural networks

    Semi-supervised Tuning from Temporal Coherence

    Full text link
    Recent works demonstrated the usefulness of temporal coherence to regularize supervised training or to learn invariant features with deep architectures. In particular, enforcing smooth output changes while presenting temporally-closed frames from video sequences, proved to be an effective strategy. In this paper we prove the efficacy of temporal coherence for semi-supervised incremental tuning. We show that a deep architecture, just mildly trained in a supervised manner, can progressively improve its classification accuracy, if exposed to video sequences of unlabeled data. The extent to which, in some cases, a semi-supervised tuning allows to improve classification accuracy (approaching the supervised one) is somewhat surprising. A number of control experiments pointed out the fundamental role of temporal coherence.Comment: Under review as a conference paper at ICLR 201

    Learning to Reconstruct Shapes from Unseen Classes

    Full text link
    From a single image, humans are able to perceive the full 3D shape of an object by exploiting learned shape priors from everyday life. Contemporary single-image 3D reconstruction algorithms aim to solve this task in a similar fashion, but often end up with priors that are highly biased by training classes. Here we present an algorithm, Generalizable Reconstruction (GenRe), designed to capture more generic, class-agnostic shape priors. We achieve this with an inference network and training procedure that combine 2.5D representations of visible surfaces (depth and silhouette), spherical shape representations of both visible and non-visible surfaces, and 3D voxel-based representations, in a principled manner that exploits the causal structure of how 3D shapes give rise to 2D images. Experiments demonstrate that GenRe performs well on single-view shape reconstruction, and generalizes to diverse novel objects from categories not seen during training.Comment: NeurIPS 2018 (Oral). The first two authors contributed equally to this paper. Project page: http://genre.csail.mit.edu
    • …
    corecore