8 research outputs found

    An algebra of discrete event processes

    Get PDF
    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper

    Centralized and distributed algorithms for on-line synthesis of maximal control policies under partial observation

    Full text link
    This paper deals with the on-line control of partially observed discrete event systems (DES). The goal is to restrict the behavior of the system within a prefix-closed legal language while accounting for the presence of uncontrollable and unobservable events. In the spirit of recent work on the on-line control of partially observed DES (Heymann and Lin 1994) and on variable lookahead control of fully observed DES (Ben Hadj-Alouane et al. 1994c), we propose an approach where, following each observable event, a control action is computed on-line using an algorithm of linear worst-case complexity. This algorithm, called VLP-PO , has the following additional properties: (i) the resulting behavior is guaranteed to be a maximal controllable and observable sublanguage of the legal language; (ii) different maximals may be generated by varying the priorities assigned to the controllable events, a parameter of VLP-PO ; (iii) a maximal containing the supremal controllable and normal sublanguage of the legal language can be generated by a proper selection of controllable event priorities; and (iv) no off-line calculations are necessary. We also present a parallel/distributed version of the VLP-PO algorithm called DI-VLP-PO . This version uses several communicating agents that simultaneously run (on-line) identical versions of the algorithm but on possibly different parts of the system model and the legal language, according to the structural properties of the system and the specifications. While achieving the same behavior as VLO-PO, DI-VLP-PO runs at a total complexity (for computation and communication) that is significantly lower than its sequential counterpart.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45126/1/10626_2005_Article_BF01797138.pd

    Resilience Against Sensor Deception Attacks at the Supervisory Control Layer of Cyber-Physical Systems: A Discrete Event Systems Approach

    Full text link
    Cyber-Physical Systems (CPS) are already ubiquitous in our society and include medical devices, (semi-)autonomous vehicles, and smart grids. However, their security aspects were only recently incorporated into their design process, mainly in response to catastrophic incidents caused by cyber-attacks on CPS. The Stuxnet attack that successfully damaged a nuclear facility, the Maroochy water breach that released millions of gallons of untreated water, the assault on power plants in Brazil that disrupted the distribution of energy in many cities, and the intrusion demonstration that stopped the engine of a 2014 Jeep Cherokee in the middle of a highway are examples of well-publicized cyber-attacks on CPS. There is now a critical need to provide techniques for analyzing the behavior of CPS while under attack and to synthesize attack-resilient CPS. In this dissertation, we address CPS under the influence of an important class of attacks called sensor deception attacks, in which an attacker hijacks sensor readings to inflict damage to CPS. The formalism of regular languages and their finite-state automata representations is used to capture the dynamics of CPS and their attackers, thereby allowing us to leverage the theory of supervisory control of discrete event systems to pose our investigations. First, we focus on developing a supervisory control framework under sensor deception attacks. We focus on two questions: (1) Can we automatically find sensor deception attacks that damage a given CPS? and (2) Can we design a secure-by-construction CPS against sensor deception attacks? Answering these two questions is the main contribution of this dissertation. In the first part of the dissertation, using techniques from the fields of graph games and Markov decision processes, we develop algorithms for synthesizing sensor deception attacks in both qualitative and quantitative settings. Graph games provide the means of synthesizing sensor deception attacks that might damage the given CPS. In a second step, equipped with stochastic information about the CPS, we can leverage Markov decision processes to synthesize attacks with the highest likelihood of damage. In the second part of the dissertation, we tackle the problem of designing secure-by-construction CPS. We provide two different methodologies to design such CPS, in which there exists a trade-off between flexibility on selecting different designs and computational complexity of the methods. The first method is developed based on supervisory control theory, and it provides a computationally efficient way of designing secure CPS. Alternatively, a graph-game method is presented as a second solution for this investigated problem. The graph-game method grants flexible selection of the CPS at the cost of computational complexity. The first method finds one robust supervisor, whereas the second method provides a structure in which all robust supervisors are included. Overall, this dissertation provides a comprehensive set of algorithmic techniques to analyze and mitigate sensor deception attacks at the supervisory layer of cyber-physical control systems.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/166117/1/romulo_1.pd

    From Security Enforcement to Supervisory Control in Discrete Event Systems: Qualitative and Quantitative Analyses

    Full text link
    Cyber-physical systems are technological systems that involve physical components that are monitored and controlled by multiple computational units that exchange information through a communication network. Examples of cyber-physical systems arise in transportation, power, smart manufacturing, and other classes of systems that have a large degree of automation. Analysis and control of cyber-physical systems is an active area of research. The increasing demands for safety, security and performance improvement of cyber-physical systems put stringent constraints on their design and necessitate the use of formal model-based methods to synthesize control strategies that provably enforce required properties. This dissertation focuses on the higher level control logic in cyber-physical systems using the framework of discrete event systems. It tackles two classes of problems for discrete event systems. The first class of problems is related to system security. This problem is formulated in terms of the information flow property of opacity. In this part of the dissertation, an interface-based approach called insertion/edit function is developed to enforce opacity under the potential inference of malicious intruders that may or may not know the implementation of the insertion/edit function. The focus is the synthesis of insertion/edit functions that solve the opacity enforcement problem in the framework of qualitative and quantitative games on finite graphs. The second problem treated in the dissertation is that of performance optimization in the context of supervisory control under partial observation. This problem is transformed to a two-player quantitative game and an information structure where the game is played is constructed. A novel approach to synthesize supervisors by solving the game is developed. The main contributions of this dissertation are grouped into the following five categories. (i) The transformation of the formulated opacity enforcement and supervisory control problems to games on finite graphs provides a systematic way of performing worst case analysis in design of discrete event systems. (ii) These games have state spaces that are as compact as possible using the notion of information states in each corresponding problem. (iii) A formal model-based approach is employed in the entire dissertation, which results in provably correct solutions. (iv) The approaches developed in this dissertation reveal the interconnection between control theory and formal methods. (v) The results in this dissertation are applicable to many types of cyber-physical systems with security-critical and performance-aware requirements.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/150002/1/jiyiding_1.pd

    Property Enforcement for Partially-Observed Discrete-Event Systems

    Full text link
    Engineering systems that involve physical elements, such as automobiles, aircraft, or electric power pants, that are controlled by a computational infrastructure that consists of several computers that communicate through a communication network, are called Cyber-Physical Systems. Ever-increasing demands for safety, security, performance, and certi cation of these critical systems put stringent constraints on their design and necessitate the use of formal model-based approaches to synthesize provably-correct feedback controllers. This dissertation aims to tackle these challenges by developing a novel methodology for synthesis of control and sensing strategies for Discrete Event Systems (DES), an important class of cyber-physical systems. First, we develop a uniform approach for synthesizing property enforcing supervisors for a wide class of properties called information-state-based (IS-based) properties. We then consider the enforcement of non-blockingness in addition to IS-based properties. We develop a nite structure called the All Enforcement Structure (AES) that embeds all valid supervisors. Furthermore, we propose novel and general approaches to solve the sensor activation problem for partially-observed DES. We extend our results for the sensor activation problem from the centralized case to the decentralized case. The methodology in the dissertation has the following novel features: (i) it explicitly considers and handles imperfect state information, due to sensor noise, and limited controllability, due to unexpected environmental disturbances; (ii) it is a uniform information-state-based approach that can be applied to a variety of user-speci ed requirements; (iii) it is a formal model-based approach, which results in provably correct solutions; and (iv) the methodology and associated theoretical foundations developed are generic and applicable to many types of networked cyber-physical systems with safety-critical requirements, in particular networked systems such as aircraft electric power systems and intelligent transportation systems.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137097/1/xiangyin_1.pd
    corecore