23,468 research outputs found

    Trees with the most subtrees -- an algorithmic approach

    Full text link
    When considering the number of subtrees of trees, the extremal structures which maximize this number among binary trees and trees with a given maximum degree lead to some interesting facts that correlate to other graphical indices in applications. The number of subtrees in the extremal cases constitute sequences which are of interest to number theorists. The structures which maximize or minimize the number of subtrees among general trees, binary trees and trees with a given maximum degree have been identified previously. Most recently, results of this nature are generalized to trees with a given degree sequence. In this note, we characterize the trees which maximize the number of subtrees among trees of a given order and degree sequence. Instead of using theoretical arguments, we take an algorithmic approach that explicitly describes the process of achieving an extremal tree from any random tree. The result also leads to some interesting questions and provides insight on finding the trees close to extremal and their numbers of subtrees.Comment: 12 pages, 7 figures; Journal of combinatorics, 201

    Partitions and Coverings of Trees by Bounded-Degree Subtrees

    Full text link
    This paper addresses the following questions for a given tree TT and integer d≥2d\geq2: (1) What is the minimum number of degree-dd subtrees that partition E(T)E(T)? (2) What is the minimum number of degree-dd subtrees that cover E(T)E(T)? We answer the first question by providing an explicit formula for the minimum number of subtrees, and we describe a linear time algorithm that finds the corresponding partition. For the second question, we present a polynomial time algorithm that computes a minimum covering. We then establish a tight bound on the number of subtrees in coverings of trees with given maximum degree and pathwidth. Our results show that pathwidth is the right parameter to consider when studying coverings of trees by degree-3 subtrees. We briefly consider coverings of general graphs by connected subgraphs of bounded degree

    Scaling limits of Markov branching trees with applications to Galton-Watson and random unordered trees

    Full text link
    We consider a family of random trees satisfying a Markov branching property. Roughly, this property says that the subtrees above some given height are independent with a law that depends only on their total size, the latter being either the number of leaves or vertices. Such families are parameterized by sequences of distributions on partitions of the integers that determine how the size of a tree is distributed in its different subtrees. Under some natural assumption on these distributions, stipulating that "macroscopic" splitting events are rare, we show that Markov branching trees admit the so-called self-similar fragmentation trees as scaling limits in the Gromov-Hausdorff-Prokhorov topology. The main application of these results is that the scaling limit of random uniform unordered trees is the Brownian continuum random tree. This extends a result by Marckert-Miermont and fully proves a conjecture by Aldous. We also recover, and occasionally extend, results on scaling limits of consistent Markov branching models and known convergence results of Galton-Watson trees toward the Brownian and stable continuum random trees.Comment: Published in at http://dx.doi.org/10.1214/11-AOP686 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore