1,414 research outputs found

    On Skew Hadamard difference sets

    Full text link
    In this paper we construct exponentionally many non-isomorphic skew Hadamard difference sets over an elementary abelian group of order q3q^3

    Abstract hyperovals, partial geometries, and transitive hyperovals

    Get PDF
    Includes bibliographical references.2015 Summer.A hyperoval is a (q+2)- arc of a projective plane π, of order q with q even. Let G denote the collineation group of π containing a hyperoval Ω. We say that Ω is transitive if for any pair of points x, y is an element of Ω, there exists a g is an element of G fixing Ω setwise such that xg = y. In1987, Billotti and Korchmaros proved that if 4||G|, then either Ω is the regular hyperoval in PG(2,q) for q=2 or 4 or q = 16 and |G||144. In 2005, Sonnino proved that if |G| = 144, then π is desarguesian and Ω is isomorphic to the Lunelli-Sce hyperoval. For our main result, we show that if G is the collineation group of a projective plane containing a transitivehyperoval with 4 ||G|, then |G| = 144 and Ω is isomorphic to the Lunelli-Sce hyperoval. We also show that if A(X) is an abstract hyperoval of order n ≡ 2(mod 4); then |Aut(A(X))| is odd. If A(X) is an abstract hyperoval of order n such that Aut(A(X)) contains two distinct involutions with |FixX(g)| and |FixX(ƒ)| ≥ 4. Then we show that FixX(g) ≠ FixX(ƒ). We also show that there is no hyperoval of order 12 admitting a group whose order is divisible by 11 or 13, by showing that there is no partial geometry pg(6, 10, 5) admitting a group of order 11 or of order 13. Finally, we were able to show that there is no hyperoval in a projective plane of order 12 with a dihedral subgroup of order 14, by showing that that there is no partial geometry pg(7, 12, 6) admitting a dihedral group of order 14. The latter results are achieved by studying abstract hyperovals and their symmetries

    The Poisson Geometry of Plancherel Formulas for Triangular Groups

    Full text link
    In this paper we establish the existence of canonical coordinates for generic co-adjoint orbits on triangular groups. These orbits correspond to a set of full Plancherel measure on the associated dual groups. This generalizes a well-known coordinatization of co-adjoint orbits of a minimal (non-generic) type originally discovered by Flaschka. The latter had strong connections to the classical Toda lattice and its associated Poisson geometry. Our results develop connections with the Full Kostant-Toda lattice and its Poisson geometry. This leads to novel insights relating the details of Plancherel theorems for Borel Lie groups to the invariant theory for Borels and their subgroups. We also discuss some implications for the quantum integrability of the Full Kostant Toda lattice

    Author index volume 41 (1982)

    Get PDF
    • …
    corecore