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Abstract

Abstract Hyperovals, Partial Geometries, and Transitive Hyperovals

A hyperoval is a (q+2)- arc of a projective plane π, of order q with q even. Let G denote

the collineation group of π containing a hyperoval Ω. We say that Ω is transitive if for

any pair of points x, y ∈ Ω, there exists a g ∈ G fixing Ω setwise such that xg = y. In

1987, Billotti and Korchmaros proved that if 4||G|, then either Ω is the regular hyperoval in

PG(2,q) for q=2 or 4 or q = 16 and |G||144. In 2005, Sonnino proved that if |G| = 144, then

π is desarguesian and Ω is isomorphic to the Lunelli-Sce hyperoval. For our main result,

we show that if G is the collineation group of a projective plane containing a transitive

hyperoval with 4 ||G|, then |G| = 144 and Ω is isomorphic to the Lunelli-Sce hyperoval. We

also show that if A(X) is an abstract hyperoval of order n ≡ 2(mod 4), then |Aut(A(X))| is

odd. If A(X) is an abstract hyperoval of order n such that Aut(A(X)) contains two distinct

involutions with |FixX(g)| and |FixX(f)| ≥ 4. Then we show that FixX(g) 6= FixX(f). We

also show that there is no hyperoval of order 12 admitting a group whose order is divisible by

11 or 13, by showing that there is no partial geometry pg(6, 10, 5) admitting a group of order

11 or of order 13. Finally, we were able to show that there is no hyperoval in a projective

plane of order 12 with a dihedral subgroup of order 14, by showing that that there is no

partial geometry pg(7, 12, 6) admitting a dihedral group of order 14. The latter results are

achieved by studying abstract hyperovals and their symmetries.
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CHAPTER 1

Introduction

In 1987, Biliotti and Korchmaros [9] showed that a hyperoval of a projective plane of

even order that admits a group of order divisible by four is either a regular hyperoval in a

Desarguesian plane of order 2 or 4 or is in a plane of order 16 and has group of order at

most 144. In 2005, Sonnino [78] showed that a transitive hyperoval of a projective plane of

order 16 with a group of order 144 is necessarily the hyperoval of the Desarguesian plane of

order 16 constructed by Lunelli and Sce[60] in 1958. Here we rule out the remaining cases,

completing the proof of the

Theorem 1.1. Main Theorem A hyperoval of a projective plane of even order that

admits a group of order divisible by four is either a regular hyperoval in a Desarguesian

plane of order 2 or 4 or the Lunelli-Sce hyperoval of the Desarguesian plane of order 16.

Our discussion will begin with a review of the relevant background material accompanied

by a host of examples to aid in the absorption of the material. Next, we delve a little deeper

into the theory of partial geometries focusing our attention on projective planes, hyperovals,

and their automorphisms. Abstract hyperovals and their automorphisms our introduced at

the next stage, as well as a few results- some of which are new. The proof of the main

theorem is in the final chapter, where we’ll also discuss transitive hyperovals, and the results

(past and new) needed for proving our main result.
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1.1. Opening Remarks

Finite geometry is concerned with the analysis of information representable through

finite incidence structures. There is great power and elegance in a purely combinatorial

or geometric proof; however, these results are notoriously tricky to conjure up. To date,

many results in finite geometry are obtained through of a wealth of methods and tools from

many areas of mathematics. In addition, even the most modest of modern results require

vast amounts of CPU computations ( and memory). Our methods combine old fashion blue-

collar counting arguments with (less vast) CPU computations. The remainder of this chapter

will focus on building up the vocabulary essential for understanding the ideas presented in

the later chapters.
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CHAPTER 2

Incidence Structures

By an incidence structure we mean a triple S = (P,L, I) consisting of: a non-empty set,

P , whose elements we call points, a non-empty set, L, disjoint from P , whose elements we

call blocks, lines, or edges, and a binary relation I between P and L; that is, a subset of

P × L, which we call incidence. The converse I∗ of I is {(l, X) ∈ L× P : (X, l) ∈ I}, and it

allows us to define the dual incidence structure S∗ = (L, P, I∗) of S.

2.1. t-Designs & Steiner Systems

When we use set membership as incidence, and when no blocks are incident with the

same set of points, we may identify each block with the set of points incident with it. A

t− design or (t, v, k, λ)-design is an incidence structure (P, B, ∈) consisting of: a set P of

points of cardinality v, as well as a set B of k element subsets of P called blocks with I =

{(p, b) ∈ I ⇔ p ∈ b} satisfying the following axiom:

• TD 1: any t points are contained in exactly λ blocks.

A Steiner system is a t-design with λ = 1.

Example 2.1.1

Let P = {a, b, c, d}, B = { { a, b }, {a, b }, { a, d }, { b, c }, { b, d }, { c, d } }. Then

S = (P,B,∈) is a Steiner System with t = 2.

3



Example 2.1.2

The previous example generalizes as follows. Let Kn = (V,E) denote the complete graph

on n vertices. Let P = V ( vertices of Kn ) = {v1, . . . , vn}. Let B = E ( edges of Kn ).

Define SKn = (P,B,∈). To see that SKn is a Steiner system with t = 2, observe that TD 1

follows directly from the from the definition of a complete graph. The correspondence with

the complete graph on n vertices ( n > 1) allows us to construct an infinite family of Steiner

systems, {SKn}n∈N−{1}.

Example 2.1.3

Let P = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Now the blocks are given by: b1 = {1, 2, 3}, b2 = {1, 4, 7},

b3 = {1, 5, 9}, b4 = {1, 6, 8}, b5 = {2, 4, 9}, b6 = {2, 5, 8}, b7 = {2, 6, 7}, b8 = {3, 4, 8}, b9 =

{3, 5, 7}, b10 = {3, 6, 9}, b11 = {4, 5, 6}, b12 = {7, 8, 9}. Then (P,B,∈) is a Steiner system

with t = 2.

2.2. Strongly Regular Graphs

A strongly regular graph Γ, with parameters, (n, k, λ, µ), is a graph with the following

properties:

• Γ has n vertices,

• Γ is k-regular,

• any adjacent pair of vertices has exactly λ common neighbors, and finally

• Γ any pair of non-adjacent vertices has exactly µ neighbors in common.

4



Assume that Γ is a strongly regular graph on n vertices. The adjacency matrix of Γ

which we denote A, is an n× n array of ai,j such that:

ai,j = 1 if vivj ∈ E(Γ), 0 otherwise.

Strongly regular graphs have interesting properties when observed through the lens of an

adjacency matrix.

Claim: Suppose that Γ is a strongly regular graph with parameters (n, k, λ, µ), and let J

denote the n× n all ones matrix. Then

•

AJ = kJ

•

A2 + (µ − λ)A + (µ − k)I = µJ

A great deal of work has gone towards the analysis of the eigenvalues of the adjacency

matrix of a strongly regular graph. In fact, given the parameters one may determine the

eigenvalues with multiplicity of the corresponding adjacency matrix. The adjacency matrix

has three eigenvalues, k , the regularity of Γ, as well as two others, l and r, (r > 0 and l <

0) with

r + l = λ − µ,

rl = µ − k.

We list some of the known criteria for the existence of a strongly regular graph.

5



Theorem 2.1. If Γ is a strongly regular graph with parameters, (n, k, λ, µ) then the

following is true:

(1)

n − 2k + µ − 2 ≥ 0

(2)

k(k − λ − l) = µ(n − k − 1)

(3) Let f and g denote the multiplicity of the eigenvalues r and l, respectively. Then

f =
k(l + 1)(l − k)

(k + rl)(r − l)
, g =

k(r + 1)(k − r)

(k + rl)(r − l)
,

where f and g must both be integral and non-negative.

(4) (The Krein Conditions)

(r + 1)(k + r + 2rl) ≤ (k + r)(l + 1)2,

(l + 1)(k + l + 2rl) ≤ (k + l)(r + 1)2.

Example 2.2.1

Let S6 denote the symmetric group on six points, and X its associated G−Set. Consider the

graph with vertices the set of fixed point free involutions in S6, V = (1, 2)(3, 4)(5, 6)S6 , and

edge set E = {(a, b) ∈ V ×V : |FixX(a ∗ b)| = 2.}. Then the resulting graph Γ = (V,E)

has the following properties.

6



(1) |V | = 15 (n = 15).

(2) Every vertex has exactly 6 neighbors (k = 6).

(3) Every pair of adjacent vertices share exactly 1 neighboring vertex ( λ = 1).

(4) Every pair of non-adjacent vertices share exactly 3 neighboring vertices in common

( µ = 1).

It is worth noting that the previous graph was also an example of an abstract hyperoval,

to be defined later in our discussion.

Example 2.2.2 The above example generalizes as follows. Let A(X) denote an abstract

hyperoval of order q, and Sq+2 denote the symmetric group on q + 2 points, and X its

associated G − Set. Define Γ = (V,E) with V = A(X), and edge set E = {(a, b) ∈

V × V : |FixX(a ∗ b)| = 2.}. Then the resulting graph Γ = (V,E) has the following

properties.

(1) |V | = q2 − 1 (n = q2 − 1).

(2) Every vertex has exactly (q−2)(q+2)
2

neighbors (k = (q−2)(q+2)
2

).

(3) Every pair of adjacent vertices share exactly q2−2q−6
2

neighboring vertices ( λ =

q2−2q−6
2

).

(4) Every pair of non-adjacent vertices share exactly q2−4
4

neighboring vertices in com-

mon ( µ = q2−4
4

).

We will later on show that we may construct an abstract hyperoval for each classical pro-

jective plane PG(2, q). This provides us with a systematic method of constructing strongly

regular graphs with these parameters whenever there exists a finite field of order q. Therefore,

we obtain an infinite family of strongly regular graphs- one for each prime power q.

7



Example 2.2.3 The triangle graph Tn is the line graph of Kn. It is the graph corresponding

to the dual of the incidence matrix of Kn. Tn may also be obtained by reversing the incidence

containment relation which is induced by the map I = V × E 7→ E × V = I∗, where

(e, v) ∈ I∗ ⇔ e 3 v. Denote this process as dualizing. We claim that Tn is strongly

regular for any natural n.

To count the vertices of Tn we count the edges of Kn. In Kn every vertex shares an edge,

and there are n vertices- this gives us
(
n
2

)
= n(n−1)

2
vertices for Tn.

To compute the degree of a vertex of Tn, we observe that any vertex of Kn is adjacent to

n-1 other vertices. Therefore, there are n-1 edges incident with any vertex. Now any edge

uv meets an additional n-2 edges at vertices u and v. Given that Tn is the dual of Kn, we

see that the regularity k = 2(n-2).

Consider two adjacent edges uv and vw which meet at the vertex v in Kn. To compute

the number of edges adjacent to both uv and vw we write the vertices of Kn − {u, v, w}

as x1, . . . , xn−3. It follows from the definition of the complete graph that there exist edges

x1v, x2v, . . . , xn−3v that are adjacent to both uv and vw at v. There is one additional

edge, uw that is adjacent to both uv and vw. Adding them all up gives us a total of

n− 3 + 1 = n− 2 = λ.

Finally, to compute the number of common edges shared by nonadjacent edges of Kn,

we consider two non-adjacent edges uv & wx. Again, by the definition of Kn, we see that

there are only four edges namely, uw, ux, vw, vx. Thus, µ = 4.

At last, we have shown that {Tn}n∈N is an infinite family of strongly regular graphs with

parameters (
(
n
2

)
, 2(n-2), n− 2, 4).

8



2.3. Partial Geometries

A partial geometry pg(s, t, α) with parameters v, k, α is an partial linear space consisting

of: a set P of points, a set L of lines satisfying the following axioms:

• any line is incident with s+1 points,

• any point is incident with exactly t+1 lines,

• if (p, L) is a non-incident point-line pair, there exists exactly α lines through p

incident with a point incident with L.

This incidence structure was introduced by Bose [1963]. The following results are known

about partial geometries, and can also be found in [? ]:

• If S = (P,B, I) is a partial geometry with parameters (s, t, α), then the dual struc-

ture S∗ = (P ∗, B∗, I∗) = (B,P, I) with s∗ = t, t∗ = s, and α∗ = α, is also a partial

geometry.

•

|P | = v = (s + 1)
st + α

α
, &, |B| = ((t + 1)

st + α

α

• The partial geometries with α = 1 are generalized quadrangles.

• The partial geometries with α = s + 1 or dually α = t + 1 correspond to 2-(v, s +

1,1) designs and their duals.

The point graph of a partial geometry S = pg(s, t, α) is a graph Γ(S), with

V (Γ(S)) = P,

and the following edge relation:

xy ∈ E(Γ(S)) ⇔ ∃ b ∈ B : {x, y} ⊂ b.

9



The following result is due to [11] :

Theorem 2.2. The point graph of a partial geometry pg(s, t, α), is a strongly regular

graph with parameters (n, k, λ, µ) such that:

n =
(s + 1)(st + α)

α
, k = s(t + 1),

λ = s − 1 + t(α − 1), µ = α(t + 1).

A strongly regular graph having the parameters above, with

t ≥ 1, s ≥ 1,

1 ≤ α ≤ s + 1, & 1 ≤ α ≤ t + 1

is called pseudo− geometric. It is worth pointing out that a strongly regular graph having

the parameters above may not necessarily come from a partial geometry. In the case where

a strongly regular graph Γ, with the parameters (n, k, λ, µ) corresponds to the point graph

of a partial geometry, we say that Γ is geometric. Another result from Bose gives us a way

to determine if a pseudo-geometric graph is geometric from the parameters.

Theorem 2.3. [11] A pseudo-geometric graph with parameters

n =
(s + 1)(st + α)

α
, k = s(t + 1),

λ = s − 1 + t(α − 1), µ = α(t + 1)

is geometric if

2(s + 1) > t(t + 1) + α(t + 2)(t2 + 1)

10



Theorem 2.4. If Γ is a pseudo-geometric graph with parameters (s, t, α), then

r = s − α,

Let us review some important examples of partial geometries. Many of these can be

found in [? ].

Example 2.3.1 The Partial Geometry: S( Ω )

This infinite family was constructed by Thas and independently by Wallis [? ]. Let π denote

a projective plane of order q. Also, let Ω denote a maximal arc in π of degree d. We define

the incidence structure S(Ω) = (P,B, I). The points of S(Ω) are the points of π that are

not contained in Ω. The lines of S(Ω) are the lines of π that are incident with d points of

Ω. The incidence is that of π. Then S(Ω) is a partial geometry with parameters,

t = q − q

d
, s = q − d, α = q − q

d
− d + 1.

The following example is an infinite family first constructed by Thas [? ].

Example 2.3.2 The Partial Geometry: T ∗2 (K)

Let K be a maximal arc of degree d in PG(2, q) over GF (q). As K, has only passants and

d-secants, it will yield a linear representation of a partial geometry in AG(3, q). This partial

geometry T ∗2 (K) has parameters:

t = (q + l)(d − 1), s = q 1, α = d − 1.

11



For the previous example, it can be shown that in the case where q is a power of 2, that

T ∗2 (K) is a generalized quadrangle if and only if K is a hyperoval. The final example from

this section is another infinite class of partial geometries constructed by De Clerck, Dye, and

Thas [? ].

Example 2.3.3 The Partial Geometry: PQ+(4n− 1, 2)

Define a spread Σ of the non-singular hyperbolic quadric

Q+ = Q+(4n− 1, 2) : n ≥ 2,

in PG(4n − 1, 2) to be a maximal set of 22n−1 + 1 disjoint (2n − 1)-dimensional spaces on

Q+. Let Σ be a spread of Q+ and let Ω be the set of all hyperplanes of the elements of Σ.

Define an incidence structure PQ+(4n − 1, 2) = (P,L, I), with points and lines given

by:

• P = {x ∈ PG(4n− 1, 2) : {x} ∩Q+ = ∅},

• L = Ω,

• (x, `) ∈ I ⇔ x ∈ the polar space `∗ of ` with respect to Q+.

The incidence structure given above is a partial geometry with parameters

s = 22n−1 − 1, t = 22n−1, α = 22n−2.

2.4. Partial Linear Spaces

A partial linear space is an incidence structure S = (P,L, I) consisting of points, lines

satisfying the following axioms:
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• any line is incident with at least two points, and

• two points are jointly incident with at most one line.

Example 2.4.1 Let P = {1,2,3,4,5 }, L = { {1,2 }, {2,3 }, {4,5 } }. Then (P,L,∈) is a

partial linear space.

Example 2.4.2 A parallelism of a plane is a partition of its point set into sets of parallel

lines. Each parallelism induces a partial linear space which we denote Sm and construct as

follows.

Let (K,+, ∗) be a division algebra, and P = K2. Define L = {`b = {(x, mx + b) ∈

K2} }b∈K . This allows us to define incidence as I = {(P, `b) ∈ P ×L : P = (x, mx+b)}.

Then Sm = (P,L, I) is a partial linear space for all m ∈ K and thereby defines an infinite

family of partial linear spaces parameterized by K.

Example 2.4.3 Let P = S1 = {(x, y) ∈ R2| x2 + y2 = 1}. Define L = {`θ =

{(cos(θ), sin(θ)), (cos(θ + π), sin(θ + π))} ⊂ R2} }b∈R. This allows us to define incidence

as I = {(P, `θ) ∈ P ×L : P ∈ `θ}. A quick inspection shows us that any line has exactly

two points, and that two points are incident with at most one line. It follows that SS1 is a

partial linear space.

Example 2.4.4 Let P = S1 = {(x, y) ∈ R2| x2 + y2 ≤ 1}. Define L = {`θ =

{(x, ( sin(θ)−sin(θ + π)
cos(θ)−cos(θ + π)

)x − cos(θ)( sin(θ)−sin(θ + π)
cos(θ)−cos(θ + π)

) + sin(θ)) : x ∈ [−1, 1]} ⊂ R2} }θ∈[0,2π].

This allows us to define incidence as I = {(P, `θ) ∈ P ×L : P ∈ `θ}. A quick inspection

shows us that any line has at least two points, and that two points are incident with at most

one line. It follows that SD1 = (P,L, I) is a partial linear space.
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2.5. Linear Spaces

A linear space is an incidence structure S = (P,L, I) consisting of points, lines, satisfying

the following axioms:

• LS1 any line is incident with least two points, and

• LS2 every two points are jointly incident with a unique line.

Example 2.5.1 Let P = {1,2,3,4 }, L = { {1,2 }, {1,3 }, {1,4 }, {2,3 }, {2,4 }, {3,4 } }.

Then S = (P,L,∈) is a linear space.

Example 2.5.2 The previous example generalizes as follows. Let Kn = (V,E) denote the

complete graph on n vertices. Let P = V ( vertices of Kn ) = {v1, . . . , vn} . Let L = E (

edges of Kn ). Define SKn = (P,L, I). To see that SKn is a linear space, we observe that LS1

is satisfied by the definition of an edge, and LS2 follows from the definition of a complete

graph. The correspondence with the complete graph on n vertices ( n > 1) allows us to

construct an infinite family of linear spaces, {SKn}n∈N−{1}.

2.6. Isomorphisms of Incidence Structures

Let A = (P,LA, IA) and B = (Q,LB, IB). An isomorphism of incidence structures is a

map φ : A 7→ B that is not only bijective on the points and lines of A and B, but also

preserves incidence; that is (φ(P ), φ(l)) ∈ IB if and only if (P, l) ∈ IA. In other words,

(1) ∀ q ∈ Q, ∃! p ∈ P such that φ(p) = q.

(2) ∀ m ∈ LB, ∃! l ∈ LA such that φ(l) = m.

(3) Suppose φ(pi) = qi for i ∈ 1,2. p1 is incident p2 ⇔ q1 is incident with q2.
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An isomorphism of incidence structures is simply a relabeling of the point set that

preserves incidence. Before we head off to the next section, let’s discuss a few easy examples.

Example 2.6.1

Let P = {1,2,3,4 }, L = { {1,2 }, {1,3 }, {1,4 }, {2,3 }, {2,4 }, {3,4 } } . Let Q =

{a,b,c,d }, L = { {a,b }, {a,c }, {a,d }, {b,c }, {b,d }, {c,d } }. Then the map φ: 1 7→ a, 2

7→ b, 3 7→ c, 4 7→ d , is an isomorphism of linear spaces.

Example 2.6.2

Let P = {0,1,2,3,4,5,6 }, L = { {1,2,4 }, {2,3,5 }, {3,4,6 }, {0,4,5 }, {1,5,6 }, {0,2,6 }, {0,1,3

}} . Let Q = { I, II, III, IV, V, VI, VII }, L = { { I, II, III }, {I, IV, V }, {I, VI, VII }, {II,

IV, VI }, { II, V, VII }, {III, IV, VII }, {III, V, VI } } . Then the map φ: 0 7→ I, 1 7→ II,

2 7→ III, 3 7→ IV , 4 7→ V , 5 7→ V I, 6 7→ V II , is an isomorphism of projective spaces.

2.6.1 Automorphisms of Incidence Structures

In the case where a map φ merely permutes the point set of an incidence structure A while

preserving incidence, we say that φ is an automorphism. The set of all automorphisms of an

incidence structure A form a group, Aut(A), under compositions. Naturally, the structure of

A and Aut(A) are hopelessly intertwined. It is because of the aforementioned fact that one of

our main tools for investigating incidence structures will be group theory. When the incidence

structure is a projective plane, we use the classical term collineation for automorphism.
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A translation is a collineation of an affine plane which acts freely on the parallel classes.

A translation plane is an affine plane admitting a group of translations acting transitively

on its points. We will revisit translation planes in the upcoming section on spreads, we close

this chapter with an example of a collineation of PG(2, 2).

Consider the previous example.

Example 2.6.3 Let A = (P , L) Let P = {0,1,2,3,4,5,6 }, L = { {1,2,4 }, {2,3,5 }, {3,4,6

}, {0,4,5 }, {1,5,6 }, {0,2,6 }, {0,1,3 }} . Observe that each of the lines have the form {1

+ k, 2 + k, 4 + k } where k ∈ {0,1,2,3,4,5,6 }. Now assume that φ acts on the lines by

φ : k 7→ (k + 1)(mod7). It is easy to see that φ permutes the lines of A.

Now that we have had a chance to review some of the more basic topics of our discussion,

we transition to the study of projective planes.
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CHAPTER 3

Projective Geometries

3.1. Introduction

Let K be a division ring and V a (left) vector space over K. As usual, there are algebraic

and geometric of a given projective geometry. The algebraic description is given by the lat-

tice of all subspaces of V with subspace containment corresponding to incidence. We denote

this space as PG(V ). The geometric correspondence is natural: the 1-dimensional subspaces

correspond to points, the 2-dimensional subspaces correspond to lines, 3-dimensional sub-

spaces correspond to planes, and so forth. If W ⊂ V , the algebraic dimension of PG(W ) is

the cardinality of its basis in V , and the geometric dimension (sometimes denoted by g-dim)

is one less than its algebraic dimension, (sometimes denoted by a-dim). For instance, if W

is a subspace of V with a-dim m, PG(W ) has g-dim m-1.

Counting Subspaces: Let PG(n, q) denote the n-dimensional projective geometry

over GF (q). We introduce the Gaussian binomial coefficient as a tool for enumerating the

m-dimensional subspaces of PG(n, q). Define

(
n+ 1

m+ 1

)
q

=
m+1∏
i=1

qn+1 − qi−1

qm+1 − qi−1
.

We claim that
(
n+1
m+1

)
q

is the number of m dimensional subspaces of PG(n, q). To see this,

observe that the number of linearly independent m + 1-tuples is given by the numerator.

Dividing out by the number of spanning m + 1-tuples (the denominator), we obtain the

desired result.
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For any projective geometry of g-dimension m, it is a well known fact that the space

satisfies Desargues’ Theorem (given below) when m > 2. As a result, given two projective

geometries PG(V ) and PG(V ′) with V and V ′ left vector spaces of dimension n and n′ over

division rings K and K ′ (respectively) we have that:

PG(V ) ' PG(V ′) whenever n = n′ & K ' K ′.

For this reason, we restrict our attention to projective geometries of g-dimension 2- the

projective planes. However, there are techniques which use projective spaces of g-dim >

2, to construct projective planes. We will discuss a few of these techniques later on in the

chapter.

3.2. Affine Planes

An affine plane is an incidence structure satisfying the following axioms:

• A1 Any two points are incident with a unique line.

• A2 To any non-incident point line pair (P , `), there exists a unique line through P

not incident with `.

• A3 There exists a set of three non-collinear points.

Example 3.2.1 Let (K,+, ∗) denote a division algebra. Define P = K × K. We define

lines as follows.

Let L0 = {`(m,b) = {(x,mx+ b) ∈ P for some fixed m and b ∈ K }}(m,b)∈K2 . Define L∞

= {`c = {(c, y) ∈ P for some fixed c ∈ K}}c∈K . Write L = L0 ∪ L∞. Then (P , L, ∈) is

an affine plane and we denote it as A2K the affine plane coordinatized by K.
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3.3. Projective Planes

A projective plane is an incidence structure satisfying the following axioms:

• P1 every line is incident with least two points,

• P2 any two points are incident with a unique line.

• P3 any two lines intersect at a unique point, and

• P4 there exists a set of four points with no three collinear.

3.3.1. Projectivization. Write an affine plane A as (PA, LA, IA), and a projective

plane P by (PP, LP, IP). For any point P , we denote the set of lines incident with P as (P ).

Given a line `, we denote the set of points on ` as [`] Every affine plane may be extended to

a projective plane through the following process.

(1) Define an equivalence relation on LA as follows:

` ∼ m⇔ [`] = [m] or [`] ∩ [m] = ∅.

Denote LA/ ∼ as L̄A with elements ¯̀.

(2) Introduce a line (∞) such that for each ¯̀∈ L̄A there exists exactly one point P` ∈

(∞) in which , ∀ m ∈ ¯̀, [m] contains P`.

(3) Define LP as the lines with point set [m] ∪ {P`} for any m ∈ ¯̀ as ¯̀ ranges over L̄A.

The resulting incidence structure P with point set PP = PA ∪ {(∞)}, line set LP, and corre-

sponding incidence IP is a projective plane. We denote this process as the projectivization

of A and write P(A). This procedure is invertible when beginning with a projective plane,

one need only designate a line at infinity and remove its points as well as the lines in which

they are incident.
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3.4. Spreads & Coordinatization

Biliotti, Jha, and Johnson give a nice introduction to spreads in [8]. We follow their

outline in this portion of our exposition, beginning with the more natural of the two con-

structions of spreads.

Construction of Spreads via Vector Spaces

Let V be a 2n-dimensional vector space over GF (q). A spread on V is a partition of V

into a collection S of pairwise trivially intersecting subspaces of dimension n. The associated

collection of all cosets v + S where v ∈ V , is realized as the line-set of a translation plane

of order qn having V as its point-set.

Construction of Spreads via Groups

Let G be a group. A partition of G is a set H = {H1, H2, . . .} such that

(1) Hi ∩Hj = {idG} whenever i 6= j, &

(2) G =
⋃
iHi

If all the subgroups H1, H2, . . . are normal in G, we say that H is a normal partition of

G.

Recall that we say that G splits over M, N C G whenever G = MN = NM . Define

a normal splitting partition to be a normal partition N = {N1, N2, . . .}, if Ni and

Nj split G whenever i 6= j. Before we can move ahead in our discussion, we shall need the

following results.

Theorem 3.1. Let G be a group that admits a splitting normal partition N , then G is

Abelian. Moreover, the components Ni (i = 1, 2, . . .) are mutually isomorphic.
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Theorem 3.2. Let N = {N1, N2, . . .} be the components of a normal splitting partition

of a group G. Then the following hold:

(1) (G,+) is an Abelian group and G = N1 ⊕N2 with N1
∼= N2 and N1 6= N2.

(2) Define an incidence structure on G by

π(N ) := (G, {x+N : x ∈ G, N ∈ N}),

The points are given by elements of G. The lines are given by the cosets x + N of

the components N ∈ N . Then π(N ) is an affine plane. The parallel postulate is

confirmed by the observation that two lines of π(N ) are parallel whenever they are

cosets of the same N ∈ N .

(3) The translation group of π(N ) is simply the endomorphism group of G (i.e End(G))

of given by:

τG := {τg : x 7→ x + g : g ∈ G}.

(4) τG has a regular action on G, therefore it must also have a regular action on the

affine points of π(N ).

We define an important subgroup, the kernel of endomorphisms of the partition

(K,+, ◦) is a ring under addition and composition , and it is given by {φ ∈ Hom(G,+) :

φ(N) = N, ∀ N ⊂ N}. The kernel will allow us to ”see” the ground field of the translation

plane obtained from a spread via the vector space construction. The following theorem and

corollary provide us with precise statements of these ideas.

Theorem 3.3. Let G be a group that admits a splitting normal partition of N . Then the

kernel of endomorphisms is a division ring and G is a vector space over K under its standard

action of G. Moreover, every component of N is a K-subspace of V .
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Corollary 3.4. Let G be a group admitting a normal splitting partition of N , and let

0G denote the identity element. Then G is an Abelian group that becomes a vector space

under the standard action of the kernel K. Furthermore, the translation plane πN admits

K× = K − 0G as a group of homologies with center 0G. In addition, the lines through 0G

are the members of N , and K is the largest subgroup of Hom(G,+) that leaves invariant

each of the lines through 0G.

3.4.1. Planar Ternary Rings. Given a nonempty set A ⊃ {0, 1}, suppose that we

may define a ternary operation T : A× A× A −→ A satisfying:

(1)

T (a, 1, 0) = T (1, a, 0) = a ∀ a ∈ A;

(2)

T (0, 1, b) = T (1, b, 0) = b ∀ b ∈ A;

(3)

T (a, b, 0) = a ∗ b;

(4)

T (a, 1, b) = a+ b.

We denote the pre-planar ternary ring over A as Apre. Define (Apre, +) to be the set { c

∈ A: T (a, 1, b) = c for some (a, b) ∈ A × A }. Now, define (Apre, ∗) to be the set { c ∈

A: T (a, b, 0) = c for some (a, b) ∈ A× A }. Then A is a planar ternary ring provided that

(Apre, +) and (Apre-{0}, ∗) are both loops with identities 0 and 1 respectively. If A is left

or right distributive, A is a quasifield. Furthermore, planar ternary ring is linear if T (a, x, b)

= ax + b.
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Here are a few well known properties of planar ternary rings.

• PTR 1. Given a,x, y in A ∃! b ∈ A such that

T (a, x, b) = y.

• PTR 2. Given x, y, x′, y′ in A ∃! ordered pair (a,b) ∈ A such that

T (a, x, b) = y & T (a, x′, b) = y′.

• PTR 3. Given a, b, a′, b′ in A ( a 6= a′) ∃! x ∈ A such that

T (a, x, b) = T (a′, x, b′).

Planar ternary rings are necessary for the coordinatization translation planes. Given a planar

ternary ring A, one may coordinatize a translation plane over A as follows.

• The point set is given by: {(a, b) : a, b ∈ A. }

• The lines with defined slope are given by the point sets: [m, b] = { (x, xm + b) :

x ∈ A. }

• The ”vertical” lines are given by the point sets: [c, x] = { (c, x) : x ∈ A. }

3.4.2. Quasifields. A left or right quasifield (Q,+, ∗) is an abelian group under +

satisfying the following additional axioms under ∗. Assume 0 is the additive identity.

(1) 0 ∗ a = a ∗ 0 = 0 for all a ∈ S.

(2) a ∗ b ∈ S whenever a, b ∈ S (closure under ∗).
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(3) a ∗ (b+ c) = a ∗ b+ a ∗ c (right distributivity of ∗ over +) if and only if Q is a right

quasifield.

(4) (a + b) ∗ c = a ∗ c + b ∗ c (left distributivity of ∗ over +) if and only if Q is a left

quasifield.

(5) For every nonzero a, b, ∈ S there exists unique x and y ∈ S such that x ∗ a = b and

a ∗ y = b (invertibility of non-zero elements).

3.4.3. Semifields. A semifield (S,+, ∗) is an abelian group under + satisfying the fol-

lowing additional axioms under ∗. Assume 0 is the additive identity.

(1) 0 ∗ a = a ∗ 0 = 0 for all a ∈ S.

(2) a ∗ b ∈ S whenever a, b ∈ S (closure under ∗).

(3) a ∗ (b+ c) = a ∗ b+ a ∗ c (right distributivity of ∗ over +).

(4) (a+ b) ∗ c = a ∗ c+ b ∗ c (left distributivity of ∗ over +).

(5) For every nonzero a, b, ∈ S there exists unique x and y ∈ S such that x ∗ a = b and

a ∗ y = b (invertibility of non-zero elements).

We say that a semifield is proper if it is non-associative. A semifield is a linear planar ternary

ring which is right and left distributive, or equivalently, a quasifield that is right and left

distributive. Any semifield may be used to coordinatize a plane using the same method for

planar ternary rings given above.

When a projective plane is coordinatized by a finite field of given order q, a projective

plane is merely the projective geometry of g-dimension = 2 denoted by PG(2, q). These

are precisely the desarguesian planes. A result of Wedderburn showed that every associative

division algebra is a finite field. However, for a general projective plane of order q, the planar

ternary ring providing its coordinatization need only be a non-associative 1 division algebra.

1We define non-associative to mean not necessarily associative.
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3.5. Projective Planes

Recall from the last section that a projective plane is an incidence structure (P,L, I)

having the following incidence relation:

• P1: For any two points, there exists a unique line incident with both.

• P2: Every pair of lines intersect at a unique point.

• P3: There exist a set of four points with no three collinear.

. Though planes of infinite order exist, we shall focus on the finite case here. A projective

plane of order q is a triple (P,L, I) with P a set of q2 + q + 1 points, L a set of q2 + q + 1

lines having having the following incidence relation:

• FP1: Every line contains q + 1 points

• FP2: Every point is incident with q+1 lines

• FP3: There exist a set of four points with no three collinear.

Every finite projective plane has an order.

Given a projective plane π, our coordinate free notation will denote points with uppercase

letters A, B, . . ., and lines by lower case letters a, b, . . .. Given any two lines a and b, there

exists a unique point P which we shall denote as ab. In the dual case, given any two points P

and Q there exists a unique line ` incident with both, hence we denote ` by PQ. Intersections

of lines in the form PQ and P ′Q′ will be written as AB′ ∩ BA′. This will be the notation

used for the following properties of projective planes derived from a theorem of Pappus of

Alexandria and a theorem of Girard Desaurgues.
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3.5.1. Pappus’ Theorem. We say that a projective plane is pappian if it satisfies

Pappus’ theorem.

For any pair of distinct lines ` and m containing the points {A,B,C} and {A′, B′, C ′}

respectively, we have that AB′∩BA′, AC ′∩CA′, and BC ′∩CB′ are collinear. The following

result (traditionally) credited to D. Hilbert shows that Pappian planes are coordinatized by

fields.

Theorem 3.5. A projective plane satisfies Pappus’ theorem if and only if it is isomorphic

to PG(2,F), for some field F.

3.5.2. Desargues’ Theorem. We say that a projective plane is desarguesian if it

satisfies Desargues’ theorem.

Let ABC, A′B′C ′ denote two triangles (labeled so that AA′ and CC ′ do not cross the

interior of either triangle). There exists a point P for which P = AA′ ∩ BB′ ∩ CC ′ if and

only if there exists a line ` containing the points: AB ∩ A′B′, AC ∩ A′C ′, and BC ∩ B′C ′.

The following result, again (traditionally) credited to D. Hilbert shows that Desarguesian

planes are coordinatized by division rings.

Theorem 3.6. A projective plane satisfies Desargues’ theorem if and only if it is iso-

morphic to PG(2,D), for some division ring D.

In the finite case, a result of Wedderburn [84] shows us that finite Desarguesian planes

are indeed coordinatized by finite fields.

Theorem 3.7. [84] A finite division ring is a field.
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Given 3.5, 3.6, and 3.7, we may show the following two facts as corollaries.

(1) Corollary 3.7a A finite projective plane satisfies Desargues’ theorem if and only

if if it is isomorphic to PG(2,F), for some finite field F.

(2) Corollary 3.7b A finite projective plane that satisfies Desargues’ theorem also

satisfies Pappus’ theorem.

3.5.3. Bruck-Ryser Theorem. It is an open question as to whether or not planes of

non-prime power order exist. The theorem of Bruck and Ryser is one of the few results

shedding some light on this question. We state it here:

Theorem 3.8. If n ≡ 1 or 2 (mod 4) there cannot be a projective plane of order n unless

n can be expressed as a sum of two integral squares.

The previous theorem rules out 6 as well as infinitely many other orders (such as all

orders congruent to 6 modulo 8). The smallest case left unresolved by the Bruck-Ryser

theorem is 10.

3.6. Examples of Projective Planes

Example 3.6.1 PG(2,2) Assume points are in the form (x, y, z). Let P = {(0,0,1), (0,1,0),

(1,0,0), (1,0,1), (1,1,0), (0,1,1),( 1,1,1)}, L = { [x = 0] = { (0,0,1), (0,1,0), 0,1,1) }, [y =

0] ={ (0,0,1), (1,0,1),(1,0,0) }, [z = 0] ={(1,0,0), (0,1,0), (1,1,0) }, [x + y = 0] ={ (0,0,1),

(1,1,0), (1,1,1) },[x + z = 0] = { (0,1,0), (1,0,1),(1,1,1) }, [y + z = 0] ={(1,0,0), (0,1,1),

(1,1,1) }, [x+ y + z = 0] ={(1,0,1), (1,1,0), (0,1,1) }} .
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Example 3.6.2 PG(2,4)

In order to construct the projective plane over a finite field of order four, we look at the

splitting field of t4−t over the polynomial ring Z[t]/4Z. t4-t splits as t(t−1)(t2 +t+1). Since

(t2 + t+ 1) is irreducible over Z2, it follows that our field is isomorphic to Z2[t]/(t2 + t+ 1).

We denote the field of order 4 as F4, and its elements are: {0, 1, t, t + 1}. The addition

and multiplication are done modulo (t2 + t + 1) in a field of characteristic 2. The points of

PG(2, 4) are given in the form (a, b, c):

{(0, 0, 1), (0, 1, 0), (1, 0, 0),

(t, 0, 1), (0, 1, t), (1, t, 0),

(t+ 1, 0, 1), (0, 1, t+ 1), (1, t+ 1, 0),

(1, 1, t), (1, t, 1), (t, 1, 1),

(1, 1, t+ 1), (1, t+ 1, 1), (t+ 1, 1, 1),

(1, 1, 0), (1, 0, 1), (0, 1, 1),

(1, 1, 1), (1, t, t+ 1), (1, t+ 1, t)}.

By duality we obtain the lines of PG(2, 4) given in the form 〈x, y, z〉. A point (a, b, c), lies

on a line 〈x, y, z〉 if ax + by + cz = 0. Each line contains 4+1 = 5 points, and every point

is incident with 5 lines. We list the following lines and the set of points with which it is

incident.

(1) 〈0, 0, 1〉 = {(0, 1, 0), (1, 0, 0), (1, t, 0), (1, t+ 1, 0), (1, 1, 0)}
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(2) 〈0, 1, 0〉 = {(0, 0, 1), (1, 0, 0), (t, 0, 1), (t+ 1, 0, 1), (1, 0, 1)}

(3) 〈1, 0, 0〉 = {(0, 0, 1), (0, 1, 0), (0, 1, t), (0, 1, t+ 1), (0, 1, 1)}

(4) 〈t, 0, 1〉 = {(0, 1, 0), (t+ 1, 0, 1), (t+ 1, 1, 1), (1, 1, t), (1, t+ 1, t)}

(5) 〈0, 1, t〉 = {(1, 0, 0), (0, 1, t+ 1), (1, 1, t+ 1), (1, t, 1), (1, t+ 1, t)}

(6) 〈1, t, 0〉 = {(0, 0, 1), (1, t+ 1, 0), (1, t+ 1, 1), (t, 1, 1), (1, t+ 1, t)}

(7) 〈t+ 1, 0, 1〉 = {(0, 1, 0), (1, 0, t+ 1), (1, 1, t+ 1), (1, t, t+ 1), (t, 0, 1)}

(8) 〈0, 1, t+ 1〉 = {(1, 0, 0), (0, t+ 1, 1), (1, t+ 1, 1), (1, t, t+ 1), (0, 1, t)}

(9) 〈1, t+ 1, 0〉 = {(0, 0, 1), (t+ 1, 1, 0), (t+ 1, 1, 1), (1, t, 0), (1, t, 1)}

(10) 〈1, 1, t〉 = {(1, 1, 0), (0, 1, t+ 1), (1, t+ 1, 1), (t+ 1, 1, 1), (t, 0, 1)}

(11) 〈1, t, 1〉 = {(1, 0, 1), (t+ 1, 1, 1), (1, 1, t+ 1), (0, 1, t), (1, t+ 1, 0)}

(12) 〈t, 1, 1〉 = {(0, 1, 1), (1, t, 0), (t+ 1, 0, 1), (1, t+ 1, 1), (1, 1, t+ 1)}

(13) 〈1, 1, t+ 1〉 = {(1, 1, 0), (t+ 1, 0, 1), (1, t, 1), (t, 1, 1), (0, 1, t)}

(14) 〈1, t+ 1, 1〉 = {(1, 0, 1), (1, t, 0), (t, 1, 1), (1, 1, t), (0, 1, t+ 1)}

(15) 〈t+ 1, 1, 1〉 = {(0, 1, 1), (t, 0, 1), (1, t+ 1, 0), (1, t, 1), (1, 1, t)}

(16) 〈1, 1, 0〉 = {(1, 1, 0), (0, 0, 1), (1, 1, 1), (1, 1, t), (1, 1, t+ 1)}

(17) 〈1, 0, 1〉 = {(1, 0, 1), (0, 1, 0), (1, 1, 1), (1, t, 1), (1, t+ 1, 1)}

(18) 〈0, 1, 1〉 = {(0, 1, 1), (1, 0, 0), (1, 1, 1), (t, 1, 1), (t+ 1, 1, 1)}

(19) 〈1, 1, 1〉 = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, t, t+ 1), (1, t+ 1, t)}

(20) 〈1, t, t+ 1〉 = {(1, 1, 1), (1, t+ 1, 0), (1, t, t+ 1), (t+ 1, 0, 1), (0, 1, t+ 1)}

(21) 〈1, t+ 1, t〉 = {(1, 1, 1), (1, t, 0), (t, 0, 1), (0, 1, t), (1, t+ 1, t)}

If we remove the line z = 0 from the previous example, PG(2, 4), we obtain the affine

plane AG(2, 4). We obtain the coordinates by dehomogenization. Write A = a
c
, and B = b

c
.

Then

(a, b, c) ≈ 1

c
(A,B, 1) ≈ (A,B).
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Example 3.6.3 PG(2, q)

Assume that q = pm and that p is prime. Let K = Fq denote the field with q elements, and

V = K3 with the standard basis. The set of points of PG(2, q) is the set of all 1 dimensional

subspaces of V through the origin. The set of lines is the set of all 2 dimensional subspaces

of V . Incidence is given by containment.

Example 3.6.4 Derivation Planes

The following examples of projective planes are due to Hall. Let GF (q2) denote the finite

field of order q2, q a prime power, and PG(2, q2) denote the desarguesian plane of order q2.

Let l∞ ⊂ PG(2, q2) denote the line at infinity. Now consider the affine plane AG(2, q2) =

PG(2, q2) - l∞. We say that a set D of q + 1 points of l∞ is a derivation set if for any two

points x and y of AG(2, q2) and a line through x and y meeting D at a point, there exists

a Baer subplane containing x, y and D. Define the points of the derived plane π, as the

points of PG(2, q2). We define the lines of π as the lines of AG(2, q2) along with the Baer

subplanes corresponding to some derivation set D. Observe that for any two points x and y

in π we either have:

• a unique Baer subplane of AG(2, q2) corresponding to a line through x and y or

• x and y lie on l∞.

Immediately, we see that this is a projective plane of order q2. This is also referred to as a

derived plane and is non-desarguesian for q > 2.
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3.7. Duality in Projective Planes

The dual of a projective plane is a projective plane, which is of the same order if the

plane is finite. An incidence matrix is a useful tool for investigating incidence structures.

We give the definition here. The incidence matrix of an incidence structure π is an array of

values of ordered pairs ai,j = 1 if the ith point is incident with the jth line, and 0 otherwise.

It is implicit from the definition that the entries of this matrix is dependent upon the choice

of ordering of the points and lines.

It follows from the definition that the incidence matrix of a projective plane of order q is

an element of Mq2+q+1(F2). Furthermore, if a projective plane of order q has the incidence

matrix A = [ai,j] , the incidence matrix of the dual is simply At = [aj,i].

Suppose that V is a three dimensional vector space over a field K. The points of PG(V )

correspond to lines through the origin, i.e solutions to:

ax + by + cz = 0.

But observe that if X = (x, y, z) is a solution, then

akx + bky + ckz = 0,

and kX is a solution as well, ∀ k ∈ K. Given the previous correspondence between points

of PG(V ) and the 1 dimensional subspaces of V , the following characterization of lines in

PG(V ) is intuitive. If we take the span of any two distinct subspaces of dimension 1 in V

we get a subspace of dimension 2, a plane through the origin.
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Choose a basis for V , let E denote the span of e = 〈e1, e2, e3〉. Now choose a basis for

V ∗, x = 〈x1, x2, x3〉. Observe that x is the image of a hyperplane in V under a polarity, ∗.

We say that E is incident with x if and only if e · x = e1x1 + e2x2 + e3x3 = 0, where · is the

standard dot product.

3.8. Polarities

Let V and W be 3 dimensional vector spaces over a field K. Now let PG(V ) and

PG(W ) denote their respective projective geometries. Suppose that φ : PG(V ) → PG(W )

is a bijective map that reverses containment, i.e R ⊂ S in V if and only if φ(S) ⊂ φ(R).

Then we say that φ is an anti-isomorphism. If V = W , we say that φ is a correlation or

duality.

A polarity is a duality of order 2. An incidence structure S is self dual if it is isomorphic

to its dual; that is, if the incidence matrix of S is similar to its transpose. The dual of

a projective geometry PG(V ) is denoted by, PG(V ∗) and is the lattice of all subspaces of

V with reverse containment. Thus, if V is a n dimensional W is an k dimensional vector

subspace of V , then W ∗ is an n − k dimensional enveloping vector space of V ∗. If V is a

right vector space, then V ∗ is a left vector space and vice-versa.

Theorem 3.9. If V is a finite-dimensional vector space over a field K, then V always

possess polarities.

Let P be a point and ` be a line of a projective plane π, and φ be a polarity of π We say

that a is a φ- absolute point if φ(a) is incident with a. Dually, we say that ` is a φ-absolute

line if φ(`) is incident with `.
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3.9. Semilinear Transformations

Let V and W are vector spaces over a skew field K. Then we say that φ : V → W is a

semilinear transformation of vector spaces if there exists α ∈ Aut(K) such that:

(1) φ(u+ v) = φ(u) + φ(v) ∀ u, v ∈ V , and

(2) φ(k ∗ u) = kα ∗ φ(u) ∀ k ∈ K, and ∀ u ∈ V .

The invertible semilinear transformations of V form a group ΓL(V ) under composition.

When V is Fnq , we denote this by ΓL(n, q).

3.10. Examples of Automorphism Groups of Projective Planes

Example 3.10.1 PΓL(2, 2)

PΓL(2, 2)is the collineation group of PG(2, 2) and it consists of all invertible semi-linear

transformations of F3
2.

Example 3.10.2 PGL(3, q)

Consider GL(3, q), the group of all invertible linear transformations of F3
q. Note that scalar

matrices are the kernel of the action on a projective space (and the center of GL(3, q)). If we

take the quotient of GL(3, q) with the scalar matrices we obtain the projective linear group

of 3 × 3 matrices over GF (q),

PGL(3, q) ∼= GL(3, q)/Z(GL(3, q)).

Example 3.10.3 PΓL(3, q)

Consider ΓL(3, q), the group of all invertible semilinear transformations of F3
q. Note recall

that scalar matrices are kernel of the action on a projective space. If we take the quotient
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of ΓL(3, q) with the scalar matrices we obtain the projective semilinear group

PΓL(3, q) ∼= ΓL(3, q)/Z(GL(3, q)).

3.11. Fundamental Theorem of Projective Geometry

We now state the fundamental theorem of projective geometry.

Theorem 3.10. The collineation group of PG(2, q) is PΓL(3, q).

3.12. Non-existence of a plane of order 10

The nonexistence of a projective plane of order 10 completed by Lam, Thiel and Swiercz in

1989 [57] was carried out by computer. A major stepping stone to proving the non-existence

of a projective plane of order 10, was the following result:

Theorem 3.11. [57] There does not exist an abstract hyperoval of order 10.

Abstract hyperovals will be defined later on in our discussion. It is in light of the result

obtained by Lam, Thiel, Swiercz, and McKay, that we are encouraged to study projective

planes by their hyperovals.
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CHAPTER 4

Ovals and Hyperovals in Projective Planes

4.1. Arcs, and Lines

We are now ready to define and discuss certain substructures of projective planes. We

begin with k-arcs. Let π denote a projective plane of order q. A k − arc is a set of k points

in such that no three are collinear. A quadrangle Q is 4-arc. Recall, that a frame of a

projective plane, is also a set of four points with no three collinear. It follows, that every

quadrangle of a projective plane is a frame and vice-versa.

Example 4.1.1 Example of a 4-arc of PG(2,2)

〈0, 0, 1〉 , 〈0, 1, 0〉 ,

〈1, 0, 0〉 , 〈1, 1, 1〉 .

A k-arc A, is maximal when any point P of π − A is collinear with two points of A. A

natural question to ask would be: ” are there any known bounds for k ? ”, and the answer is

in the affirmative. If q is odd, then k ≤ q + 1. An oval is a q+1 arc of π. It follows that an

oval is a maximal arc when q is odd. If A is an oval, it follows from the definition that any

line of π intersects A in either zero, one, or two points. A line that is non-incident with A

is called an external line of A. A line that intersects A at a single point is called a tangent

line of A. Any line that intersects A in two places is called a secant line of A.
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Example 4.1.2 Example of an oval in PG(2,2)

〈0, 0, 1〉 , 〈0, 1, 0〉 , 〈1, 0, 0〉 .

Example 4.1.3 Example of an oval in PG(2,q)

Consider the set of points in PG(2, q) over GF (q) of the form

O = {(1, t, t2) : t ∈ GF (q)} ∪ {(0, 0, 10}.

This is a conic, and it is an oval of PG(2, q).

4.2. Hyperovals

Now assume that π is a projective plane of order q with q even. Let A be an oval in π. In

a plane of even order, the set of all tangent lines of A intersect at a point called the nucleus

which we denote by P . If one ponders the previous statement for a moment, one sees that

any line through the P must be collinear with at most one point of A. Thus, A ∪ { P } is

a n + 2 arc. We define a hyperoval as a maximal n+2 arc (necessarily consisting of an oval

and its nucleus). Furthermore, this arc is maximal, as the following theorem proves.

Theorem 4.1. [10] Let A be a k-arc of a projective plane of order q. Then k ≤ q + 2,

with equality if and only if q is even.

Theorem 4.2. [73] An oval of a projective plane of even order is contained inside of a

unique hyperoval.
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Let us now review some of the known examples of hyperovals. Let D(k) , k ∈ N be the

set of all points in PG(2, q) over GF (q) of the form

D(k) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, tk) : t ∈ GF (q)}.

The set of points of D(k) have the form (1, t, f(t)) where f is the so-called o− polynomial

of the hyperoval corresponding to D(k).

Example 4.2.1 The regular hyperoval of PG(2,q)

A hyperoval of consisting of a conic along with its nucleus of PG(2, q) is called a

regular hyperoval. Let q = 2h. these are due to [75].

D(2) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, t2) : t ∈ GF (q)}.

Example 4.2.2 The regular hyperoval of PG(2,4)

Recall the elements of GF (4) = {0, 1, t, t+ 1}

(0, 0, 1), (0, 1, 0), (1, x, x2)|x=0 = (1, 0, 0),

(1, x, x2)|x=1 = (1, 1, 1), (1, x, x2)|x=t = (1, t, t+ 1),

(1, x, x2)|x=t+1 = (1, t+ 1, t).
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Example 4.2.3 Translation Hyperovals of PG(2,q)

If gcd(m,h) = 1, then the map

φ : t 7→ t2
m

is an automorphism of GF (q), and the following subset of points of PG(2, q) over GF (q)

form a hyperoval called the translation hyperoval.

D(2m) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, t2m) : t ∈ GF (q)}.

These are also due to [75].

Example 4.2.4 Segre-Bartocci Hyperovals

Suppose that h is odd. The set

D(6) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, t6) : t ∈ GF (q)}

is a hyperoval of PG(2, q) over GF (q).

Example 4.2.2 Glynn Hyperovals

Again, suppose that h is odd. We define two automorphisms of GF (q) as follows:

σ : t 7→ t
h+1
2 ,

γ : t 7→ t2
m

if h = 4m − 1, or

γ : t 7→ t3m+1 if h = 4m + 1.

A result of [35] proved that

38



D(σ + γ) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, tσ + γ) : t ∈ GF (q)}

as well as

D(3σ + 4) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, t3σ + 4) : t ∈ GF (q)}

Example 4.2.3 Payne Hyperovals

Assume that h is odd. Define

δ : GF (q)→ GF (q) as δ : t 7→ t
1
6 + t

1
2 + t

5
6 .

The Payne hyperovals correspond to the the set

D(δ) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, tδ) : t ∈ GF (q)}.

Example 4.2.4 Cherowitzo Hyperovals

Suppose that h = 2s + 1. Define

σ : GF (q)→ GF (q) as σ : t 7→ t2
s+1

.

Now define

ζ : GF (q)→ GF (q) as ζ : t 7→ tσ + tσ+2 + t3σ+4.

The Cherowitzo hyperovals correspond to the set:

D(ζ) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, tζ) : t ∈ GF (q)}.( ∀h ≤ 9).
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Example 4.2.4 Lunelli-Sce Hyperovals

Suppose that p is a primitive element of GF (q) with p4 = 1. Let

f(t) = t12 + t10 + p11t8 + t6 + p2t4 + p9t2.

The Lunelli-Sce Hyperoval is given by:

D(f) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, f(t)) : t ∈ GF (q)}.

This hyperoval has the peculiar property of admitting a transitive automorphism group. It

is a part of the following two infinite families.

Example 4.2.5 Subiaco Hyperovals

Suppose that q = 2h. Also suppose that σ ∈ GF (q) such that σ2 + σ + 1 6= 0 and trace( 1/

σ ) = 1. Define the o-polynomial f , as follows:

f(t) =
σ2(t4 + t + (1 + σ + σ2)(t3 + t2))

(t2 + σt + 1)2
+ t1/2.

Then

D(f) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, f(t)) : t ∈ GF (q)}.

The Subiaco hyperovals discovered by Cherowitzo, Penttila, Pinneri and Royle.
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Example 4.2.6 Adelaide Hyperovals

Let q be an even power of 2. Let s ∈ GF (q2) with s 6= 1 such that sq+1 = 1. Also, define

φ : GF (q2)→ GF (q2), φ : t 7→ tq − t.

Assume that

m ≡ ±q − 1

3
(mod q + 1).

Now define f(t) as

φ(sm(t+ 1)

φ(s)
+

φ((st+ sq)m)

φ(s)(t+ φ(s)t1/2 + 1)m−1
+ t1/2.

Then the Adelaide hyperovals are given by:

D(f) = {(0, 1, 0), (0, 0, 1)} ∪ {(1, t, f(t)) : t ∈ GF (q)}.
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CHAPTER 5

Collineations, Baer Subplanes, & Polar Spaces

A collineation is an automorphism of a projective plane. Collineations take points to

points and lines to lines while preserving incidence. A point fixed linewise by a collineation

α, is called is called the center of α. A line fixed pointwise by a collineation α , is called an

axis of α.

5.1. Collineations

5.1.1. Properties and Examples of Collineations. As stated previously, a

collineation is an automorphism of a plane- mapping points to points and lines to lines

while preserving incidence. Given any projective plane π we define the group of collineations

as Aut(π). We list a few classical results on collineations.

Theorem 5.1. A collineation has an axis if and only if it has a center.

Theorem 5.2. A non-identity collineation has at most one center and at most one axis.

A collineation that has a center is called a central collineation.

Central collineations may fall into two categories.

(1) Elations are central collineations where the center is incident with the axis.

(2) Homologies are central collineations in which the axis is non-incident with the

center.

The following result gives

Theorem 5.3. In a projective plane of order n, a homology has order dividing n-1 and

an elation has order dividing n.
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Theorem 5.4. The join of two fixed points is a fixed line, and dually the intersection of

any two fixed lines is a fixed point.

Corollary 5.5. The fixed point and fixed lines of a collineation fixing a quadrangle form

a subplane.

A collineation fixing a quadrangle is called planar.

We now introduce an important substructure of finite projective planes. A Baer subplane

is a projective plane of order
√
q contained in a projective plane of order q. It is obvious

that q must be a square in order for Baer subplanes to exist.

5.2. Baer Subplanes

Before we begin our discussion, we state the following theorem of Baer.

Theorem 5.6. A proper subplane of a projective plane of order n has order at most
√
n.

If equality occurs, the subplane is called a Baer subplane. Planar collineations with fixed

plane a Baer subplane are called Baer collineations. In particular, we are concerned with

Baer collineations of order 2, called Baer involutions.

Baer subplanes can be used to deduce global properties as the following result of [59]

Lüneburg demonstrates:

Theorem 5.7. Let π be a finite projective plane of order q. Then the following assertions

are equivalent.

• π is a Desarguesian or a generalized Hughes plane.
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• π contains a Baer subplane β such that for each line ` ∈ β, there are exactly q

elations of β induced by elations of π with axis `.

• π has a proper subplane β such that for some H = StabAut(π)(β) < Aut(π), π - β

admits a flag-transitive action.

• π contains a Bear subplane β with the property that H = StabAut(π)(β) is transitive

on the points of β.

In general, involutions in Aut(π) can be wonderful tools for deducing properties of a

projective plane π. Another advantage of working with involutions is that they have been

completely classified as the next theorem shows.

Theorem 5.8. Let π be a projective plane of order n. An involution of π is either an

elation (in which case n is even), a homology (in which case n is odd), or a Baer involution

(in which case n is a square).

Existence or non-existence of certain involutions may also be used to deduce properties

of Aut(π) as the theorem of Hughes given below shows. We prove an alternative version

using abstract hyperovals in chapter 7.

Theorem 5.9. [41] Let π denote a projective plane of order n, with n ≡ 2(mod 4) and

n > 2. Then Aut(π) has odd order.

5.3. Polar Spaces

5.3.1. Sesquilinear and Bilinear forms. Let K be a field admitting an anti-

automorphism φ, and V a vector space over K. We define a φ − sesquilinear form to

be a function f : V × V → K satisfying:
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(1) f(av + a′v′, w) = af(v, w) + a′f(v′, w),

(2) f(v, aw + a′w′) = aφf(v, w) + a′φf(v′, w).

We say that f is non-singular if

(1) ∀ v ∈ V f(v, w) = 0 ⇒ w = 0.

(2) ∀ w ∈ V f(v, w) = 0 ⇒ v = 0.

Similarly, we define a bilinear form to be a 1K-sesquilinear form. A bilinear form f is

alternating if f(v, v) = 0 ∀ v ∈ V . A bilinear form is reflexive if f(v, w) = −f(w, v) ∀

v, w ∈ V . A φ-sesquilinear form is Hermitian if f(v, w) = f(w, v)φ ∀ v, w ∈ V . Given a

bilinear form f we may define a quadratic form as a map q:V → K, where q is of degree

two in each of the coordinates. It has the following properties:

q(av) = a2q(v), & q(v + w) = q(v) + q(w) + f(v, w).

Sesquilinear forms are related to polarities by the following theorem:

Theorem 5.10. Every correlation of PG(n,K) is induced by a φ-sesquilinear form f ,

where φ is an anti-automorphism of K. The correlation is a polarity if and only if the form

satisfies:

(∀v, w ∈ V ) f(v, w) = 0 ⇒ f(w, v) = 0.

5.3.2. Polar Spaces. Let f be a reflexive sesquilinear form on a vector space V over a

field K, defining a polarity φ of the derived projective space. We say that a subspace U ∈

V is totally isotropic if f(U) = 0, (i.e U ⊆ Uφ). The totally isotropic subspaces of V form

a subgeometry of the projective space called a polar space.
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We list a few of the properties of polar spaces below:

• PS1 Each totally isotropic space equipped with its lattice of totally isotropic sub-

spaces, is isomorphic to a projective space of dimension of at most n-1.

• PS2 The intersection of any family of totally isotropic subspaces is totally isotropic.

• PS3 If U is a totally isotropic subspace of dimension n-1, and p ∈ V −U , then the

set

Lp = {q ∈ U : the line pq is totally isotropic},

is a hyperplane in U , and the union of lines in Lp is a totally isotropic subspace of

dimension n -1.

We now discuss an important family of polar spaces

5.3.3. Generalized Quadrangles. A polar space of rank 2 is a partial geometry

satisfying the following properties:

• GQ1 any line has at least three points;

• GQ2 two points lie on at most one line;

• GQ3 if a point p is not on a line `, then p is collinear with a unique point of `;

• GQ4 no point is collinear with all others.

An incidence structure satisfying these properties is called a generalized quadrangle, or GQ

for shorthand. GQs arising from this construction (i.e from polarities or quadratic forms)

are called classical. However, not all GQs arise this way. This leads us to our next chapter

on partial geometries.
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CHAPTER 6

Abstract Ovals and Abstract Hyperovals

6.1. Abstract Ovals

In [15], Buekenhout recontextualized the study of ovals. He defined an abstract oval of

order n on X to be a set Ω(X) of involutory permutations of a set X of cardinality n+1 ≥ 3

such that

(1) each non-identity permutation has at most two fixed points, and the parity of the

number of fixed points equals the parity of n+ 1

(2) for A1, A2, B1, B2 ∈ X with Ai 6= Bj there exists a unique σ ∈ Ω(X) with σ(Ai) = Bi

for i = 1,2.

Each oval X of a projective plane π of order n gives an abstract oval Ω(X) of order n,

the set of all involutory permutations of X induced by the lines through the points P of π,

not in X.

6.2. Abstract Hyperovals

Let X be a set of n+2 points. We define an abstract hyperoval on X and write A(X) to

denote a set of fixed point free involutions on X with the following property: For any four

points { a, b, c, d } ⊂ X, ∃! u ∈ A(X) with

u : a↔ b, c↔ d.

The next few properties of abstract hyperovals may be deduced from the definition:
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(1) A(X) consists of n2 - 1 fixed-point free involutions on X. Furthermore, any element

of A(X) is a product of n+2
2

transpositions.

(2) For any transposition t of points of X, there exists n-1 elements, f ∈ A(X) such

that |FixX(f ∗ t)| = 2.

It follows from the definition of a hyperoval that we may always construct an abstract

hyperoval from a hyperoval. Such an abstract hyperoval is called embeddable. Each abstract

oval of even order can be uniquely extended to an abstract hyperoval, extending Qvist’s

result. (See, for example, [72]. [15] noted (without proof) the uniqueness of the abstract

ovals of orders 2, 3, 4 and 5, and the non-existence of an abstract hyperoval of order 6.

(As the latter is referred to as an experimental result, it may be computerbased.) A proof

for the nonexistence of an abstract hyperoval of order 6 was given by [26]. [32] showed the

uniqueness of the abstract oval of order 7 by computer.

Independently, [61] [31] [27] and [19], thesis [15], published 1985 [16]) constructed a

nonembeddable abstract hyperoval of order 8 (giving two (non-embeddable) abstract ovals

of order 8) : see also [33]. [61] classified abstract hyperovals of order 8 by computer : there

are two of them (giving rise to 4 abstract ovals of order 8).

In 1980, John G. Thompson [71] initiated the study of abstract hyperovals of order 10,

and he revisited the subject in 1981 [72]. Lam, Thiel, Swiercz and McKay (1983)[51] showed

the non-existence of an abstract hyperoval of order 10 by computer, part of the proof of

the nonexistence of a projective plane of order 10 completed by Lam, Thiel and Swiercz

(1989)[50], also by computer.
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Abstract ovals of order 9 were shown by computer to be embeddable by Giulietti and Mon-

tanucci (2009)[30]. (The projective planes of order 9 had previously been classified by com-

puter by Lam, Kolesova and Thiel (1991)[49].) There are no known non-embeddable abstract

ovals of odd order.

Similarly, each hyperoval X of a projective plane π of order n gives an abstract hyperoval

A(X) of order n, the set of all involutory permutations of X induced by the lines through the

points P of π, not in X. Such an abstract hyperoval is called embeddable. The converse

of the previous statement is false. As stated above, there exists one known example of an

abstract hyperoval that cannot be embedded into any plane. We now pause to construct the

abstract hyperoval of order 2 from the hyperoval of order 2 in PG(2, 2) over GF (2).

Example 6.2.1 A Constructive Example

Recall the points of PG(2, 2) over GF (2).

(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1),

(1, 1, 0), (1, 0, 1), (0, 1, 1).

The unique hyperoval X, is given by:

1 = (0, 0, 1), 2 = (0, 1, 0), 3 = (1, 0, 0), 4 = (1, 1, 1).

Consider the line in PG(2, 2) external to X,

E = x + y + z = 0.
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E = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}.

The secant lines through X incident with each of the points on E, pass through two points

of X. The product of the transpositions fixing a unique point of E and interchanging two

points of X are the fixed-point free involutions making up A(X). We list them here: Let t

and t′ correspond to a transposition fixing (1,1,0). Then t and t′ must interchange both 1

and 4, and 2 and 3. Thus, the fixed-point free involution corresponding to an element a ∈

A(X) given by:

a = (1, 4)(2, 3).

Let u and u′ correspond to a transposition fixing (1,0,1). Then u and u′ must interchange

both 1 and 3, and 2 and 4. Thus, the fixed-point free involution corresponding to an element

b ∈ A(X) given by:

b = (1, 3)(2, 4).

Finally, we let v and v′ correspond to a transposition fixing (0,1,1). Then v and v′ must

interchange both 1 and 2, and 3 and 4. Thus, the fixed-point free involution corresponding

to an element c ∈ A(X) given by:

c = (1, 2)(3, 4).

We have now constructed the abstract hyperoval of order 2 given by:

(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3).
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Theorem 6.1. From any hyperoval, we may construct an abstract hyperoval.

Example 6.2.2 Abstract Hyperoval of Order 4

A(X) := {u1 := (1, 2)(3, 4)(5, 6), u2 := (1, 2)(3, 5)(4, 6),

u3 := (1, 2)(3, 6)(4, 5), u4 := (1, 3)(2, 4)(5, 6),

u5 := (1, 3)(2, 5)(4, 6), u6 := (1, 3)(2, 6)(4, 5),

u7 := (1, 4)(2, 3)(5, 6), u8 := (1, 4)(2, 5)(3, 6),

u9 := (1, 4)(2, 6)(3, 5), u10 := (1, 5)(2, 3)(4, 6),

u11 := (1, 5)(2, 4)(3, 6), u12 := (1, 5)(2, 6)(3, 4),

u13 := (1, 6)(2, 3)(4, 5), u14 := (1, 6)(2, 4)(3, 5),

u15 := (1, 6)(2, 5)(3, 4)}.
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6.3. Abstract Hyperovals and Partial Geometries

Given an abstract hyperoval A(X) of order n, the incidence structure S(A(X)) with

points the 2-subsets of X and lines the elements of A(X) with the natural incidence is a

partial geometry pg(n
2
, n−2, n−2

2
). Conversely, each pg(s, 2s−2, s−1) arises in this way from

an abstract hyperoval of order 2s. This was established by De Clerck (1978, 1979)[22,23],

building on the characterization of the triangular graphs T (n+ 2) by their parameters for n

= 6 by Connor (1958)[21], Shrikhande (1959)[69], Chang (1959)[13] and Hoffman (1960)[33],

with all examples with the parameters of T (8) determined by Chang (1960) [14]. (The

triangular graph T (m) has as vertices the subsets of size 2 of a set S of size m and edges

the pairs of subsets meeting in a set of size 1.) Amongst other results, De Clerck (1979)

[23] showed that the complements of the Chang graphs and T (8) are not geometric, thereby

showing the non-existence of a partial geometry pg(3, 4, 2) and thus also of an abstract

hyperoval of order 6.
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CHAPTER 7

Using Abstract Hyperovals

The aim of this subsection is to familiarize the reader with certain preliminary facts and

results we shall use throughout the section. Let Γ be a graph. We say that Cm ⊂ Γ is a

m-clique if Cm ∼= Km, the complete graph on m vertices. Throughout the section we identify

A(X) with a graph ΓA(X) = (V,E) where the vertices are given as

V = {(x, y) : (x, y) ∈ X ×X − {∪x∈X(x, x)}

. (x, y) and (u, v) are adjacent if there exists an element f ∈ A(X) such that

f : x 7→ y, & u 7→ v

. Observe that f is distinct by the definition of an abstract hyperoval.

7.1. Minor Results

We now show the following results:

• C1: Each transposition appears in exactly n-1 elements of A(X).

• C2: |A(X)| = n2-1.

• C3: Let ΓA(X) = (V , E) with V = (1, 2)Sn+2 and E = (1, 2)(3, 4)Sn+2 . A(X) may

be realized as the smallest set of n+2
2

- cliques of Γ containing E.

We first prove C1.
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Proof. C1: Let x, y ∈ X. Let A(X)|(x,y) denote the set of elements in A(X) having

(x, y) as a factor. Let G be a group acting regularly on X-{x, y}, fixing x and y. The action

of G on X induces a regular action on A(X)|(x,y). Since (x, y) was arbitrary, we conclude

that each transposition appears

|G| = |X − {x, y}| = n− 1 times.

�

Proof. C2: Consider a subset U ⊂ A(X) whose elements are indexed by (x, y) y ∈

X − {x}. Observe that |U | = n + 1. Now act on A(X) with the group G given above. We

observe that the regular action of G on X-{x, y} induces an action on A(X). In particular,

UG = A(X). To see this observe that any element either has the transposition (x, y) or

the pair of transpositions (x, a), (y, b). The result follows by considering the regularity of

the action of G on X-{x, y} and the fact that this action is faithful and free on elements of

A(X)( consider the orbits of elements indexed by (x, a), (y, b) for all a, b ∈ X-{x, y}). Thus,

|A(X)| = |UG| = |U ||G| = (n+ 1)(n− 1) = n2 − 1.

�

Proof. C3: Let A(X) be an abstract hyperoval of order n. Then A(X) is a set fixed

point free involutions on the points of X with the property that for any two pairs {a, b} and

{c, d}, there exists a unique fixed point free involution σ with

σ : a↔ b, c↔ d.
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Let Γ be defined as before. Observe that each element of A(X) corresponds to a set S

of vertices of Γ such that the restricted graph S with edge set E(S) is complete. This is

precisely the definition of a clique.

Let C denote the set of n+2
2

cliques of Γ. We need only show that A(X) corresponds to

a set M ⊂ C, where M is minimal in the sense that it is the smallest subset of C containing

E(Γ). Recall that in M we must have each edge belonging to exactly one n+2
2

-clique. Let c

∈ C. Then

|M | =
|E(Γ)|
|E(c)|

=
(n+2)n(n2−1)

8
1
2

∑
v∈c dM(v)

=

(n+2)n(n2−1)
8

n+2
4

n
2

= n2 − 1 = |A(X)|.

It follows from the string of equalities above that any set N ⊂ C with less cliques than M

would result in

|E(N)| < |E(M)| = |E(Γ)|.

Thus, A(X) corresponds to a minimal subset of C.

Now suppose that M is a minimal set of C. We show that M corresponds to an abstract

hyperoval. Since M is a minimal set of n+2
2

-cliques of Γ, we know that each edge must be

contained in at most one n+2
2

-clique of M . If we identify the vertices of the n+2
2

-cliques of

M with fixed point free involutions on X, we see that M corresponds to a set of fixed point

free involutions on X with the property that for any two pairs {a, b} and {c, d}, there exists

a unique fixed point free involution σ with

σ : a↔ b, c↔ d.

This is precisely the defining property of an abstract hyperoval. �
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The benefits of looking at abstract hyperovals in this way will be evident in the following

section when we begin our investigation of one-factorizations in A(X). We now show that a

one-factorization of KX can be realized as a subset D ⊂ C that is minimal in the following

sense: D is the smallest subset of C with V (D) = V (Γ). An easy observation on the upper

bound of D is that

|D| ≤ n+ 1 .

This is because there are only
(
n+2

2

)
= (n + 1)n+2

2
transpositions, and each element is a

product of n+2
2

of them.

C4: Let F (X) be a one-factorization of KX . Then F (X) can be realized as a set D of n+1

n+2
2

-cliques of Γ.

Proof. Let F (X) be defined as above. Then F (X) corresponds to a set of n+1 fixed

point free involutions on X with V (F (X)) = E(KX). Thus, we may identify F (X) with a

set D of n+2
2

-cliques of Γ. It is clear from the statement above that minimality is obtained

when |D| = n+1.

If D is a subset of C with V (D) = V (Γ), the identification of each element of D with

a fixed point free involution on X gives us a set F (X) of fixed point free involutions with

each transposition on X appearing in exactly one element of F (X). Thus, D corresponds to

a one-factorization of KX . �
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7.2. Further Results

Lemma 7.1 (C. (2013)). Let |X| = n+2, n ≡ 2(mod 4), with n > 2. Let |FixX(g)| =

m ∈ {0, 2, 4}. Consider the action of conjugation by g, an involution in Aut(A(X)), on

C := (1, 2)(3, 4)SX . Then

|FixC(g)| = 3

(
n+2−m

2

2

)
+

(
m

2

)
(
n+ 2−m

2
) +

1

2

(
m

2

)(
m− 2

2

)
.

Proof. Recall from Theorem 3 of [1], that if m > 2, then n is a square, which contradicts

our assumption that n ≡ 2(mod 4). So our formula need only be defined for m ∈ {0, 2}.

By assumption, g acts on n + 2 − m points of X. Write FixX(g) = {f1, . . . , fm}.

Suppose g has a free action on a, b, c, and d ∈ X. Then for any pair of transpositions of

g containing {a, b, c, d}, g fixes (a, b)(c, d), (a, c)(b, d), &, (a, d)(b, c). There are
(n+2−m

2
2

)
ways to select the transpositions of g. This gives us the term of

3

(
n+2−m

2

2

)
.

To count the number of ways g may fix a pair of transpositions with two elements from

FixX(g) & X − FixX(g), we first observe that g does not fix any elements of the form

(f1, a)(f2, b) for

f1, f2 ∈ FixX(g), & a, b /∈ FixX(g).

Instead, g fixes a pair of transpositions with this property only if they have the form

(f1, f2)(a, b). There are
(
m
2

)
ways to select f1, &, f2, and for each of these ways there

are (n+2−m
2

) ways to select a, b. This yields the term of
(
m
2

)
(n+2−m

2
).
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Finally, we count the number of ways g may fix a pair of transpositions of points in

FixX(g). There are
(
m
2

)
ways to select the first transposition and

(
m−2

2

)
ways to select the

second. This gives us a total of
(
m
2

)(
m−2

2

)
pairs of transpositions of points in FixX(g). Since,

(f1, f2)(f3, f4) = (f3, f4)(f1, f2),

we divide by 2 to obtain

1

2

(
m

2

)(
m− 2

2

)
.

Summing over each case we obtain,

|FixC(g)| = 3

(
n+2−m

2

2

)
+

(
m

2

)
(
n+ 2−m

2
) +

1

2

(
m

2

)(
m− 2

2

)
.

�

Lemma 7.2 (C. (2013)). |FixA(X)(g)| = |FixC(g)|

(
n+2
2
2 )

.

Proof. It follows from the definition of an abstract hyperoval that any pair of trans-

positions on X belong to a unique element of A(X). If g fixes an element f in A(X), g

either:

(1) fixes a pair of transpositions of f or

(2) interchanges two transpositions of f .

Therefore, any element of FixA(X)(g) contributes
(n+2

2
2

)
to the pairs of transpositions in

FixC(g). We obtain the number of elements of A(X) fixed by g from dividing |FixC(g)| by

this contribution. Thus, |FixA(X)(g)| = |FixC(g)|

(
n+2
2
2 )

. �
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Lemma 7.3 (C. (2013)). Let A(X) be an abstract hyperoval of order n ≡ 2(mod 4).

Suppose that |Aut(A(X)| contains an involution, g. Then either n ∈ {2, 6} or |FixX(g)| <

2.

Proof. Write

n = 4k + 2 (k ∈ Z≥0).

By 7.2

|FixA(X)(g)| =
|FixC(g)|(n+2

2
2

) .

But when |FixX(g)| = 2, we have that:

|FixA(X)(g)| =
4(n

2
+ 3

4
(n

2
− 1)n)

(n+ 2)(n+2
2
− 1)

=
4(4k+2

2
+ 3

4
(4k+2

2
− 1)(4k + 2))

((4k + 2) + 2)( (4k+2)+2
2

− 1)

=
3k + 1

k + 1
.

We immediately see that when k ∈ {0, 1}, n ∈ {2, 6} and

|FixA(X)(g)| = {1, 2},

respectively. But for all k > 1,

3k + 1

k + 1
/∈ Z.

To see this, observe that if 3k+1
k+1

= c ∈ N,
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1 < c =
3k + 1

k + 1
<

3k + 3

k + 1
= 3.

This implies the only possible value for c is 2. A quick calculation shows that the only

value for k satisfying c = 2, is when k =1. We conclude that either n ∈ {2, 6}, or

|FixX(g)| < 2. �

Lemma 7.4 (C. (2013)). Let A(X) be an abstract hyperoval of order n ≡ 2(mod 4) with

n > 2. Assume that g is an involutory automorphism on A(X). Then |FixX(g)| 6= 0.

Proof. Suppose the contrary is true. Using 7.2 we compute:

|FixA(X)(g)| =
|FixC(g)|(n+2

2
2

)
=

3
(n+2−m

2
2

)
+
(
m
2

)
(n+2−m

2
) + 1

2

(
m
2

)(
m−2

2

)(n+2
2
2

) .

Set m = 0. To see that |FixA(X)(g)| = 3, we observe that when m = 0, the summands

from the last two cases vanish. As a result, we have that

|FixA(X)(g)| =
3
(n+2

2
2

)(n+2
2
2

) = 3.

Let fi denote the unique element of A(X) containing the transposition pair,

(1, g(1))(i, g(i)) for i ∈ {2, 3, . . . ,
n

2
+ 1}.
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Write n = 4k+2, (k ∈ Z≥0). Observe that g must fix fi for each i ∈ {2, 3, . . . , n
2

+1}.

If n > 2, then k > 0. De Clerck proved the nonexistence of an abstract hyperoval of order

6 in 1979. The next largest value for k > 1. But if k > 1, we have that:

|FixA(X)(g)| ≥ n

2

=
4k + 2

2
≥ 4(2) + 2

2

= 5 > 3 = |FixA(X)(g)|,

a contradiction. As a consequence, we conclude that |FixX(g)| 6= 0. �

Theorem 7.5 (C. (2013)). Suppose that A(X) is an abstract hyperoval of order n ≡

2(mod 4). Then |Aut(A(X))| is odd.

Proof. Suppose that |Aut(A(X))| is even. Then Aut(A(X)) must contain an involution,

g. Note that |FixX(g)| is even, as g is an involution and acts on an even number of elements

of X. As a consequence of Theorem [3] of [1], if Aut(A(X)) contains an involution with

four or more fixed points on X which fixes A(X), then n is a square, which is impossible

since n ≡ 2(mod 4). The aforementioned fact along with previous lemmata imply that

|FixX(g)| /∈ Z≥0, which is impossible. Therefore, we must conclude that |Aut(A(X))| is

odd. �

Theorem 7.6 (C. (2013)). Let A(X) be an abstract hyperoval of order n. Suppose that

G = Aut(A(X)) contains two distinct involutions f & g such that
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|FixX(g)| & |FixX(f)| ≥ 4.

Then

FixX(f) 6= FixX(g).

Proof. Suppose on the contrary that FixX(f) = FixX(g). The preceeding lemmata

along with Theorem 1 of [1] imply that

A(FixX(f)) = A(FixX(g))

is an embeddable abstract hyperoval of order
√
n. Therefore, there are

√
n

2
(
√
n− 1)

external lines to A(FixX(f)), each corresponding to a one-factorization of K√n+2. Further-

more, note that each of the one-factors correspond to an element of FixA(X)(f)∩FixA(X)(g).

Let

x ∈ (X − FixX(f)) = (X − FixX(g)).

There exist
√
n + 1 elements of FixA(X)(f) & FixA(X)(g) interchanging

{x, g(x)},& {x, f(x)}, respectively. Since any two elements of an abstract hyper-

oval may share at most one transposition in common, we see that each set of
√
n + 1

elements of FixA(X)(f) or FixA(X)(g) interchanging {x, f(x)} & {x, g(x)}, respectively,

correspond to an external line of A(FixX(f)) = A(FixX(g)). Since any pair of external

lines intersect exactly once, there exists an element,
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t ∈ FixA(X)(f) ∩ FixA(X)(g)

containing the transpositions (x, g(x)), & (x, f(x)). But t is a fixed point free involution.

Therefore, g = f , on X − FixX(g) a contradiction. As a result, we conclude that our initial

assumption was false, and that

FixX(f) 6= FixX(g).

�

7.3. Automorphisms of Abstract Hyperovals

The automorphism group Aut(A(X)) of an abstract hyperoval A(X) is the stabilizer

of A(X) in Sym(X), acting via conjugation. The connection with partial geometries is

functorial : the automorphism group of the corresponding partial geometry P = pg(n
2
, n −

2, n−2
2

) to an abstract hyperoval A(X) of order n is isomorphic to Aut(A(X)). To see this,

note that the automorphism group of P is the subgroup of the automorphism group of the

point graph of P that takes lines to lines. The point graph Γ of the partial geometry is

a strongly regular graph with the parameters of the complement of the triangular graph

T (n + 2). By [25], [77], [17], [38], [26], it follows that Γ is isomorphic to the complement of

T (n+ 2). Since lines of P correspond to cliques of Γ of size n+2
2

, these in turn correspond to

fixed-point-free involutions of the point set X of P . So Aut(P) is the stabilizer of A(X) in

Aut(Γ). It remains to show that Aut(Γ) is Sym(X). The triangular graph T (m) is the line

graph of the complete graph Km, so Aut(T (m)) = Sm, by Theorem 8 of Whitney (1932) [85]

(who calls line graphs dual graphs).
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Studying projective planes and hyperovals via their automorphism groups has a long

history. Baer (1946)[6] showed that a collineation of order 2 of a projective plane of finite

order n is either a homology (in which case n is odd), an elation (in which case n is even) or

the fixed points and lines form a subplane of order
√
n (in which case n is a square). Biliotti

and Korchmaros (1986)[9] show that a non-identity elation fixing a hyperoval has centre not

on that hyperoval. Penttila and Royle (1995)[69] show that a non-identity elation fixing a

hyperoval has axis a secant line of the hyperoval, if the order of the plane exceeds two.

Biliotti and Korchmaros (1986)[9] show that a non-identity collineation of a projective

plane of order n stabilizing a hyperoval fixes at most
√
n + 2 points of that hyperoval, and

that equality implies the collineation is of order 2. They also show that a non-identity

collineation of a projective plane fixes 1, 3 or an even number of points of the hyperoval,

and that if it fixes at least 4 points, then the fixed points form a hyperoval in a subplane.

We generalize these results to abstract hyperovals. To do this we need some notation : if

the group G acts on the set Y , then FixY (g) = {y ∈ Y : gy = y}. For an abstract hyperoval

A(X) on X, and g ∈ Aut(A(X)), we will need both FixX(g) and FixA(X)(g).

Theorem 7.7. Let A(X) be an abstract hyperoval on X, and g ∈ Aut(A(X)) which

fixes at least four points of X. Then |FixX(g)| is even, and A(FixX(g)) = {t|FixX(g) : t ∈

FixA(X)(g)} is an abstract hyperoval on FixX(g).

Proof. Let {a, b, c, d} ⊂ FixX(g) with |{a, b, c, d}| = 4. Then there is a unique t ∈

A(X), interchanging a and b and interchanging c and d. But gtg−1 also interchanges a and

b and c and d, so it follows that gtg−1 = t. Thus t ∈ FixA(X)(g), and so there is a unique

t ∈ A(FixX(g)), interchanging a and b and interchanging c and d. �
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Theorem 7.8. Let A(X) be an abstract hyperoval on X of order n, and g ∈ Aut(A(X)).

Then |FixX(g)| ≤
√
n+ 2, and equality implies that n is a square and g has order 2.

Proof. Let m + 2 = |FixX(g)| and M = |FixA(X)(g)|. Then, by the last theorem,

M = m2 − 1. Suppose u ∈ FixA(X)(g), a ∈ X, a /∈ FixX(g), a′ = u(a). Then

g(a′) = gu(a) = u(g(a)),

so, if a′ 6= g(a), a′ determines u (as there is a unique u ∈ A(X) interchanging a and a′ and

interchanging g(a) andg(a′)). Since a′ is an element of X \ FixX(g), not equal to a or g(a)

in this case, there are (n+ 2)− (m+ 2)− 2 = n−m− 2 possiblities for u ∈ FixA(X)(g) with

u(a) 6= g(a). If a′ = g(a), and b ∈ FixX(g) then u(b) ∈ FixX(g), u(b) 6= b, so there are m+1

choices for u(b) and so for u. Thus M ≤ n−1, giving m ≤
√
n. If equality occurs, then each

choice of u(b) ∈ FixX(g) \ {b} gives rises to a u ∈ A(X) interchanging a and g(a)(= a′),

b and b′ = u(b) which commutes with g. But now g(a′) = u(g(a)) = u(a′) = a : g must

interchange a and a′, and this is true for all a ∈ X \ FixX(g), so g is an involution. �

Theorem 7.9. Let A(X) be an abstract hyperoval on X of order n, and g ∈ Aut(A(X))

of order 2 which fixes at least four points of X. Then n is a square,|FixX(g)| =
√
n+ 2, and

A(FixX(g)) is an embeddable abstract hyperoval of order
√
n.

Proof. Let x, x′ ∈ X \FixX(g) and |FixX(g)| = m+2. If x′ = gx, then there are m+1

elements u of FixA(X)(g) interchanging x and x′, namely any element interchanging x and

x′ and two elements y, y′ of FixX(g). (For there are (m+2)(m+1)
2

choices for {y, y′} and each

u interchanges m+2
2

of them.)
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If x′ 6= gx, then there is a unique element u of A(X) interchanging x and x′ and gx and

gx′. Since ug also interchanges x and x′ and gx and gx’, it follows that ug = u; that is,

u ∈ FixA(X)(g). There are m2 − 1 elements of FixA(X)(g) each of which interchanges n−m
2

pairs {x, x′} with x, x′ ∈ X \ FixX(g), so

(m2 − 1)(n−m)

2
≥ (n−m)(m+ 1)

2
+

(n−m)(n−m− 2)

2
,

giving

(m2 − 1) ≥ (m+ 1) + (n−m− 2),

so

m2 ≥ n

.

Since, by Theorem 2, m2 ≤ n, it follows that m2 = n.

Given {x, x′ = g(x)}, the m + 1 elements of FixA(X)(g) interchanging x and x′ form

a 1-factorization of the complete graph on FixX(g) (identifying fixed-point-free involutions

with 1-factors of the complete graph), so we have a set D of m2−m
2

1-factorizations of FixX(g)

(they must be distinct, indeed they must meet in at most one 1-factor, for otherwise there

would be two elements of FixA(X)(g) arising from both {x, g(x)} and {w, g(w)}). Thus, the

hypotheses of the main theorem of Bose and Shrikhande (1973) [12] are satisified, with one

component of the regular two-component pairwise balanced design being the lines of the

dual of S(A(FixX(g)) and the other component being D. It follows from that theorem that

A(FixX(g)) is embeddable. �
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Examples of embeddable hyperovals show that these results are, in some sense, best

possible. For example, the collineation g : (x, y, z) 7→ (x2a , y2a , z2a) stabilizes the regular

hyperoval H = {(1, t, t2) : t ∈ GF (2ab)}∪{(0, 1, 0), (0, 0, 1)} of PG(2, 2ab), fixes 2a + 2 points

of H and has order b and FixH(g) is a hyperoval of the subplane PG(2, 2a) fixed by g.

The collineation (x, y, z) 7→ (cx, cy, cz) also stabilizes H and fixes 3 points of H and has

order dividing 2ab − 1, for c ∈ GF (2ab), c 6= 0. The collineation (x, y, z) 7→ (x, x + y, x + z),

stabilizes H and fixes 2 points of H and has order 2 and the collineation (x, y, z) 7→ (c2z, cy+

cdz, x+ d2z), where the polynomial x2 + cx+ d is irreducible over GF (2ab), stabilizes H and

fixes 1 point of H, and has order dividing 2ab + 1. Finally, the Lunelli-Sce hyperoval L of

PG(2, 16), the regular hyperoval H of PG(2, 4), and the elliptic hyperoval of the translation

plane over the semifield of order 16 with kernel GF (2) (see [70]) admit elements of order 3

stabilizing the hyperoval and fixing no point of the hyperoval (also see Korchmaros (1978)

[54]).

7.3.1. Abstract hyperovals of order 12. Just as for the problem of existence of

a projective plane of order 12, the problem of existence of an abstract hyperoval of order

12 is presently out of computational reach. The standard path is to turn to a symmetry

hypothesis: in a series of 17 papers by 10 authors over the period 1973-2009, it is shown that,

if a projective plane of order 12 exists, its group is of order 1, 2 or 3 [3, 4, 7, 14, 39, 40, 43–

52, 79]. This demonstrates that this kind of work has a long pedigree, even when just looking

at order 12 (which is also the smallest open case for which the existence of a projective plane

is undecided).

Turning to abstract hyperovals of order 12, Prince (1997)[71] showed by computer that

there is no abstract hyperoval of order 12 admitting a Frobenius group of order 39. We

improve his result :
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Theorem 7.10 (C., Penttila (2012)). There is no abstract hyperoval of order 12 admitting

a group of order 13. Equivalently, there is no partial geometry pg(6, 10, 5) admitting a group

of order 13.

Our proof is also by computer.

Proof. First we need a re-interpretation of an abstract hyperoval : an abstract

hyperoval of order n is a set K of n2 − 1 fixed-point-free involutions of degree n + 2 with

the property that the product of any two distinct elements of K has 0 or 2 fixed points, and

conversely.

In the light of that re-interpretation, the following definition will be useful.

An abstract arc is a set K of fixed-point-free involutions of degree n + 2 with the

property that the product of any two distinct elements of K has 0 or 2 fixed points.

All subgroups of order 13 of the symmetric group of degree 14 are conjugate, being Sylow

13-subgroups. Of the 10395 orbits of a subgroup of order 13 on the set of fixed-point-free

involutions of the symmetric group of degree 14, it turns out that 6600 are abstract arcs.

The union of 3827948 pairs of these 6600 orbits are abstract arcs. The graph with vertices

the 6600 orbits that are abstract arcs and edges the 3827948 pairs of orbits with unions that

are abstract arcs has no clique of size 11. Therefore, there is no abstract hyperoval of order

12 admitting a group of order 13. The computations were done in Magma [13] and are in

many ways similar to those in [71]. �
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Theorem 7.11 (C., Penttila (2012)). There is no abstract hyperoval of order 12 admitting

a group of order 11. Equivalently, there is no partial geometry pg(6, 10, 5) admitting a group

of order 11.

Again, the proof is by computer.

Proof. All subgroups of order 11 of the symmetric group of degree 14 are conjugate,

being Sylow 11-subgroups. Of the 12285 orbits of a subgroup of order 11 on the set of

fixed-point-free involutions of the symmetric group of degree 14, it turns out that 8445 are

abstract arcs. The union of 6790170 pairs of these 8445 orbits are abstract arcs. The graph

with vertices the 8445 orbits that are abstract arcs and edges the 6790170 pairs of orbits

with unions that are abstract arcs has no clique of size 13. Therefore, there is no abstract

hyperoval of order 12 admitting a group of order 11. The computations were again done in

Magma. �

Theorem 7.12. [1] No abstract hyperoval of order 12 admits a dihedral group of order

14.

Proof. By Theorem 1 of [1], an element of order 7 that is an automorphism of an

abstract hyperoval of order 12 is the product of two disjoint 7-cycles. A group of order

14 has a normal Sylow 7-subgroup, so is dihedral or cyclic. A dihedral subgroup of S14 of

order 14, in which the Sylow 7-subgroup is generated by the product of two disjoint 7-cycles

either acts regularly or has two orbits of length 7. If there are two orbits of length 7, then

involutions have two fixed points, which by theorem 4 of [1], forces them to fix 11 elements

of A(X).
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But then there are 11 orbits of length 7 on A(X) & this is impossible, for there are only

seven fixed point involutions that centralize a product of two disjoint 7-cycles; thus A(X) is

the union of orbits of length 14, 11 orbits of length 7 and some of these seven - which cannot

make 143. Finally, a computer program in Magma rules out the transitive case : the cliques

in the usual graph are not big enough. �
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CHAPTER 8

Transitive Hyperovals

A great deal of work has been done on the classification of the transitive hyperovals by

Billotti, Korchmaros, Penttila, as well as Sonnino. In a paper published in 1987, Billotti and

Korchmaros proved the following deep results.

Theorem 8.1. Let π be a finite projective plane of even order, Ω a hyperoval of π, and

G a collineation group of π which leaves Ω invariant and acts transitively on its points. If 4

| G , then π has order 2, 4, or 16.

Theorem 8.2. Let π be a projective plane of even order n ≥ 8 containing a transitive

hyperoval Ω. If the order of the collineation group G preserving Ω is divisible by 4, then n

= 16 and |G| divides 144.

Transitive hyperovals have been classified for Desarguesian planes. In a 2004 paper,

Sonnino was able to show that:

Theorem 8.3. Let π be a projective plane of order 16 containing a transitive hyperoval

Ω. If the order of the collineation group G preserving Ω is equal to 144, then π ∼= PG(2, 16)

and Ω is the Lunelli-Sce-Hall Hyperoval in PG(2, 16).

Observe that if π is a projective plane and Ω is a hyperoval of that plane, then we may

derive the abstract hyperoval A(Ω) using the technique given above. Now observe that any

collineation group on π acting on Ω induces an automorphism group on A(Ω).
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Let F denote the set of all fixed-point free involutions on Ω. It is easy to see that A(Ω) ⊂

F . Let G denote the collineation group acting transitively on Ω. Let A(G) ⊂ SΩ denote the

induced automorphism group of A(Ω) induced by G. It is intuitively obvious to any casual

observer that A(Ω) is preserved by A(G).

Sonnino’s approach was to use what Biliotti and Korchmaros proved about any transitive

group of a hyperoval contained in a plane of order 16 to narrow down the possibilities of

a group G of order 144. Then, he carried out a computer aided search for all abstract

hyperovals (if any) whose underlying hyperoval admits a transitive action under G. We

simply check whether or not FG contained an orbit of size |A(Ω)|. To find such an orbit

would suggest the existence of a transitive group acting on Ω. If no such orbit exists, we

may conclude that there cannot exist such a group.

8.1. Prior Results

We will need the classification of transitive permutation groups of degree 18, as well as

the following theorems of 8.5 and 8.6

Theorem 8.4 (Hulpke (2005) [42]). There are 983 transitive groups of degree 18.

Theorem 8.5 (Biliotti-Korchmaros (1987)). A transitive hyperoval in a finite projective

plane of order n is either a regular hyperovals in PG(2, 2) or PG(2, 4) or n = 16. If n = 16,

then the order of the group G of the hyperoval divides 144, the group fixes a Baer subplane π0

disjoint from the hyperoval (and the pointwise stabilizer G(π0) of π0 in G has order at most

2) and G centralizes a unitary polarity of π0 and acts transitively on the absolute points of

that polarity in π0. Moreover, G contains exactly nine involutions fixing two points of the

hyperoval.
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Theorem 8.6 (Sonnino (2005)). A transitive hyperoval in a finite projective plane of

order 16 with a group of order 144 is a Lunelli-Sce hyperoval in PG(2, 16).

We will follow Sonnino’s methods closely, so it is necessary to describe them. The de-

scription in Theorem 8.5 of the group G of the hyperoval means that either G is the unique

up to conjugacy subgroup of PΓU(3, 4) of order 144 or the kernel of the action on the Baer

subplane π0 has order 2 and Gπ0 is AGL(1, 9) or the semidirect product of C3 × C3 by Q8.

Consideration of the possible transitive actions of degree 18 of these groups, it is feasible to

mount a computer search for abstract hyperovals of order 18 admitting these actions.

Each such transitive action on a setX induces an action on the fixed-point-free involutions

of degree 18, and any such abstract hyperoval A(X) must be a union of orbits of this induced

action. Many orbits O fail to satisfy the condition (necessary to be a subset of an abstract

hyperoval) that whenever a1, a2, b1, b2 ∈ X are distinct, there is at most one σ ∈ O with

σ(a1) = a2 and σ(b1) = b2.

Define a graph with vertices the orbits satisfying this condition and edges the unions O

of a pair of vertices satisfying this condition. Then A(X) corresponds to a clique of this

graph; and mounting a clique search leads to all abstract hyperovals arising from a transitive

hyperoval in a finite projective plane of order 16 with a group of order 144. It turns out

that they all arise from a Lunelli-Sce hyperoval in rmPG(2, 16) and that such an abstract

hyperoval embeds in a unique projective plane of order 16.

8.2. Our methods

Sonnino’s methods need to be sharpened a little to make the remaining cases computa-

tionally feasible. It turns out that good use can be made of the invariant Baer subplane.
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Lemma 8.7. Let A(X) be an abstract hyperoval of order 16 arising from a transitive

hyperoval X in a finite projective plane π of order 16 with group G. Then there is an orbit

U of G on A(X) of size 9 and a union U ′ of orbits of G on A(X) of size 12 such that if

B = U ∩ U ′, we have the following:

(1) there is a set L of 9 subsets `1, . . ., `9 of B of size 5 with |Fix(στ)| = 2 for σ 6= τ

in `i (i = 1, . . ., 9),

(2) there is a set M of 12 subsets m1, m2, . . ., m12, of B of size 5 with |Fix(στ)| = 0

for σ 6= τ in mi (i = 1, . . ., 12), and

(3) the incidence structure with point set B, line set L∪M and incidence set membership

is a projective plane π′0 of order 4 and U is a unital of π′0.

Proof. By Theorem 8.5, G leaves invariant a Baer subplane π0 of π which is disjoint

from X. The points of π not on X correspond to elements of A(X) and the permutations

groups (G, π \ X) and (G,A(X)) are permutationally isomorphic via this correspondence.

Moreover, π0 is a union of G-orbits corresponding to the 9 absolute points of the G-invariant

unitary polarity (which form a unital of π0) and of G-orbits corresponding to the 12 non-

absolute points of the G-invariant unitary polarity.

Every point of the hyperoval X lies on a unique line of π0; this line is secant to X.

Moreover, the points on this line and not on X correspond to element of A(X) interchanging

the points on the line on X; and hence there pairwise products fix these points. These 9

lines of π0 secant to X give the set L via the correspondence between points not on X and

elements of A(X).

The remaining 12 lines of π0 give the set M via the correspondence between points not

on X and elements of A(X); since they are external to X, the pairwise products of distinct

elements corresponding to such a line are fixed-point-free. �
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Like Sonnino, our programs were implemented in the computer algebra system Magma.

It turns out to be far more efficient to search for the possible subsets U and U ′ arising from

Lemma 8.7 of an abstract hyperoval of order 16 arising from a transitive hyperoval X in a

finite projective plane π of order 16 first, and then to seek other orbits of the underlying

group compatible with U and U ′.

We ran through the list of transitive subgroups of degree 18 acting on X = {1, . . . , 18},

first checking the conditions given by Theorem 8.5 for the groups, and, then, for each of the

surviving groups G, finding the orbits O on fixed-point-free involutions such that whenever

a1, a2, b1, b2 ∈ X are distinct, there is at most one σ ∈ O with σ(a1) = a2 and σ(b1) = b2.

The next step was to find the projective planes π′0 of order 4 given by Lemma 8.7 invariant

under G. Now, for each π′0, we find the set V of orbits O on fixed-point-free involutions such

that whenever a1, a2, b1, b2 ∈ X are distinct, there is at most one σ ∈ O∪π′0 with σ(a1) = a2

and σ(b1) = b2.

Now we find the set E of pairs {O,O′} with O,O′ ∈ V such that there is at most one

σ ∈ O∪O′∪π′0 with σ(a1) = a2 and σ(b1) = b2. Now the cliques of the graph Γ = (V,E) are

found, where the union of the elements of the clique contains 255 fixed-point-free involutions

(255 is the size of an abstract hyperoval of order 16).

It turned out that all the abstract hyperovals arising from the search had a group of order

144, and so, by Theorem 8.6, X is a Lunelli-Sce hyperoval and π is Desarguesian. Together

with Theorem 8.5, this proves the main theorem. �
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In more detail, 39 of the 983 transitive groups of degree 18 have orders divisible by 36

and dividing 144. By Theorem 8.6, we could restrict our attention to the 24 groups of

order 36 or 72. Restricting our attention to groups contain no proper transitive subgroup

of order divisible by 4 reduces this list to 9 groups. Applying Theorem 8.5, can reduce this

still further to 5 groups, as the remaining groups are neither isomorphic to a subgroup of

PΓU(3, 4) nor have a normal subgroup of order 2 such that the quotient group is isomorphic

to a subgroup of PΓU(3, 4). One of the remaining groups does not contain 9 involutions

with 2 fixed points, so can be eliminated by Theorem 8.5. The four surviving groups were

TransitiveGroup(18, i), for i = 9, 10, 12, 28, in the implementation of Hulpke’s result on

Magma. Each of these was fed into our algorithm.

By using the induced action on fixed-point-free involutions, it was possible to calculate

the stabilizer of each abstract hyperoval that arose from running our software, and to check

that its preimage in Sym(X) was permutationally isomorphic to the group of the Lunelli-Sce

hyperoval acting on the points of the Lunelli-Sce hyperoval. Now theorem 8.6 applies; the

hyperoval X is a Lunelli-Sce hyperoval and π is Desarguesian.
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