5,963 research outputs found

    On the Number of Embeddings of Minimally Rigid Graphs

    Full text link
    Rigid frameworks in some Euclidian space are embedded graphs having a unique local realization (up to Euclidian motions) for the given edge lengths, although globally they may have several. We study the number of distinct planar embeddings of minimally rigid graphs with nn vertices. We show that, modulo planar rigid motions, this number is at most (2nβˆ’4nβˆ’2)β‰ˆ4n{{2n-4}\choose {n-2}} \approx 4^n. We also exhibit several families which realize lower bounds of the order of 2n2^n, 2.21n2.21^n and 2.88n2.88^n. For the upper bound we use techniques from complex algebraic geometry, based on the (projective) Cayley-Menger variety CM2,n(C)βŠ‚P(n2)βˆ’1(C)CM^{2,n}(C)\subset P_{{{n}\choose {2}}-1}(C) over the complex numbers CC. In this context, point configurations are represented by coordinates given by squared distances between all pairs of points. Sectioning the variety with 2nβˆ’42n-4 hyperplanes yields at most deg(CM2,n)deg(CM^{2,n}) zero-dimensional components, and one finds this degree to be D2,n=1/2(2nβˆ’4nβˆ’2)D^{2,n}={1/2}{{2n-4}\choose {n-2}}. The lower bounds are related to inductive constructions of minimally rigid graphs via Henneberg sequences. The same approach works in higher dimensions. In particular we show that it leads to an upper bound of 2D3,n=2nβˆ’3nβˆ’2(nβˆ’6nβˆ’3)2 D^{3,n}= {\frac{2^{n-3}}{n-2}}{{n-6}\choose{n-3}} for the number of spatial embeddings with generic edge lengths of the 1-skeleton of a simplicial polyhedron, up to rigid motions

    Symplectic fillings of Seifert fibered spaces

    Full text link
    We give finiteness results and some classifications up to diffeomorphism of minimal strong symplectic fillings of Seifert fibered spaces over S^2 satisfying certain conditions, with a fixed natural contact structure. In some cases we can prove that all symplectic fillings are obtained by rational blow-downs of a plumbing of spheres. In other cases, we produce new manifolds with convex symplectic boundary, thus yielding new cut-and-paste operations on symplectic manifolds containing certain configurations of symplectic spheres.Comment: 39 pages, 21 figures, v2 a few minor corrections and citations, v3 added clarifications in the proof of Lemma 2.8, plus some minor change

    A theorem of Hrushovski-Solecki-Vershik applied to uniform and coarse embeddings of the Urysohn metric space

    Get PDF
    A theorem proved by Hrushovski for graphs and extended by Solecki and Vershik (independently from each other) to metric spaces leads to a stronger version of ultrahomogeneity of the infinite random graph RR, the universal Urysohn metric space \Ur, and other related objects. We show how the result can be used to average out uniform and coarse embeddings of \Ur (and its various counterparts) into normed spaces. Sometimes this leads to new embeddings of the same kind that are metric transforms and besides extend to affine representations of various isometry groups. As an application of this technique, we show that \Ur admits neither a uniform nor a coarse embedding into a uniformly convex Banach space.Comment: 23 pages, LaTeX 2e with Elsevier macros, a significant revision taking into account anonymous referee's comments, with the proof of the main result simplified and another long proof moved to the appendi
    • …
    corecore