6,042 research outputs found

    MIMO radar space–time adaptive processing using prolate spheroidal wave functions

    Get PDF
    In the traditional transmitting beamforming radar system, the transmitting antennas send coherent waveforms which form a highly focused beam. In the multiple-input multiple-output (MIMO) radar system, the transmitter sends noncoherent (possibly orthogonal) broad (possibly omnidirectional) waveforms. These waveforms can be extracted at the receiver by a matched filterbank. The extracted signals can be used to obtain more diversity or to improve the spatial resolution for clutter. This paper focuses on space–time adaptive processing (STAP) for MIMO radar systems which improves the spatial resolution for clutter. With a slight modification, STAP methods developed originally for the single-input multiple-output (SIMO) radar (conventional radar) can also be used in MIMO radar. However, in the MIMO radar, the rank of the jammer-and-clutter subspace becomes very large, especially the jammer subspace. It affects both the complexity and the convergence of the STAP algorithm. In this paper, the clutter space and its rank in the MIMO radar are explored. By using the geometry of the problem rather than data, the clutter subspace can be represented using prolate spheroidal wave functions (PSWF). A new STAP algorithm is also proposed. It computes the clutter space using the PSWF and utilizes the block-diagonal property of the jammer covariance matrix. Because of fully utilizing the geometry and the structure of the covariance matrix, the method has very good SINR performance and low computational complexity

    Some contributions on MIMO radar

    Get PDF
    Motivated by recent advances in Multiple Input Multiple Output (MIMO) wireless communications, this dissertation aims at exploring the potential of MIMO approaches in the radar context. In communications, MIMO systems combat the fading effects of the multi-path channel with spatial diversity. Further, the scattering environment can be used by such systems to achieve spatial multiplexing. In radar, a complex target consisting of several scatterers takes the place of the multi-path channel of the communication problem. A target\u27s radar cross section (RCS), which determines the amount of returned power, greatly varies with the considered aspect. Those variations significantly impair the detection and estimation performance of conventional radar employing closely spaced arrays on transmit and receive sides. In contrast, by widely separating the transmit and receive elements, MIMO radar systems observe a target simultaneously from different aspects resulting in spatial diversity. This diversity overcomes the fluctuations in received power. Similar to the multiplexing gain in communications, the simultaneous observation of a target from several perspectives enables resolving its features with an accuracy beyond the one supported by the bandwidth. The dissertation studies the MIMO concept in radar in the following manner. First, angle of arrival estimation is explored for a system applying transmit diversity on the transmit side. Due to the target\u27s RCS fluctuations, the notion of ergodic and outage Cramer Rao bounds is introduced. Both bounds are compared with simulation results revealing the diversity potentials of MIMO radar. Afterwards, the detection of targets in white Gaussian noise is discussed including geometric considerations due to the wide separation between the system elements. The detection performance of MIMO radar is then compared to the one achieved by conventional phased array radar systems. The discussion is extended to include returns from homogeneous clutter. A Doppler processing based moving target detector for MIMO radar is developed in this context. Based on this detector, the moving target detection capabilities of MIMO radar are evaluated and compared to the ones of phased array and multi-static radar systems. It is shown, that MIMO radar is capable of reliably detecting targets moving in an arbitrary direction. The advantage of using several transmitters is illustrated and the constant false alarm rate (CFAR) property of adaptive MIMO moving target detectors is demonstrated. Finally, the high resolution capabilities of MIMO radar are explored. As noted above, the several individual scatterers constituting a target result in its fluctuating RCS. The high resolution mode is aimed at resolving those scatterers. With Cramer Rao bounds and simulation results, it is explored how observing a single isotropic scatterer from several aspects enhances the accuracy of estimating the location of this scatterer. In this context a new, two-dimensional ambiguity function is introduced. This ambiguity function is used to illustrate that several scatterers can be resolved within a conventional resolution cell defined by the bandwidth. The effect of different system parameters on this ambiguity function is discussed

    Optimum and Centralized Detection for Statistical MIMO Radar

    Get PDF
    ABSTRACT:Multiple Input Multiple Output (MIMO) radar is a new emerging radar technique developed recently. MIMO radar can exploit the spatial diversity of target scatterers in a variety of ways to extend the radar's performance. This paper introduces the statistical MIMO radar concept and the method of receiving signal processing also is presented. The fundamental difference between statistical MIMO and other radar array systems is that the latter seek to maximize the coherent processing gain, while statistical MIMO radar capitalizes on the diversity of target scattering to improve radar performance. Compared to traditional phased-array radar, statistical MIMO radar can offer better parameter identifiability and higher resolution, better sensitivity to slowly moving targets, enable the direct applicability of adaptive techniques for effective interference and jamming suppression, and allow for much flexibility for transmit beam-pattern design and waveform optimization. Reaping the full benefit of the superior performance enabled by the statistical MIMO radar requires a novel design of its receive filters to minimize the impact of scatterers in nearby range bins on the received signals from the range bin of interest to minimize range compression problem by spacing the antenna elements at the transmitter and at the receiver such that the target angular spread is manifested. In this paper, we focus on the application of the target spatial diversity to improve detection performance. The optimal detector in the Neyman-Pearson sense is developed and analyzed for the statistical MIMO radar in case of stationary target. The performance improvement that can be achieved by the use of angular diversity in statistical MIMO radar is investigated. The results show that at high SNR values statistical MIMO radar provides great improvements of target detection performance over other types of array radars. Whereas, at low SNR values, phased array radar performs better than statistical MIMO radar. Finally, we present a number of numerical examples to demonstrate the effectiveness of the proposed approaches. Therefore, statistical MIMO radar can be applied to enhance radar resolution by allowing the measurement of one scatterer at a time

    Adaptive MIMO Radar for Target Detection, Estimation, and Tracking

    Get PDF
    We develop and analyze signal processing algorithms to detect, estimate, and track targets using multiple-input multiple-output: MIMO) radar systems. MIMO radar systems have attracted much attention in the recent past due to the additional degrees of freedom they offer. They are commonly used in two different antenna configurations: widely-separated: distributed) and colocated. Distributed MIMO radar exploits spatial diversity by utilizing multiple uncorrelated looks at the target. Colocated MIMO radar systems offer performance improvement by exploiting waveform diversity. Each antenna has the freedom to transmit a waveform that is different from the waveforms of the other transmitters. First, we propose a radar system that combines the advantages of distributed MIMO radar and fully polarimetric radar. We develop the signal model for this system and analyze the performance of the optimal Neyman-Pearson detector by obtaining approximate expressions for the probabilities of detection and false alarm. Using these expressions, we adaptively design the transmit waveform polarizations that optimize the target detection performance. Conventional radar design approaches do not consider the goal of the target itself, which always tries to reduce its detectability. We propose to incorporate this knowledge about the goal of the target while solving the polarimetric MIMO radar design problem by formulating it as a game between the target and the radar design engineer. Unlike conventional methods, this game-theoretic design does not require target parameter estimation from large amounts of training data. Our approach is generic and can be applied to other radar design problems also. Next, we propose a distributed MIMO radar system that employs monopulse processing, and develop an algorithm for tracking a moving target using this system. We electronically generate two beams at each receiver and use them for computing the local estimates. Later, we efficiently combine the information present in these local estimates, using the instantaneous signal energies at each receiver to keep track of the target. Finally, we develop multiple-target estimation algorithms for both distributed and colocated MIMO radar by exploiting the inherent sparsity on the delay-Doppler plane. We propose a new performance metric that naturally fits into this multiple target scenario and develop an adaptive optimal energy allocation mechanism. We employ compressive sensing to perform accurate estimation from far fewer samples than the Nyquist rate. For colocated MIMO radar, we transmit frequency-hopping codes to exploit the frequency diversity. We derive an analytical expression for the block coherence measure of the dictionary matrix and design an optimal code matrix using this expression. Additionally, we also transmit ultra wideband noise waveforms that improve the system resolution and provide a low probability of intercept: LPI)

    Efficient Transmit Beamspace Design for Search-free Based DOA Estimation in MIMO Radar

    Full text link
    In this paper, we address the problem of transmit beamspace design for multiple-input multiple-output (MIMO) radar with colocated antennas in application to direction-of-arrival (DOA) estimation. A new method for designing the transmit beamspace matrix that enables the use of search-free DOA estimation techniques at the receiver is introduced. The essence of the proposed method is to design the transmit beamspace matrix based on minimizing the difference between a desired transmit beampattern and the actual one under the constraint of uniform power distribution across the transmit array elements. The desired transmit beampattern can be of arbitrary shape and is allowed to consist of one or more spatial sectors. The number of transmit waveforms is even but otherwise arbitrary. To allow for simple search-free DOA estimation algorithms at the receive array, the rotational invariance property is established at the transmit array by imposing a specific structure on the beamspace matrix. Semi-definite relaxation is used to transform the proposed formulation into a convex problem that can be solved efficiently. We also propose a spatial-division based design (SDD) by dividing the spatial domain into several subsectors and assigning a subset of the transmit beams to each subsector. The transmit beams associated with each subsector are designed separately. Simulation results demonstrate the improvement in the DOA estimation performance offered by using the proposed joint and SDD transmit beamspace design methods as compared to the traditional MIMO radar technique.Comment: 32 pages, 10 figures, submitted to the IEEE Trans. Signal Processing in May 201

    MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms

    Get PDF
    The concept of multiple-input multiple-output (MIMO) radars has drawn considerable attention recently. Unlike the traditional single-input multiple-output (SIMO) radar which emits coherent waveforms to form a focused beam, the MIMO radar can transmit orthogonal (or incoherent) waveforms. These waveforms can be used to increase the system spatial resolution. The waveforms also affect the range and Doppler resolution. In traditional (SIMO) radars, the ambiguity function of the transmitted pulse characterizes the compromise between range and Doppler resolutions. It is a major tool for studying and analyzing radar signals. Recently, the idea of ambiguity function has been extended to the case of MIMO radar. In this paper, some mathematical properties of the MIMO radar ambiguity function are first derived. These properties provide some insights into the MIMO radar waveform design. Then a new algorithm for designing the orthogonal frequency-hopping waveforms is proposed. This algorithm reduces the sidelobes in the corresponding MIMO radar ambiguity function and makes the energy of the ambiguity function spread evenly in the range and angular dimensions
    corecore