32,786 research outputs found

    On the Complexity and Approximation of Binary Evidence in Lifted Inference

    Full text link
    Lifted inference algorithms exploit symmetries in probabilistic models to speed up inference. They show impressive performance when calculating unconditional probabilities in relational models, but often resort to non-lifted inference when computing conditional probabilities. The reason is that conditioning on evidence breaks many of the model's symmetries, which can preempt standard lifting techniques. Recent theoretical results show, for example, that conditioning on evidence which corresponds to binary relations is #P-hard, suggesting that no lifting is to be expected in the worst case. In this paper, we balance this negative result by identifying the Boolean rank of the evidence as a key parameter for characterizing the complexity of conditioning in lifted inference. In particular, we show that conditioning on binary evidence with bounded Boolean rank is efficient. This opens up the possibility of approximating evidence by a low-rank Boolean matrix factorization, which we investigate both theoretically and empirically.Comment: To appear in Advances in Neural Information Processing Systems 26 (NIPS), Lake Tahoe, USA, December 201

    The IBMAP approach for Markov networks structure learning

    Full text link
    In this work we consider the problem of learning the structure of Markov networks from data. We present an approach for tackling this problem called IBMAP, together with an efficient instantiation of the approach: the IBMAP-HC algorithm, designed for avoiding important limitations of existing independence-based algorithms. These algorithms proceed by performing statistical independence tests on data, trusting completely the outcome of each test. In practice tests may be incorrect, resulting in potential cascading errors and the consequent reduction in the quality of the structures learned. IBMAP contemplates this uncertainty in the outcome of the tests through a probabilistic maximum-a-posteriori approach. The approach is instantiated in the IBMAP-HC algorithm, a structure selection strategy that performs a polynomial heuristic local search in the space of possible structures. We present an extensive empirical evaluation on synthetic and real data, showing that our algorithm outperforms significantly the current independence-based algorithms, in terms of data efficiency and quality of learned structures, with equivalent computational complexities. We also show the performance of IBMAP-HC in a real-world application of knowledge discovery: EDAs, which are evolutionary algorithms that use structure learning on each generation for modeling the distribution of populations. The experiments show that when IBMAP-HC is used to learn the structure, EDAs improve the convergence to the optimum
    corecore