96,755 research outputs found

    A mixed 1\ell_1 regularization approach for sparse simultaneous approximation of parameterized PDEs

    Full text link
    We present and analyze a novel sparse polynomial technique for the simultaneous approximation of parameterized partial differential equations (PDEs) with deterministic and stochastic inputs. Our approach treats the numerical solution as a jointly sparse reconstruction problem through the reformulation of the standard basis pursuit denoising, where the set of jointly sparse vectors is infinite. To achieve global reconstruction of sparse solutions to parameterized elliptic PDEs over both physical and parametric domains, we combine the standard measurement scheme developed for compressed sensing in the context of bounded orthonormal systems with a novel mixed-norm based 1\ell_1 regularization method that exploits both energy and sparsity. In addition, we are able to prove that, with minimal sample complexity, error estimates comparable to the best ss-term and quasi-optimal approximations are achievable, while requiring only a priori bounds on polynomial truncation error with respect to the energy norm. Finally, we perform extensive numerical experiments on several high-dimensional parameterized elliptic PDE models to demonstrate the superior recovery properties of the proposed approach.Comment: 23 pages, 4 figure

    Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives: Offline and Online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)O(1)-approximate mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where---crucially---the agents are not ordered with respect to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present. We obtain O(p)O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a pp-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guarantees in polynomial time, our results are asymptotically best possible.Comment: Accepted to EC 201

    Decomposition by Partial Linearization: Parallel Optimization of Multi-Agent Systems

    Full text link
    We propose a novel decomposition framework for the distributed optimization of general nonconvex sum-utility functions arising naturally in the system design of wireless multiuser interfering systems. Our main contributions are: i) the development of the first class of (inexact) Jacobi best-response algorithms with provable convergence, where all the users simultaneously and iteratively solve a suitably convexified version of the original sum-utility optimization problem; ii) the derivation of a general dynamic pricing mechanism that provides a unified view of existing pricing schemes that are based, instead, on heuristics; and iii) a framework that can be easily particularized to well-known applications, giving rise to very efficient practical (Jacobi or Gauss-Seidel) algorithms that outperform existing adhoc methods proposed for very specific problems. Interestingly, our framework contains as special cases well-known gradient algorithms for nonconvex sum-utility problems, and many blockcoordinate descent schemes for convex functions.Comment: submitted to IEEE Transactions on Signal Processin

    From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz

    Full text link
    The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.'s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.Comment: 51 pages, 2 figures. Revised to match journal pape

    On Simultaneous Two-player Combinatorial Auctions

    Full text link
    We consider the following communication problem: Alice and Bob each have some valuation functions v1()v_1(\cdot) and v2()v_2(\cdot) over subsets of mm items, and their goal is to partition the items into S,SˉS, \bar{S} in a way that maximizes the welfare, v1(S)+v2(Sˉ)v_1(S) + v_2(\bar{S}). We study both the allocation problem, which asks for a welfare-maximizing partition and the decision problem, which asks whether or not there exists a partition guaranteeing certain welfare, for binary XOS valuations. For interactive protocols with poly(m)poly(m) communication, a tight 3/4-approximation is known for both [Fei06,DS06]. For interactive protocols, the allocation problem is provably harder than the decision problem: any solution to the allocation problem implies a solution to the decision problem with one additional round and logm\log m additional bits of communication via a trivial reduction. Surprisingly, the allocation problem is provably easier for simultaneous protocols. Specifically, we show: 1) There exists a simultaneous, randomized protocol with polynomial communication that selects a partition whose expected welfare is at least 3/43/4 of the optimum. This matches the guarantee of the best interactive, randomized protocol with polynomial communication. 2) For all ε>0\varepsilon > 0, any simultaneous, randomized protocol that decides whether the welfare of the optimal partition is 1\geq 1 or 3/41/108+ε\leq 3/4 - 1/108+\varepsilon correctly with probability >1/2+1/poly(m)> 1/2 + 1/ poly(m) requires exponential communication. This provides a separation between the attainable approximation guarantees via interactive (3/43/4) versus simultaneous (3/41/108\leq 3/4-1/108) protocols with polynomial communication. In other words, this trivial reduction from decision to allocation problems provably requires the extra round of communication

    Simultaneously Sparse Solutions to Linear Inverse Problems with Multiple System Matrices and a Single Observation Vector

    Full text link
    A linear inverse problem is proposed that requires the determination of multiple unknown signal vectors. Each unknown vector passes through a different system matrix and the results are added to yield a single observation vector. Given the matrices and lone observation, the objective is to find a simultaneously sparse set of unknown vectors that solves the system. We will refer to this as the multiple-system single-output (MSSO) simultaneous sparsity problem. This manuscript contrasts the MSSO problem with other simultaneous sparsity problems and conducts a thorough initial exploration of algorithms with which to solve it. Seven algorithms are formulated that approximately solve this NP-Hard problem. Three greedy techniques are developed (matching pursuit, orthogonal matching pursuit, and least squares matching pursuit) along with four methods based on a convex relaxation (iteratively reweighted least squares, two forms of iterative shrinkage, and formulation as a second-order cone program). The algorithms are evaluated across three experiments: the first and second involve sparsity profile recovery in noiseless and noisy scenarios, respectively, while the third deals with magnetic resonance imaging radio-frequency excitation pulse design.Comment: 36 pages; manuscript unchanged from July 21, 2008, except for updated references; content appears in September 2008 PhD thesi

    Computing Stable Coalitions: Approximation Algorithms for Reward Sharing

    Full text link
    Consider a setting where selfish agents are to be assigned to coalitions or projects from a fixed set P. Each project k is characterized by a valuation function; v_k(S) is the value generated by a set S of agents working on project k. We study the following classic problem in this setting: "how should the agents divide the value that they collectively create?". One traditional approach in cooperative game theory is to study core stability with the implicit assumption that there are infinite copies of one project, and agents can partition themselves into any number of coalitions. In contrast, we consider a model with a finite number of non-identical projects; this makes computing both high-welfare solutions and core payments highly non-trivial. The main contribution of this paper is a black-box mechanism that reduces the problem of computing a near-optimal core stable solution to the purely algorithmic problem of welfare maximization; we apply this to compute an approximately core stable solution that extracts one-fourth of the optimal social welfare for the class of subadditive valuations. We also show much stronger results for several popular sub-classes: anonymous, fractionally subadditive, and submodular valuations, as well as provide new approximation algorithms for welfare maximization with anonymous functions. Finally, we establish a connection between our setting and the well-studied simultaneous auctions with item bidding; we adapt our results to compute approximate pure Nash equilibria for these auctions.Comment: Under Revie
    corecore