
Budget-Feasible Mechanism Design for Non-Monotone
Submodular Objectives: Offline and Online

GEORGIOS AMANATIDIS∗, Centrum Wiskunde & Informatica (CWI), The Netherlands

PIETER KLEER∗, Centrum Wiskunde & Informatica (CWI), The Netherlands

GUIDO SCHÄFER, Centrum Wiskunde & Informatica (CWI) and Vrije Universiteit Amsterdam, The

Netherlands

The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer

(buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of

designing truthful mechanisms that have good approximation guarantees and never pay the participating

agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation

functions and derive the first truthful, budget-feasible and O(1)-approximation mechanisms that run in

polynomial time in the value query model, for both offline and online auctions. Since the introduction of the

problem by Singer [40], obtaining efficient mechanisms for objectives that go beyond the class of monotone

submodular functions has been elusive. Prior to our work, the only O(1)-approximation mechanism known

for non-monotone submodular objectives required an exponential number of value queries.

At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization

under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good

approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce

truthfulness). Ours is the first mechanism for the problem where—crucially—the agents are not ordered

according to their marginal value per cost. This allows us to appropriately adapt these ideas to the online

setting as well.

To further illustrate the applicability of our approach, we also consider the case where additional feasibility

constraints are present, e.g., at most k agents can be selected. We obtain O(p)-approximation mechanisms

for both monotone and non-monotone submodular objectives, when the feasible solutions are independent

sets of a p-system. With the exception of additive valuation functions, no mechanisms were known for this

setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial

approximation guarantees in polynomial time, our results are asymptotically best possible.

CCS Concepts: • Theory of computation → Algorithmic mechanism design; Algorithmic game theory;
Approximation algorithms analysis; Online algorithms.

Additional Key Words and Phrases: procurement auctions; budget-feasible mechanism design; non-monotone

submodular maximization

ACM Reference Format:
Georgios Amanatidis, Pieter Kleer, and Guido Schäfer. 2019. Budget-Feasible Mechanism Design for Non-

Monotone Submodular Objectives: Offline and Online. In ACM EC ’19: ACM Conference on Economics and
Computation (EC ’19), June 24–28, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 19 pages. https://doi.org/

10.1145/3328526.3329622

∗
G. Amanatidis and P. Kleer are supported by the NWO Gravitation Project NETWORKS, Grant Number 024.002.003.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC ’19, June 24–28, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6792-9/19/06. . . $15.00

https://doi.org/10.1145/3328526.3329622

EC’19 Session 7c: Mechanism Design II

901

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301635294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3328526.3329622
https://doi.org/10.1145/3328526.3329622
https://doi.org/10.1145/3328526.3329622

2 Georgios Amanatidis, Pieter Kleer, and Guido Schäfer

1 INTRODUCTION
We consider the problem of designing budget-feasible mechanisms for a natural model of procure-

ment auctions. In this model, an auctioneer is interested in buying services (or goods) from a set of

agents A. Each agent i ∈ A specifies a cost ci to be paid by the buyer for using his service; crucially,

these costs are assumed to be private information. The auctioneer has a budget B and a valuation

function v(·), where v(S) specifies the value derived from the services of the agents in S ⊆ A. Given
the (reported) costs of the agents, the goal of the auctioneer is to choose a budget-feasible subset
S ⊆ A of the agents, such that the valuation v(S) is maximized. Budget-feasibility here means that∑

i ∈S pi ≤ B, where pi is the payment issued from the mechanism to agent i .
Note that the agents might try to extract larger payments from the mechanism by misreporting

their actual costs—which of course is undesirable from the auctioneer’s perspective. The goal,

therefore, is to design budget-feasible mechanisms that (i) elicit truthful reporting of the costs by all
agents, and (ii) achieve a good approximation with respect to the optimal value for the auctioneer.

What makes the problem so intriguing is the fact that truthfulness and budget-feasibility are two

directly conflicting goals, since the former is achieved by paying as much as needed to make agents

indifferent to lying (see Lemma 2.4). Indicatively, the use of the celebrated truthful VCG mechanism

in this setting completely fails with respect to keeping the payments bounded [40].

The problem of designing budget-feasible mechanisms was introduced by Singer [40] and has

received a lot of attention, both because of its theoretical appeal and of its relevance to several

emerging application domains. A prominent such application is in crowdsourcing marketplaces

(such as Mechanical Turk, Figure Eight and Clickworker) which provide online platforms to procure

workforce (see [4, 26, 31]). Another application is in the context of influence maximization in social

networks, where one seeks to select influential users (see [1, 41]).

We focus on the design of budget-feasible mechanisms for the general class of non-monotone
submodular valuation functions. Submodular objectives constitute an important class of valuation

functions as they satisfy the property of diminishing returns, which naturally arises in many

settings. Most existing works make the assumption that the valuation functions are monotone
(non-decreasing), i.e., v(S) ≤ v(T) for S ⊆ T . Although the monotonicity assumption makes sense

in certain applications, there are several examples where it is violated. For example, in the context

of influence maximization in social networks, adding more users to the selected set may sometimes

result in negative influence (see [12]). The most prominent example of a non-monotone submodular

objective studied in our setting is the budgeted max-cut problem [2, 18], where v(·) is determined

by the cuts of a given graph.

A natural generalization of this framework is to assume that the space of feasible sets has some

structure, e.g., the feasible sets form a matroid. This variant has been studied only for additive

valuation functions [1, 35], despite its wide range of applications varying from team formation

to spectrum markets (see [35]). Here we study the problem for monotone and non-monotone

submodular objectives under p-system constraints.

The purely algorithmic versions of these mechanism design problems ask for the maximization

of a (non-monotone) submodular function subject to the constraint that the total cost of the selected

agents does not exceed the budget; often referred to as a knapsack constraint. These problems

are typically NP-hard, hence our focus is on approximation algorithms that compute a close to

optimal solution in polynomial time. From an algorithmic point of view, most of these problems

are well-understood and admit good approximations. However, it is not clear how to appropriately

convert these algorithms into truthful, budget-feasible mechanisms and, up to this work, this goal

had been elusive. Our results illustrate that for the mechanism design problems it is possible to

achieve the same asymptotic guarantees that are known for their algorithmic counterparts.

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

902

Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives 3

Our Contributions. We derive the first budget-feasible and O(1)-approximate mechanisms for

non-monotone submodular objectives, both for the offline and the online setting. Our results for

the online setting hold for the well-studied secretary model, where the agents arrive in a uniformly

random order. Our mechanisms run in polynomial time in the value query model. The highlights

of this work are as follows:

• We obtain the first universally truthful, budget-feasible O(1)-approximation mechanism for

non-monotone submodular objectives in the value query model.

• We derive the first universally truthful, budget-feasible O(1)-approximation online mecha-

nism for non-monotone submodular objectives. As a consequence, we obtain the first O(1)-
approximation algorithm for the non-monotone Submodular Knapsack Secretary Problem (see also

Remark 4.3), a budget constrained variant of the infamous Secretary Problem.

• We give universally truthful, budget-feasible O(p)-approximation mechanisms for both mono-

tone and non-monotone submodular objectives, when the feasible solutions are independent sets

of a p-system. Beyond the additive case, nothing was known for this constrained setting.

• We provide lower bounds illustrating that asymptotically our results are best possible. On a high

level, only trivial guarantees can be achieved in polynomial time if one goes beyond the class of

general submodular functions or imposes constraints beyond downward closed systems.

Technical Challenges. It should be noted that for monotone submodular objectives all known

mechanisms essentially use the same greedy subroutine introduced by Singer [40]: Sort all agents

in decreasing order of marginal value per cost and pick as many agents as possible before hitting

some carefully selected threshold. This is a simplified version of the optimal greedy algorithm of

Sviridenko [43] and indeed gives non-trivial approximation guarantees. Further, due to its simplicity

it also has the other desired properties of truthfulness, individual rationality, and budget-feasibility.

Unfortunately, it is easy to construct examples where running such a greedy algorithm for a

non-monotone objective results in a solution of arbitrarily poor quality. The algorithmic state-of-

the-art for non-monotone submodular maximization under a knapsack constraint, e.g., [16, 24, 32],

provides us with quite involved algorithms on continuous relaxations of the problem that seem very

unlikely to yield monotone allocation rules, and thus truthful mechanisms. The only simple (and

deterministic) exception is the two-pass greedy algorithm of Gupta et al. [28], where it is shown

that running Sviridenko’s greedy algorithm twice and then maximizing without the knapsack

constraint is sufficient to get a deterministic 6-approximation algorithm. Despite being significantly

simpler, however, this two-pass greedy algorithm still suffers with respect to monotonicity. More

recently, several simple randomized greedy approaches for maximizing non-monotone submodular

objectives subject to other (i.e., non-knapsack) constraints were proposed [14, 15, 22, 25]. However,

these approaches are also not applicable here; we refer the interested reader to the discussion in

the full version of our paper [3].

At the heart of our approach lies a novel deterministic greedy algorithm for non-monotone

submodular maximization under a knapsack constraint. Our algorithm builds two candidate solu-

tions simultaneously, yet prevents agents to jump from one solution to the other by changing their

cost. To do the latter we offer each agent a take-it-or-leave-it price based on an estimate of the

optimal value which we obtain by sampling. Moreover, this is the first mechanism for the problem

where—crucially—the agents are not ordered with respect to their marginal value per cost. This

further allows us to appropriately modify the algorithm and adapt it to the online secretary setting

and to settings with additional feasibility constraints, while maintaining all its desired properties.

All of our mechanisms are randomized and, in fact, random sampling is an essential building block

in our approach, as in previous related works [2, 6, 10, 34]. Designing deterministic mechanisms

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

903

4 Georgios Amanatidis, Pieter Kleer, and Guido Schäfer

seems very challenging and, beyond additive functions [17, 40], no deterministic, polynomial-

time, budget-feasible O(1)-approximation mechanisms are known, except for some special cases

[1, 2, 18, 29, 41]. Obtaining deterministic, budget-feasible, O(1)-approximation mechanisms—or

showing that they do not exist—is an intriguing open problem.

Related Work. As mentioned above, the study of budget-feasible mechanisms was initiated by

Singer [40], who gave a randomized O(1)-approximation mechanism for monotone submodular

functions. Later, Chen et al. [17] significantly improved the approximation ratio and also suggested

a deterministic O(1)-approximation mechanism, albeit with superpolynomial running time. Sev-

eral follow-up results modified this deterministic mechanism so that it runs in polynomial time

for special cases, including coverage functions [1, 41] and information gain functions [29]. For

subadditive functions, Dobzinski et al. [18] suggested a O(log2 n)-approximation mechanism, and

gave the first constant factor mechanisms for a special case of non-monotone objectives, namely

cut functions. The factor for subadditive functions was later improved to O(logn/log logn) by
Bei et al. [10], who also gave a randomized O(1)-approximation mechanism for XOS functions,

albeit in exponential time in the value query model, and further initiated the Bayesian analysis

in this setting.
1
Amanatidis et al. [2] suggested O(1)-approximation mechanisms for a subclass of

non-monotone submodular objectives, namely symmetric submodular objectives, however their ap-

proach does not seem to generalize beyond this subclass. For settings with additional combinatorial

constraints, Amanatidis et al. [1] and Leonardi et al. [35] gaveO(1)-approximation mechanisms for

additive valuation functions subject to independent system constraints. There is also a line of related

work under the large market assumption (where no participant can significantly affect the market

outcome), which allows for mechanisms with improved performance (see, e.g., [4, 8, 26, 31, 42]).

The online version of the problem was introduced and studied by Badanidiyuru et al. [6] who

give an O(1)-approximation mechanism for monotone submodular functions. This is closely re-

lated to the purely algorithmic version of the problem (i.e., without the incentives), namely the

Submodular Knapsack Secretary Problem introduced by Bateni et al. [9] as a generalization of the

Knapsack Secretary Problem [5]. Bateni et al. studied the problem for monotone and non-monotone

submodular objectives, although their argument for the latter case is not sound (see Remark 4.3).

While the monotone submodular case has been improved [23] and generalized [30], there is no

follow-up work on the non-monotone case to the best of our knowledge.

On maximization of submodular functions subject to knapsack or other type of constraints, there

is a vast literature, going back several decades (see, e.g., [39, 44]). Focusing on knapsack constraints,

there is a rich line of recent work on developing algorithms on continuous relaxations of the problem

(see, e.g., [16, 20, 24, 32] and references therein) achieving an e-approximation for non-monotone

objectives. However, the most relevant recent work to ours is that of Gupta et al. [28] who proposed

a deterministic 6-approximation algorithm for the non-monotone case, related on a high level to

our main approach. Gupta et al. also gave algorithms for certain constrained secretary problems,

although not with knapsack constraints. When ℓ knapsack constraints and a p-system constraint

are both present, the algorithmic state-of-the-art is a (p + 2ℓ + 1)-approximation algorithm for

the monotone submodular case due to Badanidiyuru and Vondrák [7] and a (2p + 2ℓ + 1)(p + 1)/p-
approximation algorithm for the non-monotone submodular case due to Mirzasoleiman et al. [37].

1
Bei et al. [10] propose an O (1)-approximation mechanism for non-decreasing XOS objectives in the much stronger demand
query model. However, they discuss how to extend their result to general XOS functions via the use of v̂(S) = maxT ⊆S v(T).
It is easy to see that v̂ is non-decreasing and that S is an optimal solution of v if and only if it is a minimal optimal solution

for v̂ . Moreover, Gupta et al. [27] proved that if v is general XOS then v̂ is monotone XOS. It should be noted that this

transformation does not work for submodular functions [2]. Therefore, known results for monotone submodular functions

do not extend to the non-monotone case, even in the demand query model.

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

904

Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives 5

2 PRELIMINARIES
We use A = [n] = {1, 2, . . . ,n} to denote a set of n agents. Each agent i is associated with a private

cost ci , denoting the cost for participating in the solution. We consider a procurement auction

setting, where the auctioneer is equipped with a valuation function v : 2
A → Q≥0 and a budget

B > 0. For S ⊆ A, v(S) is the value derived by the auctioneer if the set S is selected (for singletons,

we will often write v(i) instead of v({i})). Therefore, the algorithmic goal in all the problems we

study is to select a set S that maximizes v(S) subject to the constraint

∑
i ∈S ci ≤ B. We assume

oracle access to v via value queries, i.e., we assume the existence of a polynomial time value oracle

that returns v(S) when given as input a set S .
A function v is non-decreasing (often referred to as monotone), if v(S) ≤ v(T) for any S ⊆ T ⊆ A.

We consider general (i.e., not necessarily monotone), normalized (i.e., v(∅) = 0), non-negative

submodular valuation functions. Since marginal values are extensively used, we adopt the shortcut

v(i | S) for the marginal value of agent i with respect to the set S , i.e., v(i | S) = v(S ∪ {i}) − v(S).
The following three definitions of submodularity are equivalent. While definition (i) is the most

standard, the other two alternative definitions will be useful later on.

Definition 2.1. A function v , defined on 2
A
for some set A, is submodular if and only if

(i) v(i | S) ≥ v(i |T) for all S ⊆ T ⊆ A, and i < T .

(ii) v(S) +v(T) ≥ v(S ∪T) +v(S ∩T) for all S,T ⊆ A.

(iii) v(T) ≤ v(S) +∑i ∈T S v(i | S) −
∑

i ∈S T v(i | S ∪T {i}) for all S,T ⊆ A.

In Section 6 we also deal with valuation functions that come from a superclass of submodular

functions, namely XOS or fractionally subadditive functions. In particular, it is known that non-

negative (monotone) submodular functions are a strict subset of (monotone) XOS functions [27, 33].

Definition 2.2. A function v , defined on 2
A
for some set A, is XOS or fractionally subadditive, if

there exist additive functions α1, . . . ,αr , for some finite r , such that v(S) = maxi ∈[r] αi (S).
We often need to argue about optimal solutions of sub-instances of the original instance (A,v, c,B).

Given a cost vector c, and a subset X ⊆ A, we denote by cX the projection of c on X , and by c−X
the projection of c on A X . By opt(X ,v, cX ,B) we denote the value of an optimal solution to the

problem restricted on X . Similarly, opt(X ,v,∞) denotes the value of an optimal solution to the

unconstrained version of the problem restricted on X . For the sake of readability, we usually drop

the valuation function and the cost vector, and write opt(X ,B) and opt(X ,∞), respectively.
Mechanism Design. In the strategic version that we consider here, every agent i ∈ A only has his

true cost ci as private information. Hence, this is a single-parameter environment. A mechanism

M = (f ,p) in our context consists of an outcome rule f and a payment rule p. Given a vector of

cost declarations, b = (bi)i ∈A, where bi denotes the cost reported by agent i , the outcome rule of

the mechanism selects the set f (b) ⊆ A. At the same time, it computes payments p(b) = (pi (b))i ∈A
where pi (b) denotes the payment issued to agent i . Hence, the final utility of agent i is pi (b) − ci .

Unless stated otherwise, our mechanisms run in polynomial time in the value query model.

Further properties we want to enforce in our mechanism design problem are the following.

Definition 2.3. A mechanismM = (f ,p) is
• truthful, if reporting ci is a dominant strategy for every agent i .

• individually rational, if pi (b) ≥ 0 for every i ∈ A, and pi (b) ≥ ci , for every i ∈ f (b).
• budget-feasible, if

∑
i ∈A pi (b) ≤ B for every b.

For our randomized mechanisms we use the strong notion of universal truthfulness, which means

that the mechanism is a probability distribution over deterministic truthful mechanisms. As all the

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

905

6 Georgios Amanatidis, Pieter Kleer, and Guido Schäfer

mechanisms we suggest are universally truthful, we will consistently use c = (ci)i ∈A rather than

b = (bi)i ∈A for the declared costs in their description and analysis.

To design truthful mechanisms for single-parameter environments, we use a characterization by

Myerson [38]. We say that an outcome rule f is monotone, if for every agent i ∈ A, and any vector

of cost declarations b, if i ∈ f (b), then i ∈ f (b ′i , b−i) for b ′i ≤ bi . That is, if an agent i is selected
by declaring cost bi , then he should still be selected by declaring a lower cost. Myerson’s lemma,

below, implies that monotone algorithms admit truthful payment schemes (often referred to as

threshold payments). This greatly simplifies the design of truthful mechanisms, as one may focus on

constructing monotone algorithms rather than having to worry about the payment scheme. For all

of our mechanisms, we assume that the underlying payment scheme is given by Myerson’s lemma.

Lemma 2.4 (Myerson [38]). Given a monotone algorithm f , there is a unique payment scheme p,
such that (f ,p) is a truthful and individually rational mechanism, given by

pi (b) =
{
supb′i ∈[ci ,∞){b ′i : i ∈ f (b ′i , b−i)} , if i ∈ f (b),
0 , otherwise.

Remark 2.5. We may assume, without loss of generality, that in any given instance all the costs

are upper bounded by the budget. To see this notice that neither our mechanisms nor the optimal

offline solution will ever consider any agent with cost higher than B. Furthermore, no agent has an

incentive to misreport a very high true cost. Indeed, due to budget-feasibility, if agent i reports a
cost bi ≤ B instead of his true cost ci > B and is selected, then he has utility pi (b) − ci < B − B = 0.

Thus, in all of our mechanisms we implicitly assume a preprocessing step that removes all the

agents with declared costs exceeding B. The resulting instance (given as input to the corresponding

mechanism) has the same set of optimal solutions subject to the budget constraint as the original

one. Note that in the case of the online mechanism GenSm-Online rejecting such agents as they

arrive suffices.

Remark 2.6. We should stress that wherever tie-breaking is needed (e.g., in lines 3 and 10 of

Simultaneous Greedy, during the execution of the auxiliary algorithms alg1, alg2 and alg3, etc.),

we assume the consistent use of a tie-breaking rule that is independent of the declared costs. An
obvious such choice would be a deterministic lexicographic tie-breaking rule.

Due to space restrictions, several of our proofs are deferred to the full version of this paper [3].

3 AN EFFICIENT MECHANISM FOR SUBMODULAR OBJECTIVES
The main result of this section is the first O(1)-approximation mechanism (termed GenSm-Main

below) for non-monotone submodular valuation functions.

Theorem 3.1. GenSm-Main is a universally truthful, individually rational, budget-feasible, O(1)-
approximation mechanism.

At the heart of our approach lies a novel greedy algorithm for non-monotone submodular

maximization under a knapsack constraint (Simultaneous Greedy below). As we mentioned in the

Introduction, all known mechanisms use the same greedy subroutine: sort all agents in decreasing

order of marginal value per cost and pick as many agents as possible before hitting some threshold.

While for monotone submodular objectives this gives a non-trivial approximation guarantee, for

non-monotone objectives may result in arbitrarily bad solutions. Moreover, continuous algorithmic

approaches for non-monotone submodular maximization under a knapsack constraint [24, 32]

seem very unlikely to yield monotone allocation rules, and thus truthful mechanisms. The only

algorithm that is conceptually close to our approach is the two-pass greedy algorithm of Gupta et

al. [28], that runs Sviridenko’s greedy algorithm twice and then maximizes without the knapsack

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

906

Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives 7

constraint to get a deterministic 6-approximate solution. The intuition behind this approach is

that submodularity prevents the greedy algorithm from getting stuck in consecutive “bad” local

maxima. Despite being significantly simpler, however, this two-pass greedy algorithm still suffers

irreparably with respect to monotonicity, as it allows agents to jump from one solution to the other

by changing their cost.

Here we introduce Simultaneous Greedy, a greedy mechanism that builds two candidate

solutions simultaneously. While the analysis of Gupta et al. [28] does not apply here (our solutions

are neither built sequentially nor according to the standard greedy algorithm), the way we obtain

our approximation guarantee is of the same flavor: at least one of the solutions will contain an

approximately optimal set. At the same time Simultaneous Greedy prevents agents to choose their

favorite candidate solution by misreporting their cost. To achieve that, we offer each agent a take-it-

or-leave-it price based on an estimate x of the optimal value which we obtain by sampling. This is

the first mechanism for the problem where it is crucial that the agents are not ordered with respect

to their marginal value per cost. This will further allow us to appropriately modify Simultaneous

Greedy for the online setting of Section 4 while maintaining all its desired properties.

The parameter β is later set to 9.185 in order to get the approximation factor of Corollary 3.8

but, otherwise, our analysis is independent of its value. alg2 in line 9 can be any approximation

algorithm for unconstrained non-monotone submodular maximization. In particular, here we may

use the deterministic 2-approximation algorithm of Buchbinder and Feldman [13].

Simultaneous Greedy(D,v, cD ,B,x)
1 S1 = S2 = ∅; B1 = B2 = B;U = D /* each Sj has its own budget Bj */

2 while maxi ∈U , j ∈{1,2} v(i |Sj) > 0 do
3 Let (ı̂, ̂) ∈ argmaxi ∈U , j ∈{1,2} v(i |Sj)
4 if cı̂ ≤

βB
x v(ı̂ |S ̂) ≤ B ̂ then

5 S ̂ = S ̂ ∪ {ı̂}
6 B ̂ = B ̂ −

βB
x v(ı̂ |S ̂)

7 U = U {ı̂}
8 for j ∈ {1, 2} do
9 Tj = alg2(Sj) /* a 2-approximate solution with respect to opt(Sj , v, cSj , ∞) */

10 Let S be the best solution among S1, S2,T1,T2
11 return S

Ideally, we would like the rate parameter x to be close to opt(A,B) and also to be robust in the

sense that no single agent can significantly affect its value. To achieve that, Sample-then-Greedy

randomly partitions the set of agents into two sets A1 and A2, then approximately solves the

problem on A1 to obtain an estimate of opt(A1,B), and finally uses this x to set the threshold rate

for Simultaneous Greedy on A2.

alg1 in line 2 can be any approximation algorithm for non-monotone submodular maximization

subject to a knapsack constraint. In particular, here we may use the e-approximation algorithm of

Kulik et al. [32] (also see Remark 3.9).

Sample-then-Greedy(A,v, c,B)
1 Put each agent of A in either A1 or A2 independently at random with probability

1

2

2 x = v(alg1(A1)) /* an e-approximation of opt(A1, v, cA1
, B) */

3 return Simultaneous Greedy(A2,v, cA2
,B,x)

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

907

8 Georgios Amanatidis, Pieter Kleer, and Guido Schäfer

Lemma 3.6 in Subsection 3.1, due to Bei et al. [10] and Leonardi et al. [34], guarantees that with high

probability bothA1 andA2 contain enough value subject to the budget constraint for things to work,

as long as no agent is too valuable. The latter leads to the final mechanism GenSm-Main (General

Submodular-Main) that randomizes between all the above and just returning a best singleton.

GenSm-Main(A,v, c,B)
1 With probability p = 0.201 : return i∗ ∈ argmaxi ∈A v(i)
2 With probability 1 − p : return Sample-then-Greedy(A,v, c,B)

3.1 Proving the Properties of GenSm-Main

We fix some additional notation to facilitate the presentation of the proofs. We use (D,v, c,B,x)
for a generic instance given to Simultaneous Greedy and S for the set returned. By i1, i2, . . . , it
we denote the sequence of agents of D examined during this execution of the algorithm in this

exact order. All the agents of S clearly appear within this sequence, so for any particular ℓ ∈ S we

have that ℓ = ik for some k . By jk we denote the index ̂ picked during the kth execution of line 3

of Simultaneous Greedy, while by S (k)jk
and B(k)

jk
we denote the set S jk and its remaining budget,

respectively, at that time. Conventionally, we use notation like S (k+1)jk
to denote S jk right after the

kth execution of line 7, even if line 3 is never executed more than k times. Recall that we use a

tie-breaking rule that is independent of the costs, as mentioned in Remark 2.6.

Lemma 3.2. The allocation rule defined by Simultaneous Greedy is monotone. Thus, using the
threshold payments of Myerson’s lemma, the resulting mechanism is truthful and individually rational.

In all the following statements, when we refer to mechanisms, we always assume threshold

payments. Before we study the total payment, we should point out that enforcing budget-feasibility

has been the main source of technical difficulties in the budget-feasible mechanism design literature.

A significant advantage of the take-it-or-leave-it approach used in threshold mechanisms like

Simultaneous Greedy is that the budget-feasibility becomes much more manageable. To some

extent this comes at the expense of the approximation guarantee and its analysis, but also offers

some additional flexibility that will be explored in Sections 4 and 5.

Lemma 3.3. The mechanism Simultaneous Greedy is budget-feasible.

Proof. Let S be the set returned given the instance (D,v, c,B,x) and fix ik ∈ S . We claim that

the payment pik (c) is exactly πk =
βB
x v

(
ik |S (k)jk

)
, i.e., ik ∈ S if and only if he bids c ′ik ≤ πk . First

note that ik cannot affect the time when he is examined by the mechanism or which agents come

before him. So, since c−ik is fixed, during the kth execution of line 3, he is always “offered” πk ;
either he accepts, i.e., c ′ik ≤ πk , and the algorithm proceeds in the exact same way as with c ′ik = cik
(see also the proof of Lemma 3.2) or he rejects, i.e., c ′ik > πk , and he is removed from the active set

of agents. Once an agent is removed, however, he is never reexamined and thus, if c ′ik > πk then ik
is not in the winning set.

Recall that S can be any of S1, S2,T1,T2. We will show that all four sets are budget-feasible.

Let T1 = {ia1 , ia2 , . . . , ia |T
1
| } and S1 = {ib1 , ib2 , . . . , ib |S

1
| }, where (ai)

|T1 |
i=1 is a subsequence of (bi) |S1 |i=1

which is a subsequence of 1, 2, . . . , t . Recall that the budget B1 for S1 is never exhausted. We have

|T1 |∑
τ=1

πaτ ≤
|S1 |∑
τ=1

πbτ =

|S1 |∑
τ=1

βB

x
v
(
ibτ |S

(bτ)
jbτ

)
= B − B(|S1 |+1)

1
≤ B .

The first and the second sum represent the total payment when S = T1 and when S = S1, respectively.
The budget-feasibility of T2 and S2 is proved in the exact same way. �

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

908

Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives 9

Corollary 3.4. The mechanism GenSm-Main is universally truthful, individually rational and
budget-feasible.

Lemma 3.5. If there is a positive integer ℓ such that maxi ∈D v(i) < x
ℓ ·β , then Simultaneous

Greedy(D,v, c,B,x) outputs a set S such that

v(S) ≥ min

{
ℓx

(ℓ + 1)β ,
1

6

(
opt(D,B) − 2x

β

)}
.

Proof. Let t be the number of times line 3 was executed. At the end of the tth iteration, U is

the set of agents never examined. That is,U only contains agents that have non-positive marginal

utilities with respect to S (t+1)
1

and S (t+1)
2

. For the sake of readability, we henceforth use S1 and

S2 to denote S (t+1)
1

and S (t+1)
2

, respectively. Let R = D (U ∪ S1 ∪ S2) be the agents ik that were

considered at some point by the mechanism but were rejected, i.e., not added to either S (k)
1

or S (k)
2

.

We first partition R into two sets depending on why the corresponding agents were rejected. The

set Rc =
{
ik | βBx v

(
ik |S (k)jk

)
< cı̂

}
contains the agents rejected because the first inequality in line 4

was violated during the corresponding iteration. Similarly, the set RB =
{
ik | B(k)

jk
<

βB
x v

(
ik |S (k)jk

)}
contains the agents rejected because the second inequality in line 4 was violated. Clearly,R = Rc∪RB .
We consider two cases, depending on whether RB is empty or not.

Case 1. Assume that RB , ∅ and let ik ∈ RB . That is, during the kth execution of line 3, (ı̂, ̂) =
(ik , jk), but βB

x v
(
ik |S (k)jk

)
> B(k)

jk
. Let S (k)jk

= {ia1 , ia2 , . . . , ias }, where (ai)si=1 is a subsequence of

1, 2, . . . , t . Further, notice that, by its definition, B(k)
jk
= B −∑s

τ=1
βB
x v

(
iaτ |S

(aτ)
jk

)
. We have

v
(
S (k)jk

)
=

s∑
i=1

v
(
iai |S

(ai)
jk

)
=

x

βB

(
B − B(k)

jk

)
>

x

βB

(
B − B(k)

jk

)
+

x

βB
B(k)
jk

−v
(
ik |S (k)jk

)
=

x

β
−v

(
ik |S (k)jk

)
. (1)

By submodularity and the way the agents in S (k)jk
are chosen, we have

v(ia1) = v
(
ia1 |S

(a1)
jk

)
≥ v

(
ia2 |S

(a2)
jk

)
≥ . . . ≥ v

(
ias |S

(as)
jk

)
≥ v

(
ik |S (k)jk

)
.

Yet, each one of these values is at most maxi ∈D v(i) < x
ℓ ·β . Combining with (1), we have

ℓ ·max

i ∈D
v(i) < x

β
≤ v

(
S (k)jk

)
+v

(
ik |S (k)jk

)
≤

s∑
τ=1

v
(
iaτ |S

(aτ)
jk

)
+v

(
ik |S (k)jk

)
≤ (s + 1) · v

(
ia1

)
,

and therefore, we conclude that

��S (k)jk

�� = s ≥ ℓ. Now we repeat the same argument for the average

marginal value in the sum

∑s
τ=1v

(
iaτ |S

(aτ)
jk

)
. Using the simple observation that the smallest term

of a sum cannot exceed the average of the remaining terms, we get

x

β
≤ v

(
S (k)jk

)
+v

(
ik |S (k)jk

)
≤ v

(
S (k)jk

)
+
1

s

s∑
τ=1

v
(
iaτ |S

(aτ)
jk

)
≤ s + 1

s
v
(
S (k)jk

)
≤ ℓ + 1
ℓ

v
(
S (k)jk

)
, (2)

where the last inequality follows from the fact that f (z) = z+1
z is decreasing.

Finally, to get the approximation guarantee for this case, we combine (2) with the fact that S is

at least as good as each greedy solution:

v(S) ≥ v(S jk) ≥ v
(
S (k)jk

)
≥ ℓ

ℓ + 1
· x
β
.

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

909

10 Georgios Amanatidis, Pieter Kleer, and Guido Schäfer

Case 2. Now assume that RB = ∅, i.e., R = Rc. Let C
∗
be an optimal solution for the given instance

and define C1 = C
∗ ∩ S1, C2 = C

∗ ∩ S2 and C3 = C
∗ (C1 ∪C2). By subadditivity, we have

opt(D,B) = v(C∗) ≤ v(C1) +v(C2) +v(C3) . (3)

Recall that Tj = alg2(S j), j ∈ {1, 2}, is a 2-approximate solution with respect to opt(S j ,∞). Thus,
v(Cj) ≤ opt(S j ,B) ≤ 2 · v(Tj), for j ∈ {1, 2}, and inequality (3) gives

opt(D,B) ≤ 2v(T1) + 2v(T2) +v(C3) . (4)

Upper bounding v(C3) in terms of S1, S2,T1,T2 and r is somewhat more involved. We begin by

invoking the non-negativity of v , as well as its submodularity (as defined in of Definition 2.1(ii)) on
S1 ∪C3 and S2 ∪C3. We have

v(C3) ≤ v(C3) +v(S1 ∪C3 ∪ S2) ≤ v(S1 ∪C3) +v(S2 ∪C3) . (5)

In order to upper bound v(S1 ∪C3) we again use the submodularity of v , together with a couple

of facts about the marginal utilities of agents outside of S1. Since the mechanism stopped after t
iterations, maxi ∈D (S1∪S2∪R)v(i |S1) ≤ 0. Also, given that R = Rc, for all agents that got rejected at

some point, we know that they had very low marginal value per cost ratio with respect to both S1
and S2. In particular, if ik ∈ R, then cik >

βB
x v

(
ik |S (k)j

)
, for both j ∈ {1, 2}. We may now rely on

Definition 2.1(iii) to get

v(S1 ∪C3) ≤ v(S1) +
∑
ik ∈C3

v(ik |S1)

≤ v(S1) +
∑

ik ∈C3∩R
v(ik |S1) (v(ik |S1) ≤ 0 for ik ∈ C3 R)

≤ v(S1) +
∑

ik ∈C3∩R
v
(
ik |S (k)1

)
(by submodularity, v(ik |S1) ≤ v

(
ik |S

(k)
1

)
for ik ∈ D)

≤ v(S1) +
∑

ik ∈C3∩R

x

βB
cik (

βB
x v

(
ik |S

(k)
1

)
< cik for ik ∈ R)

Similarly, v(S2 ∪C3) ≤ v(S2) +
∑

ik ∈C3∩R
x
βB cik . Also, recall that

∑
i ∈C∗ ci ≤ B to get

v(S j ∪C3) ≤ v(S j) +
x

β
, for j ∈ {1, 2} . (6)

Finally, we may combine (4), (5) and (6) to get

opt(D,B) ≤ 2v(T1) + 2v(T2) +v(S1 ∪C3) +v(S2 ∪C3)

≤ 2v(T1) + 2v(T2) +v(S1) +v(S2) +
2x

β
≤ 6 · v(S) + 2x

β
,

or, equivalently, v(S) ≥ 1

6

(
opt(D,B) − 2x

β

)
.

Combining Case 1 and Case 2, we obtain the claimed guarantee. �

So far, unless x = Θ(opt(D,B)), the approximation guarantee seems to be rather weak. In

fact, the way Simultaneous Greedy is used within Sample-then-Greedy requires that both

x = v(alg1(A1)) and opt(A2,B) are Θ(opt(A,B)). The next technical lemma guarantees that this

happens with high probability, unless there is an extremely valuable agent.

Lemma 3.6 (Follows from Bei et al. [10] and Leonardi et al. [34]). Consider any submodular
function v(·). For any given subsetT ⊆ A and a positive integer k assume that v(T) ≥ k ·maxi ∈T v(i).
Further, suppose thatT is divided uniformly at random into two subsetsT1 andT2. Then with probability
at least 1

2
, we have that v(T1) ≥ k−1

4k v(T) and v(T2) ≥ k−1
4k v(T).

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

910

Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives 11

We are now ready to lower bound the approximation guarantee of Sample-then-Greedy.

Lemma 3.7. Assume that for some positive integer k , opt(A,B) > k · maxi ∈Av(i). Then with
probability at least 1

2
, Sample-then-Greedy(A,v, c,B) outputs a set S such that

v(S) ≥ min

⌊ k−1
4eβ

⌋
(k − 1)

e
(⌊ k−1

4eβ

⌋
+ 1

) , β(k − 1) − 8k

6

 · 1

4βk
· opt(A,B) .

Proof. LetC∗
be an optimal solution for the given instance. By applying Lemma 3.6 withT = C∗

we have that with probability at least 1/2 it holds that v(Ai ∩C∗) ≥ k−1
4k v(C∗) for both i ∈ {1, 2}. In

what follows we assume that this is indeed the case. Thus,

opt(A,B) ≥ x = v(alg1(A1)) ≥
1

e
opt(A1,B) ≥

k − 1

4ek
opt(A,B)

and also opt(A2,B) ≥ k−1
4k opt(A,B).2

The lower bound on x paired with the upper bound on maxi ∈Av(i), imply that

max

i ∈A
v(i) < 1

k
· opt(A,B) ≤ 1

k
· 4ekβ
k − 1

· x
β
≤ 1⌊ k−1

4eβ

⌋ · x
β
.

Thus, we can use Lemma 3.5 with D = A2, x = v(alg1(A1)) and ℓ =
⌊ k−1
4eβ

⌋
. Therefore, Simulta-

neous Greedy(A2,v, cA2
,B,x) outputs an S such that

v(S) ≥ min

⌊ k−1
4eβ

⌋
x(⌊ k−1

4eβ

⌋
+ 1

)
β
,
1

6

(
opt(A2,B) −

2x

β

)
≥ min

⌊ k−1
4eβ

⌋
(k − 1)

4ek
(⌊ k−1

4eβ

⌋
+ 1

)
β
opt(A,B) , 1

6

(
k − 1

4k
opt(A,B) − 2

β
opt(A,B)

)
≥ min

⌊ k−1
4eβ

⌋
(k − 1)

e
(⌊ k−1

4eβ

⌋
+ 1

) , β(k − 1) − 8k

6

 · 1

4βk
· opt(A,B) . �

Corollary 3.8. The set S returned by GenSm-Main(A,v, c,B) satisfies
505 · E(v(S)) ≥ opt(A,B) .

Proof. Suppose thatmaxi ∈Av(i) ≥ 1

101
· opt(A,B). Then, with probability p at least 1/101 of the

optimal value is returned. Hence,

E(v(S)) ≥ p ·max

i ∈A
v(i) ≥ 0.201

101

· opt(A,B) ≥ 1

505

· opt(A,B) .

Next suppose that maxi ∈Av(i) < 1

101
· opt(A,B). We may apply Lemma 3.7 with k = 101. As

discussed before the description of mechanism Simultaneous Greedy, the parameter β is is equal

to 9.185. This implies that

⌊ k−1
4eβ

⌋
= 1. By substituting the values of k and β to the bound of Lemma

3.7, we get that with probability at least (1 − p)/2

v(S) ≥ min

{
50

e
,
110.5

6

}
· 1

3710.74
· opt(A,B) ≥ 1

201.7367
· opt(A,B) ,

2
For the sake of presentation, here we write x = v(alg1(A1)) ≥ 1

e opt(A1, B) rather than the technically correct E(x) ≥
1

e opt(A1, B). However, as discussed in Remark 3.9, one can formally deal with this issue with a negligible effect on the

expected approximation guarantee while keeping the running time polynomial.

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

911

12 Georgios Amanatidis, Pieter Kleer, and Guido Schäfer

and thus,

E(v(S)) ≥ 1 − 0.201

2

· 1

201.7367
· opt(A,B) ≥ 1

505

· opt(A,B) . �

Remark 3.9. In our mechanisms we often use randomized approximation algorithms as sub-

routines. In particular, alg1 in Sample-then-Greedy and GenSm-Online and alg3 in MonSm-

Constrained are randomized. Yet, in the description of our mechanisms—and more importantly

in our analyses—we treat them as if there were deterministic, e.g., we assume that x in line 2 of

Sample-then-Greedy is at least
1

e · opt(A1,v, cA1
,B). While this is not technically accurate, we

do so for the sake of presentation. However, we may instead use the fact that for any constants

δ ,η > 0, alg1 can be modified so that with probability at least 1 − δ it returns a solution of value
at least

(
1

e − η
)
· opt(A1,v, cA1

,B) in polynomial time, using standard arguments. Thus, for any

constant ε > 0 the analysis of GenSm-Main can be adjusted to hold for an approximation factor

505 + ε instead. Similarly, the analyses of our other mechanisms can be adjusted accordingly.

4 ONLINE PROCUREMENT
Note that the mechanism presented in the last section already bares some resemblance to online

algorithms for the secretary model (although truthfulness is rarely a requirement there). Namely, a

part of the input is only used to estimate the quality of the optimal solution and then, based on that

estimation, some threshold is set for the remaining instance. On a high level, this is straightforward

to adjust for the secretary model; we use the first (roughly) half of the stream of agents to find

an estimate of opt(A,B) and then set a threshold similar to the one in Simultaneous Greedy.

However, there are a few issues one has to deal with.

First, Simultaneous Greedy goes through the agents in a specific order (in decreasing order of

the maximum marginal value with respect to either one of the two constructed sets). Even though

this fact is indeed used in the proof of Lemma 3.5, we show that even examining agents in arbitrary

order works well, albeit with a somewhat worse approximation factor. Note that this is not true

when there are other constraints on top of the budget-feasibility requirement, as in Section 5.

Second, towards the end, in line 9, Simultaneous Greedy runs an unconstrained submodular

maximization algorithm on S1 and S2 to possibly reveal a subset of them with much higher value.

While this is a critical step, we rely on a very elegant result of Feige et al. [21]: a uniformly random

set gives a 4-approximation for the unconstrained problem. Thus, every agent that passes the

threshold and is added to S j is only accepted to Tj with probability 1/2. The actual output of the
mechanism is a random choice S between S1, S2,T1 andT2, made before the arrival of the first agent.
So, while the four sets are built obliviously with respect to the choice of S , the agents added to S
are irrevocably chosen while everyone else is irrevocably discarded.

One last issue is that we want the mechanism to occasionally return the single most valuable

agent. This, however, is easily resolved by runningDynkin’s algorithm [19] with constant probability

instead. This mechanism samples the first n/e agents and then it picks the first agent i ′, among the

remaining agents, who is at least as good as the best agent in the sample, i.e.,v(i ′) ≥ maxk≤n/e v(ik).
This guarantees that E(v(i ′)) ≥ 1

e maxi ∈Av(i), where the expectation is over the order of the agents.

The mechanism GenSm-Online below incorporates all these adjustments, yet maintains all

the good properties of GenSm-Main. We assume a secretary setting, where the agents arrive

uniformly at random. In particular, agents have no control over their arrival time, so this is still a

single-parameter environment and truthfulness still means universal truthfulness, i.e., if we fix the
random bits of the mechanism, then for any arrival order no agent has an incentive to lie.

Again, alg1 is the e-approximation algorithm of Kulik et al. [32]. The parameter β is set to 8.725
and, like the parameter in Simultaneous Greedy, is only relevant for the approximation factor.

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

912

Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives 13

Theorem 4.1. GenSm-Online is a universally truthful, individually rational, budget-feasible
online mechanism and achieves an O(1)-approximation in the secretary model.

One immediate consequence of Theorem 4.1 is the existence of anO(1)-approximation algorithm

for the non-monotone Submodular Knapsack Secretary Problem (SKS). To the best of our knowledge

GenSm-Online is the first such algorithm (see also Remark 4.3).

Formally, an instance of SKS consists of a ground set A = [n], a non-negative submodular

objective v : A → R+ and a given budget B. The elements of A arrive in a uniformly random order

and each element must be accepted or rejected immediately upon arrival. An algorithm for SKS

has access to n = |A|, to the costs of items that have arrived (i.e., each cost is revealed upon arrival)

and to a value oracle that, given a subset S ⊆ A of elements that have already arrived, returns v(S).
The objective is to accept a set of elements maximizing v without exceeding the budget.

It is straightforward to see that the only difference of SKS with the online procurement problem

studied in this section is the information about the costs. In SKS there is no notion of misreporting

a cost and thus it can be seen as a special case of our online problem where agents are guaranteed

to always reveal their true costs.

Corollary 4.2. There is an O(1)-approximation algorithm for the non-monotone SKS.

Remark 4.3. Bateni et al.[9] give an O(1)-approximation algorithm for the monotone SKS. They
claim, without a proof, that their result extends to the non-monotone SKS as well, using the

same ideas that work for the Submodular Secretary problem with a cardinality or a matroid

constraint (rather than a knapsack constraint). However, this does not seem to be the case. It is

indeed true that these ideas do pair well with cardinality and, more generally, (intersection of)

matroid constraints and they have been recently used to obtain fast randomized algorithms with

good approximation guarantees [14, 22]. Unfortunately, to the best of our knowledge, there are

no examples in the literature where this random greedy approach does work for non-monotone

submodular maximization with knapsack constraints.

GenSm-Online(A,v, c,B)
1 With probability q = 0.4 :
2 Run Dynkin’s algorithm and return the winner

3 With probability 1 − q :
4 S1 = S2 = T1 = T2 = ∅; B1 = B2 = B

5 S =

{
Sj , with probability 1/10, for each j ∈ {1, 2}
Tj , with probability 2/5, for each j ∈ {1, 2}

6 Draw ξ from the binomial distribution B(n, 0.5)
7 Let A1 be the set of the first ξ agents, and A2 = A A1

8 Reject all the agents in A1 and calculate x = v(alg1(A1))
9 for each i ∈ A2 as he arrives do

10 Let ̂ ∈ argmaxj ∈{1,2} v(i |Sj)
11 if ci ≤ βB

x v(i |S ̂) ≤ B ̂ then
12 S ̂ = S ̂ ∪ {i}
13 B ̂ = B ̂ −

βB
x v(i |S ̂)

14 With probability 1/2, T ̂ = T ̂ ∪ {i}; otherwise, T ̂ = T ̂
15 Update S /* the update is consistent to the choice made in line 5 */

16 return S

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

913

14 Georgios Amanatidis, Pieter Kleer, and Guido Schäfer

5 ADDING COMBINATORIAL CONSTRAINTS
To illustrate the applicability of our approach, we turn to the case where the solution has to satisfy

some additional combinatorial constraint. With the exception of additive valuation functions [1, 35],

even formonotone submodular objectives no polynomial-time mechanisms using only value queries

are known. Here we show that the general approach of GenSm-Main can be utilized to achieve

an O(p)-approximation for p-systems, i.e., for independence systems with rank quotient at most p.
In particular, as stated in Corollary 5.4, this implies constant factor approximation for cardinality,

matroid and matching constraints. As it is shown in Section 6, going beyond independence systems

(e.g., require that the solution forms a spanning tree) is hindered by strong impossibility results.

Definition 5.1. An independence system is a pair (U ,I), whereU is a finite set and I ⊆ 2
U
is a

family of subsets, whose members are called the independent sets ofU and satisfy: (i) ∅ ∈ I, and
(ii) if B ∈ I and A ⊆ B, then A ∈ I.
Given a set S ⊆ U , a maximal independent set contained in S is called a basis of S . The upper rank
ur(S) (resp. the lower rank lr(S)) is defined as the cardinality of a largest (resp. smallest) basis of S .
A p-system (U ,I) is an independence system such that maxS ⊆U ur(S)/lr(S) ≤ p.

For the sake of readability, we present the case of monotone submodular objectives here; the

non-monotone case is deferred to the full version. A technical highlight of our analysis, later used

for the non-monotone case as well, is Claim 5.3. The claim crucially depends on the order we

consider the agents, in order to bound the value lost because of the p-system constraint.

As usual, we assume the existence of an independence oracle. In particular, when we write that

I is part of the input of the mechanism, we mean that the mechanism has access to a membership

oracle for I. The parameter β is later set to 13/3. alg3 in line 5 can be any approximation algorithm

for monotone submodular maximization subject to a knapsack and a p-system constraint. Here we

assume the (p + 3)-approximation algorithm of Badanidiyuru and Vondrák [7].

MonSm-Constrained(A,I,v, c,B)
1 With probability q = 0.2 :
2 return i∗ ∈ argmaxi ∈A v(i)
3 With probability 1 − q :
4 Put each agent of A in either A1 or A2 independently at random with probability

1

2

5 x = v(alg3(A1)) /* a (p + 3)-approximation of opt(A1, v, cA1
, B) */

6 S = ∅; BR = B;U = A2

7 whileU , ∅ do
8 Let ı̂ ∈ argmaxi ∈U v(i |S)
9 if cı̂ ≤

βB
x v(ı̂ |S) ≤ BR and S ∪ {ı̂} ∈ I then

10 S = S ∪ {ı̂}
11 BR = BR − βB

x v(ı̂ |S)
12 U = U {ı̂}
13 return S

Theorem 5.2. Assuming that the solution has to be an independent set of a p-system, there is a
universally truthful, individually rational, budget-feasible, O(p)-approximation mechanism that runs
in polynomial time for (non-monotone) submodular objectives.

Proof. Here we prove the theorem for the non-monotone case. First, we observe that S starts as

an independent set, namely the empty set, and it is expanded only if it remains an independent set.

Hence, at the endMonSm-Constrained does return a feasible solution, i.e., S is in I.

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

914

Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives 15

At this point, following the same reasoning used for GenSm-Main and GenSm-Online, it should

be easy to see that MonSm-Constrained is universally truthful, individually rational, budget-

feasible, and runs in polynomial time.

Next we show that the solution returned by the mechanism is an O(p)-approximation of

the optimum. First, suppose that maxi ∈Av(i) ≥ opt(A,B)/(26(p + 10)). Then, for the set S re-

turned by MonSm-Constrained, E(v(S)) ≥ q · maxi ∈Av(i) ≥ 1

5
· opt(A,B)/(26(p + 10)) ≥

opt(A,B)/(138(p + 10)).
For the case where maxi ∈Av(i) < opt(A,B)/(26(p + 10)), we follow the same notation and the

same high level approach as with the approximation guarantees of GenSm-Main and GenSm-

Online. So, i1, i2, . . . , i |A2 | are the agents of A2 in the order considered by the mechanism. By S (k)

and B(k)
R we denote S and BR , respectively, at the time ik arrives, and we only use S for the final

set returned. The set R = A2 S contains the agents ik that were not added to S (k) and it is further

partitioned to Rc =
{
ik | βBx v

(
ik |S (k)

)
< cı̂

}
, RB =

{
ik | B(k)

R <
βB
x v

(
ik |S (k)

)}
, and RI = R (Rc∪RB).

Assume that opt(Ai ,B) ≥ k−1
4k opt(A,B) for i ∈ {1, 2}, where k = 26(p + 10). Thus, x =

v(alg1(A1)) ≥ k−1
4(p+3)k opt(A,B). Recall that this does happenwith probability at least 1

2
, as discussed

in the beginning of the proof of Lemma 3.7.

Case 1. Assume that RB , ∅. Let ik ∈ RB , i.e.,
βB
x v

(
ik |S (k)

)
> B(k)

R . Using the same argument as in

the proof of Lemma 3.5, we get v
(
S (k)

)
≥ x

β −maxi ∈Av(i) and, given the known bounds on x and

maxi ∈Av(i), this leads to v(S) ≥
(k−1
4(p+3)kβ − 1

k

)
· opt(A,B).

By substituting k = 26(p + 10) and β = 13

3
, it is a matter of simple calculations to get

v(S) ≥ 5

276(p + 10) · opt(A,B) . (7)

Case 2. Assume that RB = ∅ and let C∗
be an optimal solution for the instance (A2,v, cA2

,B). By
monotonicity, we have

opt(A2,B) = v(C∗) ≤ v(S ∪C∗) . (8)

Because of the p-system constraint, however, deriving the analog of inequality (6) needs some extra

work. By Definition 2.1(iii), we have

v(S ∪C∗) ≤ v(S) +
∑

ik ∈C∗ S

v(ik |S) ≤ v(S) +
∑

ik ∈C∗∩Rc

v(ik |S) +
∑

ik ∈C∗∩RI

v(ik |S) . (9)

We may upper bound the first sum using the fact that all agents involved got rejected because they

had very low marginal value per cost ratio. That is,∑
ik ∈C∗∩Rc

v(ik |S) ≤
∑

ik ∈C∗∩Rc

v
(
ik |S (k)

)
<

x

βB

∑
ik ∈C∗∩Rc

cik ≤ x

β
≤ opt(A,B)

β
. (10)

For the second sum we prove the following result that crucially relies on the fact that agents are

examined in decreasing marginal value.

Claim 5.3.

∑
ik ∈C∗∩RI v(ik |S) ≤ p · v(S) .

Proof of Claim 5.3. Recall that when we index agents we follow the ordering imposed by the

mechanism, i.e., ik is always the agent picked at the kth execution of line 8 ofMonSm-Constrained.

Suppose that there is a mapping f : C∗ ∩ RI → S such that

(i) if f (ik) = iℓ , then v
(
ik |S (k)

)
≤ v

(
iℓ |S (ℓ)

)
for all ik ∈ C∗ ∩ RI , and

(ii)
��f −1(iℓ)�� ≤ p for all iℓ ∈ S .

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

915

16 Georgios Amanatidis, Pieter Kleer, and Guido Schäfer

We slightly abuse the notation and write S f (ik) instead of S (ℓ) when f (ik) = iℓ . The existence of f
implies that∑
ik ∈C∗∩RI

v(ik |S) ≤
∑

ik ∈C∗∩RI

v
(
ik |S (k)

)
≤

∑
ik ∈C∗∩RI

v
(
f (ik) | S f (ik)

)
≤ p ·

∑
iℓ ∈S

v
(
iℓ |S (ℓ)

)
= p · v(S) .

The first inequality follows from the submodularity of v , while the second and third inequalities

follow from (i) and (ii), respectively.
Next, we are going to construct such an f . Let S = {ia1 , ia2 , . . . , ias } and C∗ ∩ RI = {ib1 , ib2 , . . . ,

ibt }, where both (ai)si=1 and (bi)ti=1 are subsequences of 1, 2, . . . , |A2 |. We are going to map the first

p elements of C∗ ∩ RI , ib1 , . . . , ibp , to ia1 , the next p elements ibp+1 , . . . , ib2p , to ia2 , and so on. That

is, f (ibj) = ia⌈j/p⌉ .

It is straightforward that f satisfies property (ii). In order to prove property (i), it suffices to show

that for all j ∈ {1, 2, . . . , t}, agent ibj is considered by MonSm-Constrained after agent f (ibj).
Indeed, if that was the case, by the definition of ı̂ in line 8 and submodularity, we would get

v
(
ia⌈j/p⌉ | S (a⌈j/p⌉)

)
≥ v

(
ibj | S (a⌈j/p⌉)

)
≥ v

(
ibj | S (bj)

)
,

for all ibj ∈ C∗ ∩ RI , as desired. Suppose, towards a contradiction, that there is some k ∈
{1, 2, . . . , t}, such that bk < a ⌈k/p ⌉ ; in fact, suppose k is the smallest such index. Consider the

sets T = {ia1 , ia2 , . . . , ia⌈k/p⌉−1 } ⊆ S and Q = {ib1 , ib2 , . . . , ibk } ⊆ C∗ ∩ RI . By construction, T ∈ I.
Moreover, we claim that T is maximally independent in T ∪Q . Indeed, each ibτ ∈ Q was rejected

because S (bτ)∪{ibτ } < I, and since S (bτ) ⊆ T we getT ∪{ibτ } < I. This implies that lr(T ∪Q) ≤ |T |.
On the other hand, Q ∈ I because Q ⊆ C∗ ∈ I. As a result ur(T ∪Q) ≥ |Q |. However, notice that

p · |T | = p (⌈k/p⌉ − 1) < p (k/p + 1 − 1) = k = |Q | .

Thus,
ur(T∪Q)
lr(T∪Q) ≥ |Q |

|T | > p, contradicting the fact that (A,I) is a p-system. We conclude that f

satisfies both (i) and (ii), and therefore,

∑
ik ∈C∗∩RI v(ik |S) ≤ p · v(S). ▹

Now, combining (8), (9), (10), and Claim 5.3, we have opt(A2,B) ≤ (p + 1) · v(S) + opt(A,B)
β , and

using the lower bound on opt(A2,B), v(S) ≥ 1

p+1 ·
(k−1
4k − 1

β

)
opt(A,B). Again, by substituting k

and β , it is a matter of calculations to get

v(S) ≥ 5

276(p + 10) · opt(A,B) . (11)

By Lemma 3.6, both (7) and (11) hold with probability at least 1/2. Hence,

E(v(S)) ≥ (1 − q) · 1
2

· 5

276(p + 10) · opt(A,B) =
1

138(p + 10) · opt(A,B) . �

For matroid constraints we have p = 1 and for matching constraints p = 2. Since cardinality

constraints are a special case of matroid constraint, we directly get the following.

Corollary 5.4. For cardinality, matroid and matching constraints, there is a universally truthful,
budget-feasible O(1)-approximation mechanism for (non-monotone) submodular objectives.

6 LOWER BOUNDS
In the value query model there is a strong lower bound on the number of queries for deterministic

algorithms for monotone XOS objectives due to Singer [40]. This result is based on a lower bound

of Mirrokni et al. [36] on welfare maximization in combinatorial auctions. As the latter also holds

for randomized algorithms, so does Singer’s result as well, essentially with the same proof. We

restate it here for completeness. Note that it holds even when the costs are public knowledge.

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

916

Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives 17

Theorem 6.1 (Singer [40]). For any fixed ε > 0, any (randomized) n
1

2
−ε -approximation algorithm

for monotone XOS function maximization subject to a budget constraint requires exponentially many
value queries (in expectation).

When one moves to non-monotone objectives, as it is the case in this work, it is possible to prove

even stronger lower bounds. Below we show that for general XOS objectives, exponentially many

value queries are needed for any non-trivial approximation even without the budget constraint. As

this result applies to the purely algorithmic setting, it is of independent interest.

It is known that in many settings there is a separation between the power of value and demand

queries of polynomial size, see, e.g., [11]. To stress this difference in our setting, recall that in the

demand query model, the class of XOS objectives admits a truthfulO(1)-approximation mechanism

with a polynomial number of queries.

Theorem 6.2. For any fixed ε > 0, any (randomized) n1−ε -approximation algorithm for XOS
function maximization requires exponentially many value queries (in expectation).

One immediate consequence of Theorem 6.2 is that when we care for constant approximation

ratios, the result of Theorem 3.1 is (asymptotically) the best possible for budget-feasible mechanism

design. General submodular objectives is the broadest class of well studied non-monotone functions

one could hope for, even for randomized mechanisms.

Combinatorial Constraints. We now turn to the problem of maximizing subject to additional

constraints on top of the budget constraint. To further motivate our restriction to p-system con-

straints, we restate here a lower bound of Badanidiyuru and Vondrák [7]: for independence system

constraints one cannot achieve an approximation factor better thanmaxS ⊆U
ur(S)
lr(S) with a polynomial

number of queries. Thus, the result of Theorem 5.2 is asymptotically optimal.

Theorem 6.3 (Badanidiyuru and Vondrák [7]). For any fixed ε > 0, any (randomized) (p + ε)-
approximation algorithm for additive function maximization subject to p-system constraints requires
exponentially many independence oracle queries (in expectation).

As we mentioned in the beginning of Section 5, we cannot really go beyond independence

systems and have any non-trivial approximation guarantee in polynomial time. This is illustrated

in Theorem 6.4 and Corollary 6.5 below. Theorem 6.4 generalizes Singer’s [40] strong impossibility

result for deterministically “hiring a team of agents” to any constraint that is not downward closed

below. Note that it holds even for super-constant approximation ratios, even for the special case of

additive objectives, irrespectively of any complexity assumptions.

Theorem 6.4. Let F ⊆ 2
A be any collection of feasible sets that is not downward closed. Then there

is no deterministic, truthful, individually rational, budget-feasible mechanism achieving a bounded
approximation when restricted on F , even for additive objectives.

The next corollary of Theorem 6.3 states that under general combinatorial constraints it is

not possible to achieve any non-trivial approximation with polynomially many queries. While it

is not hard to prove it directly, given Theorem 6.3 it suffices to notice that such a lower bound

holds even for general independence systems. Indeed, there are cases where
ur(U)
lr(U) is Θ(n) like the

(n − 1)-systems of independent sets of star graphs.

Corollary 6.5. For any fixed ε > 0, any (randomized) n1−ε -approximation algorithm for additive
function maximization subject to general feasibility constraints requires exponentially many queries
(in expectation).

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

917

18 Georgios Amanatidis, Pieter Kleer, and Guido Schäfer

REFERENCES
[1] Georgios Amanatidis, Georgios Birmpas, and Evangelos Markakis. 2016. Coverage, Matching, and Beyond: New

Results on Budgeted Mechanism Design. InWeb and Internet Economics - 12th International Conference, WINE 2016,
Montreal, Canada, December 11-14, 2016, Proceedings (Lecture Notes in Computer Science), Vol. 10123. Springer, 414–428.

[2] Georgios Amanatidis, Georgios Birmpas, and Evangelos Markakis. 2017. On Budget-Feasible Mechanism Design

for Symmetric Submodular Objectives. In Web and Internet Economics - 13th International Conference, WINE 2017,
Bangalore, India, December 17-20, 2017, Proceedings (Lecture Notes in Computer Science), Vol. 10660. Springer, 1–15.

[3] Georgios Amanatidis, Pieter Kleer, and Guido Schäfer. 2019. Budget-Feasible Mechanism Design for Non-Monotone

Submodular Objectives: Offline and Online. CoRR abs/1905.00848 (2019). arXiv:1905.00848 http://arxiv.org/abs/1905.

00848

[4] Nima Anari, Gagan Goel, and Afshin Nikzad. 2014. Mechanism Design for Crowdsourcing: An Optimal 1-1/e Com-

petitive Budget-Feasible Mechanism for Large Markets. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014. 266–275.

[5] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. 2007. A Knapsack Secretary Problem with

Applications. In APPROX-RANDOM (Lecture Notes in Computer Science), Vol. 4627. Springer, 16–28.
[6] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Yaron Singer. 2012. Learning on a budget: posted price mechanisms

for online procurement. In EC. ACM, 128–145.

[7] Ashwinkumar Badanidiyuru and Jan Vondrák. 2014. Fast algorithms for maximizing submodular functions. In

Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014. SIAM, 1497–1514.

[8] Eric Balkanski and Jason D. Hartline. 2016. Bayesian Budget Feasibility with Posted Pricing. In Proceedings of the 25th
International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016. ACM, 189–203.

[9] MohammadHossein Bateni, Mohammad Taghi Hajiaghayi, and Morteza Zadimoghaddam. 2013. Submodular secretary

problem and extensions. ACM Trans. Algorithms 9, 4 (2013), 32:1–32:23.
[10] Xiaohui Bei, Ning Chen, Nick Gravin, and Pinyan Lu. 2017. Worst-Case Mechanism Design via Bayesian Analysis.

SIAM J. Comput. 46, 4 (2017), 1428–1448.
[11] Liad Blumrosen and Noam Nisan. 2009. On the Computational Power of Demand Queries. SIAM J. Comput. 39, 4

(2009), 1372–1391.

[12] Allan Borodin, Yuval Filmus, and Joel Oren. 2010. Threshold Models for Competitive Influence in Social Networks. In

Proceedings of the 6th International Workshop on Internet and Network Economics, WINE 2010. 539–550.
[13] Niv Buchbinder and Moran Feldman. 2018. Deterministic Algorithms for Submodular Maximization Problems. ACM

Trans. Algorithms 14, 3 (2018), 32:1–32:20.
[14] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. 2014. Submodular Maximization with Cardinality

Constraints. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014. SIAM, 1433–1452.

[15] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. 2015. Streaming Algorithms for Submodular Function Maxi-

mization. In Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July
6-10, 2015, Proceedings, Part I (Lecture Notes in Computer Science), Vol. 9134. Springer, 318–330.

[16] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. 2014. Submodular Function Maximization via the Multilinear

Relaxation and Contention Resolution Schemes. SIAM J. Comput. 43, 6 (2014), 1831–1879.
[17] Ning Chen, Nick Gravin, and Pinyan Lu. 2011. On the Approximability of Budget Feasible Mechanisms. In Proceedings

of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011. 685–699.

[18] Shahar Dobzinski, Christos H. Papadimitriou, and Yaron Singer. 2011. Mechanisms for complement-free procurement.

In Proceedings 12th ACM Conference on Electronic Commerce (EC-2011), San Jose, CA, USA, June 5-9, 2011. 273–282.
[19] Evgenii Borisovich Dynkin. 1963. Optimal choice of the stopping moment of a Markov process. In Doklady Akademii

Nauk, Vol. 150. Russian Academy of Sciences, 238–240.

[20] Alina Ene and Huy L. Nguyen. 2017. A Nearly-linear Time Algorithm for Submodular Maximization with a Knapsack

Constraint. CoRR abs/1709.09767 (2017). arXiv:1709.09767 http://arxiv.org/abs/1709.09767

[21] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. 2011. Maximizing Non-monotone Submodular Functions. SIAM J.
Comput. 40, 4 (2011), 1133–1153.

[22] Moran Feldman, Christopher Harshaw, and Amin Karbasi. 2017. Greed Is Good: Near-Optimal Submodular Maximiza-

tion via Greedy Optimization. In Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The
Netherlands, 7-10 July 2017 (Proceedings of Machine Learning Research), Vol. 65. PMLR, 758–784.

[23] Moran Feldman, Joseph Naor, and Roy Schwartz. 2011. Improved Competitive Ratios for Submodular Secretary

Problems (Extended Abstract). In APPROX-RANDOM (Lecture Notes in Computer Science), Vol. 6845. Springer, 218–229.

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

918

http://arxiv.org/abs/1905.00848
http://arxiv.org/abs/1905.00848
http://arxiv.org/abs/1905.00848
http://arxiv.org/abs/1709.09767
http://arxiv.org/abs/1709.09767

Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives 19

[24] Moran Feldman, Joseph Naor, and Roy Schwartz. 2011. A Unified Continuous Greedy Algorithm for Submodular

Maximization. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,
October 22-25, 2011. IEEE Computer Society, 570–579.

[25] Moran Feldman and Rico Zenklusen. 2018. The Submodular Secretary Problem Goes Linear. SIAM J. Comput. 47, 2
(2018), 330–366.

[26] Gagan Goel, Afshin Nikzad, and Adish Singla. 2014. MechanismDesign for CrowdsourcingMarkets with Heterogeneous

Tasks. In Proceedings of the Seconf AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2014, November
2-4, 2014, Pittsburgh, Pennsylvania, USA.

[27] Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. 2017. Adaptivity Gaps for Stochastic Probing: Submodular

and XOS Functions. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19. SIAM, 1688–1702.

[28] Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. 2010. Constrained Non-monotone Submodular

Maximization: Offline and Secretary Algorithms. In Internet and Network Economics - 6th International Workshop, WINE
2010, Stanford, CA, USA, December 13-17, 2010. Proceedings (LNCS), Vol. 6484. Springer, 246–257.

[29] Thibaut Horel, Stratis Ioannidis, and S. Muthukrishnan. 2014. Budget Feasible Mechanisms for Experimental Design.

In LATIN 2014: Theoretical Informatics - 11th Latin American Symposium, Montevideo, Uruguay, March 31 - April 4, 2014.
Proceedings. 719–730.

[30] Thomas Kesselheim and Andreas Tönnis. 2017. Submodular Secretary Problems: Cardinality, Matching, and Linear

Constraints. In APPROX-RANDOM (LIPIcs), Vol. 81. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 16:1–16:22.

[31] Pooya Jalaly Khalilabadi and Éva Tardos. 2018. Simple and Efficient Budget Feasible Mechanisms for Monotone

Submodular Valuations. InWeb and Internet Economics - 14th International Conference, WINE 2018, Oxford, UK, December
15-17, 2018, Proceedings (Lecture Notes in Computer Science), Vol. 11316. Springer, 246–263.

[32] Ariel Kulik, Hadas Shachnai, and Tami Tamir. 2013. Approximations for Monotone and Nonmonotone Submodular

Maximization with Knapsack Constraints. Math. Oper. Res. 38, 4 (2013), 729–739.
[33] Benny Lehmann, Daniel J. Lehmann, and Noam Nisan. 2006. Combinatorial auctions with decreasing marginal utilities.

Games and Economic Behavior 55, 2 (2006), 270–296.
[34] Stefano Leonardi, Gianpiero Monaco, Piotr Sankowski, and Qiang Zhang. 2016. Budget Feasible Mechanisms on

Matroids. CoRR abs/1612.03150 (2016).

[35] Stefano Leonardi, Gianpiero Monaco, Piotr Sankowski, and Qiang Zhang. 2017. Budget Feasible Mechanisms on

Matroids. In Integer Programming and Combinatorial Optimization - 19th International Conference, IPCO 2017, Waterloo,
ON, Canada, June 26-28, 2017, Proceedings (Lecture Notes in Computer Science), Vol. 10328. Springer, 368–379.

[36] Vahab S. Mirrokni, Michael Schapira, and Jan Vondrák. 2008. Tight information-theoretic lower bounds for welfare

maximization in combinatorial auctions. In Proceedings 9th ACM Conference on Electronic Commerce (EC-2008), Chicago,
IL, USA, June 8-12, 2008. ACM, 70–77.

[37] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. 2016. Fast Constrained Submodular Maxi-

mization: Personalized Data Summarization. In Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR), Vol. 48. JMLR.org, 1358–1367.

[38] Roger Myerson. 1981. Optimal Auction Design. Mathematics of Operations Research 6, 1 (1981).

[39] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. 1978. An analysis of approximations for maximizing

submodular set functions - I. Math. Program. 14, 1 (1978), 265–294.
[40] Yaron Singer. 2010. Budget Feasible Mechanisms. In 51th Annual IEEE Symposium on Foundations of Computer Science,

FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society, 765–774.

[41] Yaron Singer. 2012. How to win friends and influence people, truthfully: influence maximization mechanisms for social

networks. In Proceedings of the Fifth International Conference on Web Search and Web Data Mining, WSDM 2012, Seattle,
WA, USA, February 8-12, 2012. 733–742.

[42] Adish Singla and Andreas Krause. 2013. Incentives for Privacy Tradeoff in Community Sensing. In Proceedings of the
First AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2013, November 7-9, 2013, Palm Springs, CA,
USA. AAAI.

[43] Maxim Sviridenko. 2004. A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res.
Lett. 32, 1 (2004), 41–43.

[44] Laurence A. Wolsey. 1982. Maximising Real-Valued Submodular Functions: Primal and Dual Heuristics for Location

Problems. Math. Oper. Res. 7, 3 (1982), 410–425.

, Vol. 1, No. 1, Article . Publication date: May 2019.

EC’19 Session 7c: Mechanism Design II

919

	Abstract
	1 Introduction
	2 Preliminaries
	3 An Efficient Mechanism for Submodular Objectives
	3.1 Proving the Properties of GenSm-Main

	4 Online Procurement
	5 Adding Combinatorial Constraints
	6 Lower Bounds
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 24.13, 644.27 Width 430.24 Height 21.64 points
 Mask co-ordinates: Horizontal, vertical offset 25.80, 22.62 Width 433.57 Height 28.29 points
 Origin: bottom left

 1
 0
 BL

 7
 AllDoc
 7

 CurrentAVDoc

 24.1336 644.2705 430.2436 21.637 25.798 22.6226 433.5724 28.2945

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 19
 18
 19

 1

 HistoryList_V1
 qi2base

