211,485 research outputs found

    The Tracial Hahn-Banach Theorem, Polar Duals, Matrix Convex Sets, and Projections of Free Spectrahedra

    Full text link
    This article investigates matrix convex sets and introduces their tracial analogs which we call contractively tracial convex sets. In both contexts completely positive (cp) maps play a central role: unital cp maps in the case of matrix convex sets and trace preserving cp (CPTP) maps in the case of contractively tracial convex sets. CPTP maps, also known as quantum channels, are fundamental objects in quantum information theory. Free convexity is intimately connected with Linear Matrix Inequalities (LMIs) L(x) = A_0 + A_1 x_1 + ... + A_g x_g > 0 and their matrix convex solution sets { X : L(X) is positive semidefinite }, called free spectrahedra. The Effros-Winkler Hahn-Banach Separation Theorem for matrix convex sets states that matrix convex sets are solution sets of LMIs with operator coefficients. Motivated in part by cp interpolation problems, we develop the foundations of convex analysis and duality in the tracial setting, including tracial analogs of the Effros-Winkler Theorem. The projection of a free spectrahedron in g+h variables to g variables is a matrix convex set called a free spectrahedrop. As a class, free spectrahedrops are more general than free spectrahedra, but at the same time more tractable than general matrix convex sets. Moreover, many matrix convex sets can be approximated from above by free spectrahedrops. Here a number of fundamental results for spectrahedrops and their polar duals are established. For example, the free polar dual of a free spectrahedrop is again a free spectrahedrop. We also give a Positivstellensatz for free polynomials that are positive on a free spectrahedrop.Comment: v2: 56 pages, reworked abstract and intro to emphasize the convex duality aspects; v1: 60 pages; includes an index and table of content

    Sharp identification regions in games

    Get PDF
    We study identification in static, simultaneous move finite games of complete information, where the presence of multiple Nash equilibria may lead to partial identification of the model parameters. The identification regions for these parameters proposed in the related literature are known not to be sharp. Using the theory of random sets, we show that the sharp identification region can be obtained as the set of minimizers of the distance from the conditional distribution of game's outcomes given covariates, to the conditional Aumann expectation given covariates of a properly defined random set. This is the random set of probability distributions over action profiles given profit shifters implied by mixed strategy Nash equilibria. The sharp identification region can be approximated arbitrarily accurately through a finite number of moment inequalities based on the support function of the conditional Aumann expectation. When only pure strategy Nash equilibria are played, the sharp identification region is exactly determined by a finite number of moment inequalities. We discuss how our results can be extended to other solution concepts, such as for example correlated equilibrium or rationality and rationalizability. We show that calculating the sharp identification region using our characterization is computationally feasible. We also provide a simple algorithm which finds the set of inequalities that need to be checked in order to insure sharpness. We use examples analyzed in the literature to illustrate the gains in identification afforded by our method.Identification, Random Sets, Aumann Expectation, Support Function, Capacity Functional, Normal Form Games, Inequality Constraints.

    Free Extreme points of free spectrahedrops and generalized free spectrahedra

    Full text link
    Matrix convexity generalizes convexity to the dimension free setting and has connections to many mathematical and applied pursuits including operator theory, quantum information, noncommutative optimization, and linear control systems. In the setting of classical convex sets, extreme points are central objects which exhibit many important properties. For example, the Minkowski theorem shows that any element of a closed bounded convex set can be expressed as a convex combination of extreme points. Extreme points are also of great interest in the dimension free setting of matrix convex sets; however, here the situation requires more nuance. In the dimension free setting, there are many different types of extreme points. Of particular importance are free extreme points, a highly restricted type of extreme point that is closely connected to the dilation theoretic Arveson boundary. If free extreme points span a matrix convex set through matrix convex combinations, then they satisfy a strong notion of minimality in doing so. However, not all closed bounded matrix convex sets even have free extreme points. Thus, a major goal is to determine which matrix convex sets are spanned by their free extreme points. Building on a recent work of J. W. Helton and the author which shows that free spectrahedra, i.e., dimension free solution sets to linear matrix inequalities, are spanned by their free extreme points, we establish two additional classes of matrix convex sets which are the matrix convex hull of their free extreme points. Namely, we show that closed bounded free spectrahedrops, i.e, closed bounded projections of free spectrahedra, are the span of their free extreme points. Furthermore, we show that if one considers linear operator inequalities that have compact operator defining tuples, then the resulting ``generalized" free spectrahedra are spanned by their free extreme points.Comment: 34 page

    The Inflation Technique for Causal Inference with Latent Variables

    Full text link
    The problem of causal inference is to determine if a given probability distribution on observed variables is compatible with some causal structure. The difficult case is when the causal structure includes latent variables. We here introduce the inflation technique\textit{inflation technique} for tackling this problem. An inflation of a causal structure is a new causal structure that can contain multiple copies of each of the original variables, but where the ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is compatible with the original causal structure, we assign a family of marginal distributions on certain subsets of the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for the inflation can be translated into compatibility constraints for the original causal structure. Even if the constraints at the level of inflation are weak, such as observable statistical independences implied by disjoint causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities whose violation by a distribution witnesses that distribution's incompatibility with the causal structure (of which Bell inequalities and Pearl's instrumental inequality are prominent examples). We describe an algorithm for deriving all such inequalities for the original causal structure that follow from ancestral independences in the inflation. For three observed binary variables with pairwise common causes, it yields inequalities that are stronger in at least some aspects than those obtainable by existing methods. We also describe an algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum) generalizations of the notion of a causal model.Comment: Minor final corrections, updated to match the published version as closely as possibl

    A Characterization of Lyapunov Inequalities for Stability of Switched Systems

    Full text link
    We study stability criteria for discrete-time switched systems and provide a meta-theorem that characterizes all Lyapunov theorems of a certain canonical type. For this purpose, we investigate the structure of sets of LMIs that provide a sufficient condition for stability. Various such conditions have been proposed in the literature in the past fifteen years. We prove in this note that a family of languagetheoretic conditions recently provided by the authors encapsulates all the possible LMI conditions, thus putting a conclusion to this research effort. As a corollary, we show that it is PSPACE-complete to recognize whether a particular set of LMIs implies stability of a switched system. Finally, we provide a geometric interpretation of these conditions, in terms of existence of an invariant set.Comment: arXiv admin note: text overlap with arXiv:1201.322

    Small Extended Formulation for Knapsack Cover Inequalities from Monotone Circuits

    Full text link
    Initially developed for the min-knapsack problem, the knapsack cover inequalities are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield linear programming (LP) relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. In this paper we address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. For the min-knapsack cover problem, our main result can be stated formally as follows: for any ε>0\varepsilon >0, there is a (1/ε)O(1)nO(logn)(1/\varepsilon)^{O(1)}n^{O(\log n)}-size LP relaxation with an integrality gap of at most 2+ε2+\varepsilon, where nn is the number of items. Prior to this work, there was no known relaxation of subexponential size with a constant upper bound on the integrality gap. Our construction is inspired by a connection between extended formulations and monotone circuit complexity via Karchmer-Wigderson games. In particular, our LP is based on O(log2n)O(\log^2 n)-depth monotone circuits with fan-in~22 for evaluating weighted threshold functions with nn inputs, as constructed by Beimel and Weinreb. We believe that a further understanding of this connection may lead to more positive results complementing the numerous lower bounds recently proved for extended formulations.Comment: 21 page
    corecore