9,166 research outputs found

    AND and/or OR: Uniform Polynomial-Size Circuits

    Get PDF
    We investigate the complexity of uniform OR circuits and AND circuits of polynomial-size and depth. As their name suggests, OR circuits have OR gates as their computation gates, as well as the usual input, output and constant (0/1) gates. As is the norm for Boolean circuits, our circuits have multiple sink gates, which implies that an OR circuit computes an OR function on some subset of its input variables. Determining that subset amounts to solving a number of reachability questions on a polynomial-size directed graph (which input gates are connected to the output gate?), taken from a very sparse set of graphs. However, it is not obvious whether or not this (restricted) reachability problem can be solved, by say, uniform AC^0 circuits (constant depth, polynomial-size, AND, OR, NOT gates). This is one reason why characterizing the power of these simple-looking circuits in terms of uniform classes turns out to be intriguing. Another is that the model itself seems particularly natural and worthy of study. Our goal is the systematic characterization of uniform polynomial-size OR circuits, and AND circuits, in terms of known uniform machine-based complexity classes. In particular, we consider the languages reducible to such uniform families of OR circuits, and AND circuits, under a variety of reduction types. We give upper and lower bounds on the computational power of these language classes. We find that these complexity classes are closely related to tallyNL, the set of unary languages within NL, and to sets reducible to tallyNL. Specifically, for a variety of types of reductions (many-one, conjunctive truth table, disjunctive truth table, truth table, Turing) we give characterizations of languages reducible to OR circuit classes in terms of languages reducible to tallyNL classes. Then, some of these OR classes are shown to coincide, and some are proven to be distinct. We give analogous results for AND circuits. Finally, for many of our OR circuit classes, and analogous AND circuit classes, we prove whether or not the two classes coincide, although we leave one such inclusion open.Comment: In Proceedings MCU 2013, arXiv:1309.104

    On the existence of complete disjoint NP-pairs

    Get PDF
    Disjoint NP-pairs are an interesting model of computation with important applications in cryptography and proof complexity. The question whether there exists a complete disjoint NP-pair was posed by Razborov in 1994 and is one of the most important problems in the field. In this paper we prove that there exists a many-one hard disjoint NP-pair which is computed with access to a very weak oracle (a tally NP-oracle). In addition, we exhibit candidates for complete NP-pairs and apply our results to a recent line of research on the construction of hard tautologies from pseudorandom generators

    Resource Bounded Immunity and Simplicity

    Get PDF
    Revisiting the thirty years-old notions of resource-bounded immunity and simplicity, we investigate the structural characteristics of various immunity notions: strong immunity, almost immunity, and hyperimmunity as well as their corresponding simplicity notions. We also study limited immunity and simplicity, called k-immunity and feasible k-immunity, and their simplicity notions. Finally, we propose the k-immune hypothesis as a working hypothesis that guarantees the existence of simple sets in NP.Comment: This is a complete version of the conference paper that appeared in the Proceedings of the 3rd IFIP International Conference on Theoretical Computer Science, Kluwer Academic Publishers, pp.81-95, Toulouse, France, August 23-26, 200

    FPT algorithms to recognize well covered graphs

    Full text link
    Given a graph GG, let vc(G)vc(G) and vc+(G)vc^+(G) be the sizes of a minimum and a maximum minimal vertex covers of GG, respectively. We say that GG is well covered if vc(G)=vc+(G)vc(G)=vc^+(G) (that is, all minimal vertex covers have the same size). Determining if a graph is well covered is a coNP-complete problem. In this paper, we obtain O∗(2vc)O^*(2^{vc})-time and O∗(1.4656vc+)O^*(1.4656^{vc^+})-time algorithms to decide well coveredness, improving results of Boria et. al. (2015). Moreover, using crown decomposition, we show that such problems admit kernels having linear number of vertices. In 2018, Alves et. al. (2018) proved that recognizing well covered graphs is coW[2]-hard when the independence number α(G)=n−vc(G)\alpha(G)=n-vc(G) is the parameter. Contrasting with such coW[2]-hardness, we present an FPT algorithm to decide well coveredness when α(G)\alpha(G) and the degeneracy of the input graph GG are aggregate parameters. Finally, we use the primeval decomposition technique to obtain a linear time algorithm for extended P4P_4-laden graphs and (q,q−4)(q,q-4)-graphs, which is FPT parameterized by qq, improving results of Klein et al (2013).Comment: 15 pages, 2 figure
    • …
    corecore