177,248 research outputs found

    Secure GDoF of the Z-channel with Finite Precision CSIT: How Robust are Structured Codes?

    Full text link
    Under the assumption of perfect channel state information at the transmitters (CSIT), it is known that structured codes offer significant advantages for secure communication in an interference network, e.g., structured jamming signals based on lattice codes may allow a receiver to decode the sum of the jamming signal and the signal being jammed, even though they cannot be separately resolved due to secrecy constraints, subtract the aggregate jammed signal, and then proceed to decode desired codewords at lower power levels. To what extent are such benefits of structured codes fundamentally limited by uncertainty in CSIT? To answer this question, we explore what is perhaps the simplest setting where the question presents itself -- a Z interference channel with secure communication. Using sum-set inequalities based on Aligned Images bounds we prove that the GDoF benefits of structured codes are lost completely under finite precision CSIT. The secure GDoF region of the Z interference channel is obtained as a byproduct of the analysis.Comment: 34 pages, 10 figure

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Secure Degrees of Freedom for Gaussian Channels with Interference: Structured Codes Outperform Gaussian Signaling

    Full text link
    In this work, we prove that a positive secure degree of freedom is achievable for a large class of Gaussian channels as long as the channel is not degraded and the channel is fully connected. This class includes the MAC wire-tap channel, the 2-user interference channel with confidential messages, the 2-user interference channel with an external eavesdropper. Best known achievable schemes to date for these channels use Gaussian signaling. In this work, we show that structured codes outperform Gaussian random codes at high SNR when channel gains are real numbers.Comment: 6 pages, Submitted to IEEE Globecom, March 200

    Secure Satellite Communication Systems Design with Individual Secrecy Rate Constraints

    Full text link
    In this paper, we study multibeam satellite secure communication through physical (PHY) layer security techniques, i.e., joint power control and beamforming. By first assuming that the Channel State Information (CSI) is available and the beamforming weights are fixed, a novel secure satellite system design is investigated to minimize the transmit power with individual secrecy rate constraints. An iterative algorithm is proposed to obtain an optimized power allocation strategy. Moreover, sub-optimal beamforming weights are obtained by completely eliminating the co-channel interference and nulling the eavesdroppers' signal simultaneously. In order to obtain jointly optimized power allocation and beamforming strategy in some practical cases, e.g., with certain estimation errors of the CSI, we further evaluate the impact of the eavesdropper's CSI on the secure multibeam satellite system design. The convergence of the iterative algorithm is proven under justifiable assumptions. The performance is evaluated by taking into account the impact of the number of antenna elements, number of beams, individual secrecy rate requirement, and CSI. The proposed novel secure multibeam satellite system design can achieve optimized power allocation to ensure the minimum individual secrecy rate requirement. The results show that the joint beamforming scheme is more favorable than fixed beamforming scheme, especially in the cases of a larger number of satellite antenna elements and higher secrecy rate requirement. Finally, we compare the results under the current satellite air-interface in DVB-S2 and the results under Gaussian inputs.Comment: 34 pages, 10 figures, 1 table, submitted to "Transactions on Information Forensics and Security
    • …
    corecore