15 research outputs found

    Dominant regions in noncrystallographic hyperplane arrangements

    Get PDF
    For a crystallographic root system, dominant regions in the Catalan hyperplane arrangement are in bijection with antichains in a partial order on the positive roots. For a noncrystallographic root system, the analogous arrangement and regions have importance in the representation theory of an associated graded Hecke algebra. Since there is also an analogous root order, it is natural to hope that a similar bijection can be used to understand these regions. We show that such a bijection does hold for type H3H_3 and for type I2(m)I_2(m), including arbitrary ratio of root lengths when mm is even, but does not hold for type H4H_4. We give a criterion that explains this failure and a list of the 16 antichains in the H4H_4 root order which correspond to empty regions.Comment: 29 pages, 5 figure

    Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups

    Full text link
    This memoir constitutes the author's PhD thesis at Cornell University. It serves both as an expository work and as a description of new research. At the heart of the memoir, we introduce and study a poset NC(k)(W)NC^{(k)}(W) for each finite Coxeter group WW and for each positive integer kk. When k=1k=1, our definition coincides with the generalized noncrossing partitions introduced by Brady-Watt and Bessis. When WW is the symmetric group, we obtain the poset of classical kk-divisible noncrossing partitions, first studied by Edelman. Along the way, we include a comprehensive introduction to related background material. Before defining our generalization NC(k)(W)NC^{(k)}(W), we develop from scratch the theory of algebraic noncrossing partitions NC(W)NC(W). This involves studying a finite Coxeter group WW with respect to its generating set TT of {\em all} reflections, instead of the usual Coxeter generating set SS. This is the first time that this material has appeared in one place. Finally, it turns out that our poset NC(k)(W)NC^{(k)}(W) shares many enumerative features in common with the ``generalized nonnesting partitions'' of Athanasiadis and the ``generalized cluster complexes'' of Fomin and Reading. In particular, there is a generalized ``Fuss-Catalan number'', with a nice closed formula in terms of the invariant degrees of WW, that plays an important role in each case. We give a basic introduction to these topics, and we describe several conjectures relating these three families of ``Fuss-Catalan objects''.Comment: Final version -- to appear in Memoirs of the American Mathematical Society. Many small improvements in exposition, especially in Sections 2.2, 4.1 and 5.2.1. Section 5.1.5 deleted. New references to recent wor

    Coxeter-biCatalan combinatorics

    Get PDF
    International audienceWe consider several counting problems related to Coxeter-Catalan combinatorics and conjecture that the problems all have the same answer, which we call the WW -biCatalan number. We prove the conjecture in many cases.Nous considérons des problèmes énumératifs liés à la combinatoire de Coxeter-Catalan et conjecturons que tous les problèmes ont la même solution, que nous appelons le nombre WW -biCatalan. Nous prouvons la conjecture dans de nombreux cas

    The maximum cardinality of minimal inversion complete sets in finite reflection groups

    Get PDF
    We compute for reflection groups of type A,B,D,F4,H3 and for dihedral groups a statistic counting the maximal cardinality of a set of elements in the group whose generalized inversions yield the full set of inversions and which are minimal with respect to this property. We also provide lower bounds for the E types that we conjecture to be the exact value of our statistic

    Homomesy via Toggleability Statistics

    Full text link
    The rowmotion operator acting on the set of order ideals of a finite poset has been the focus of a significant amount of recent research. One of the major goals has been to exhibit homomesies: statistics that have the same average along every orbit of the action. We systematize a technique for proving that various statistics of interest are homomesic by writing these statistics as linear combinations of "toggleability statistics" (originally introduced by Striker) plus a constant. We show that this technique recaptures most of the known homomesies for the posets on which rowmotion has been most studied. We also show that the technique continues to work in modified contexts. For instance, this technique also yields homomesies for the piecewise-linear and birational extensions of rowmotion; furthermore, we introduce a qq-analogue of rowmotion and show that the technique yields homomesies for "qq-rowmotion" as well.Comment: 48 pages, 13 figures, 2 tables; forthcoming, Combinatorial Theor

    Cambrian Lattices

    Get PDF
    For an arbitrary finite Coxeter group W we define the family of Cambrian lattices for W as quotients of the weak order on W with respect to certain lattice congruences. We associate to each Cambrian lattice a complete fan, which we conjecture is the normal fan of a polytope combinatorially isomorphic to the generalized associahedron for W. In types A and B we obtain, by means of a fiber-polytope construction, combinatorial realizations of the Cambrian lattices in terms of triangulations and in terms of permutations. Using this combinatorial information, we prove in types A and B that the Cambrian fans are combinatorially isomorphic to the normal fans of the generalized associahedra and that one of the Cambrian fans is linearly isomorphic to Fomin and Zelevinsky's construction of the normal fan as a "cluster fan." Our construction does not require a crystallographic Coxeter group and therefore suggests a definition, at least on the level of cellular spheres, of a generalized associahedron for any finite Coxeter group. The Tamari lattice is one of the Cambrian lattices of type A, and two "Tamari" lattices in type B are identified and characterized in terms of signed pattern avoidance. We also show that open intervals in Cambrian lattices are either contractible or homotopy equivalent to spheres.Comment: Revisions in exposition (partly in response to the suggestions of an anonymous referee) including many new figures. Also, Conjecture 1.4 and Theorem 1.5 are replaced by slightly more detailed statements. To appear in Adv. Math. 37 pages, 8 figure

    Congruence Normality of Simplicial Hyperplane Arrangements via Oriented Matroids

    Get PDF
    A catalogue of simplicial hyperplane arrangements was first given by Grünbaum in 1971. These arrangements naturally generalize finite Coxeter arrangements and also the weak order through the poset of regions. The weak order is known to be a congruence normal lattice, and congruence normality of lattices of regions of simplicial arrangements can be determined using polyhedral cones called shards. In this article, we update Grünbaum’s catalogue by providing normals realizing all known simplicial arrangements with up to 37 lines and key invariants. Then we add structure to this catalogue by determining which arrangements always/sometimes/never lead to congruence normal lattices of regions. To this end, we use oriented matroids to recast shards as covectors to determine congruence normality of large hyperplane arrangements. We also show that lattices of regions coming from finite Weyl groupoids of any rank are always congruence normal
    corecore