2,081 research outputs found

    Output Reachable Set Estimation and Verification for Multi-Layer Neural Networks

    Get PDF
    In this paper, the output reachable estimation and safety verification problems for multi-layer perceptron neural networks are addressed. First, a conception called maximum sensitivity in introduced and, for a class of multi-layer perceptrons whose activation functions are monotonic functions, the maximum sensitivity can be computed via solving convex optimization problems. Then, using a simulation-based method, the output reachable set estimation problem for neural networks is formulated into a chain of optimization problems. Finally, an automated safety verification is developed based on the output reachable set estimation result. An application to the safety verification for a robotic arm model with two joints is presented to show the effectiveness of proposed approaches.Comment: 8 pages, 9 figures, to appear in TNNL

    Identification of Piecewise Linear Models of Complex Dynamical Systems

    Full text link
    The paper addresses the realization and identification problem or a subclass of piecewise-affine hybrid systems. The paper provides necessary and sufficient conditions for existence of a realization, a characterization of minimality, and an identification algorithm for this subclass of hybrid systems. The considered system class and the identification problem are motivated by applications in systems biology

    Robust fault detection for vehicle lateral dynamics: Azonotope-based set-membership approach

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this work, a model-based fault detection layoutfor vehicle lateral dynamics system is presented. The majorfocus in this study is on the handling of model uncertainties andunknown inputs. In fact, the vehicle lateral model is affectedby several parameter variations such as longitudinal velocity,cornering stiffnesses coefficients and unknown inputs like windgust disturbances. Cornering stiffness parameters variation isconsidered to be unknown but bounded with known compactset. Their effect is addressed by generating intervals for theresiduals based on the zonotope representation of all possiblevalues. The developed fault detection procedure has been testedusing real driving data acquired from a prototype vehicle.Index Terms— Robust fault detection, interval models,zonotopes, set-membership, switched uncertain systems, LMIs,input-to-state stability, arbitrary switching.Peer ReviewedPostprint (author's final draft
    • …
    corecore