In this paper, the output reachable estimation and safety verification
problems for multi-layer perceptron neural networks are addressed. First, a
conception called maximum sensitivity in introduced and, for a class of
multi-layer perceptrons whose activation functions are monotonic functions, the
maximum sensitivity can be computed via solving convex optimization problems.
Then, using a simulation-based method, the output reachable set estimation
problem for neural networks is formulated into a chain of optimization
problems. Finally, an automated safety verification is developed based on the
output reachable set estimation result. An application to the safety
verification for a robotic arm model with two joints is presented to show the
effectiveness of proposed approaches.Comment: 8 pages, 9 figures, to appear in TNNL