138 research outputs found

    Multiple Description Vector Quantization with Lattice Codebooks: Design and Analysis

    Get PDF
    The problem of designing a multiple description vector quantizer with lattice codebook Lambda is considered. A general solution is given to a labeling problem which plays a crucial role in the design of such quantizers. Numerical performance results are obtained for quantizers based on the lattices A_2 and Z^i, i=1,2,4,8, that make use of this labeling algorithm. The high-rate squared-error distortions for this family of L-dimensional vector quantizers are then analyzed for a memoryless source with probability density function p and differential entropy h(p) < infty. For any a in (0,1) and rate pair (R,R), it is shown that the two-channel distortion d_0 and the channel 1 (or channel 2) distortions d_s satisfy lim_{R -> infty} d_0 2^(2R(1+a)) = (1/4) G(Lambda) 2^{2h(p)} and lim_{R -> infty} d_s 2^(2R(1-a)) = G(S_L) 2^2h(p), where G(Lambda) is the normalized second moment of a Voronoi cell of the lattice Lambda and G(S_L) is the normalized second moment of a sphere in L dimensions.Comment: 46 pages, 14 figure

    Vector perturbation technique

    Get PDF
    La “vector perturbation technique” è una tecnica di codifica che permette di avvicinarsi alla capacità teorica del canale in un sistema MIMO. Questa tecnica va a operare sul vettore dati da trasmettere e si articola in quattro punti fondamentali: Channel Inversion, Regolarizzazione, Perturbazione e Perturbazione Regolarizzata. Grazie ad essa è possibile ottenere una capacità che cresce linearmente con il numero minimo tra le antenne trasmittenti/riceventi del sistem

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    On Linear Transmission Systems

    Get PDF
    This thesis is divided into two parts. Part I analyzes the information rate of single antenna, single carrier linear modulation systems. The information rate of a system is the maximum number of bits that can be transmitted during a channel usage, and is achieved by Gaussian symbols. It depends on the underlying pulse shape in a linear modulated signal and also the signaling rate, the rate at which the Gaussian symbols are transmitted. The object in Part I is to study the impact of both the signaling rate and the pulse shape on the information rate. Part II of the thesis is devoted to multiple antenna systems (MIMO), and more specifically to linear precoders for MIMO channels. Linear precoding is a practical scheme for improving the performance of a MIMO system, and has been studied intensively during the last four decades. In practical applications, the symbols to be transmitted are taken from a discrete alphabet, such as quadrature amplitude modulation (QAM), and it is of interest to find the optimal linear precoder for a certain performance measure of the MIMO channel. The design problem depends on the particular performance measure and the receiver structure. The main difficulty in finding the optimal precoders is the discrete nature of the problem, and mostly suboptimal solutions are proposed. The problem has been well investigated when linear receivers are employed, for which optimal precoders were found for many different performance measures. However, in the case of the optimal maximum likelihood (ML) receiver, only suboptimal constructions have been possible so far. Part II starts by proposing new novel, low complexity, suboptimal precoders, which provide a low bit error rate (BER) at the receiver. Later, an iterative optimization method is developed, which produces precoders improving upon the best known ones in the literature. The resulting precoders turn out to exhibit a certain structure, which is then analyzed and proved to be optimal for large alphabets

    Channel estimation, data detection and carrier frequency offset estimation in OFDM systems

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) plays an important role in the implementation of high data rate communication. In this thesis, the problems of data detection and channel and carrier frequency offset estimation in OFDM systems are studied. Multi-symbol non-coherent data detection is studied which performs data detection by processing multiple symbols without the knowledge of the channel impulse response (CIR). For coherent data detection, the CIR needs to be estimated. Our objective in this thesis is to work on blind channel estimators which can extract the CIR using just one block of received OFDM data. A blind channel estimator for (Single Input Multi Output) SIMO OFDM systems is derived. The conditions under which the estimator is identifiable is studied and solutions to resolve the phase ambiguity of the proposed estimator are given.A channel estimator for superimposed OFDM systems is proposed and its CRB is derived. The idea of simultaneous transmission of pilot and data symbols on each subcarrier, the so called superimposed technique, introduces the efficient use of bandwidth in OFDM context. Pilot symbols can be added to data symbols to enable CIR estimation without sacrificing the data rate. Despite the many advantages of OFDM, it suffers from sensitivity to carrier frequency offset (CFO). CFO destroys the orthogonality between the subcarriers. Thus, it is necessary for the receiver to estimate and compensate for the frequency offset. Several high accuracy estimators are derived. These include CFO estimators, as well as a joint iterative channel/CFO estimator/data detector for superimposed OFDM. The objective is to achieve CFO estimation with using just one OFDM block of received data and without the knowledge of CIR

    Low-Complexity Near-Optimal Detection Algorithms for MIMO Systems

    Get PDF
    As the number of subscribers in wireless networks and their demanding data rate are exponentially increasing, multiple-input multiple-output (MIMO) systems have been scaled up in the 5G where tens to hundreds of antennas are deployed at base stations (BSs). However, by scaling up the MIMO systems, designing detectors with low computational complexity and close to the optimal error performance becomes challenging. In this dissertation, we study the problem of efficient detector designs for MIMO systems. In Chapter 2, we propose efficient detection algorithms for small and moderate MIMO systems by using lattice reduction and subspace (or conditional) detection techniques. The proposed algorithms exhibit full receive diversity and approach the bit error rate (BER) of the optimal maximum likelihood (ML) solution. For quasi-static channels, the complexity of the proposed schemes is cubic in the system dimension and is only linear in the size of the QAM modulation used. However, the computational complexity of lattice reduction algorithms imposes a large burden on the proposed detectors for large MIMO systems or fast fading channels. In Chapter 3, we propose detectors for large MIMO systems based on the combination of minimum mean square error decision feedback equalization (MMSE-DFE) and subspace detection tailored to an appropriate channel ordering. Although the achieved diversity order of the proposed detectors does not necessarily equal the full receive diversity for some MIMO systems, the coding gain allows for close to ML error performance at practical values of signal-to-noise ratio (SNR) at the cost of a small computational complexity increase over the classical MMSE- DFE detection. The receive diversity deficiency is addressed by proposing another algorithm in which a partial lattice reduction (PLR) technique is deployed to improve the diversity order. Massive multiuser MIMO (MU-MIMO) is another technology where the BS is equipped with hundreds of antennas and serves tens of single-antenna user terminals (UTs). For the uplink of massive MIMO systems, linear detectors, such as zero-forcing (ZF) and minimum mean square error (MMSE), approach the error performances of sophisticated nonlinear detectors. However, the exact solutions of ZF and MMSE involve matrix-matrix multiplication and matrix inversion operations which are expensive for massive MIMO systems. In Chapter 4, we propose efficient truncated polynomial expansion (TPE)-based detectors that achieve the error performance of the exact solutions with a computational complexity proportional to the system dimensions. The millimeter wave (mmWave) massive MIMO is another key technology for 5G cellular networks. By using hybrid beamforming techniques in which a few numbers of radio frequency (RF) chains are deployed at the BSs and the UTs, the fully-digital precoder (combiner) is approximated as a product of analog and digital precoders (combiners). In Chapter 5, we consider a signal detection scheme using the equivalent channel consisting of the precoder, mmWave channel, and combiner. The available structure in the equivalent channel enables us to achieve the BER of the optimal ML solution with a significant reduction in the computational complexity
    • …
    corecore