8,148 research outputs found

    Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Distributional Operators

    Full text link
    In this paper we introduce a generalized Sobolev space by defining a semi-inner product formulated in terms of a vector distributional operator P\mathbf{P} consisting of finitely or countably many distributional operators PnP_n, which are defined on the dual space of the Schwartz space. The types of operators we consider include not only differential operators, but also more general distributional operators such as pseudo-differential operators. We deduce that a certain appropriate full-space Green function GG with respect to L:=P∗TPL:=\mathbf{P}^{\ast T}\mathbf{P} now becomes a conditionally positive definite function. In order to support this claim we ensure that the distributional adjoint operator P∗\mathbf{P}^{\ast} of P\mathbf{P} is well-defined in the distributional sense. Under sufficient conditions, the native space (reproducing-kernel Hilbert space) associated with the Green function GG can be isometrically embedded into or even be isometrically equivalent to a generalized Sobolev space. As an application, we take linear combinations of translates of the Green function with possibly added polynomial terms and construct a multivariate minimum-norm interpolant sf,Xs_{f,X} to data values sampled from an unknown generalized Sobolev function ff at data sites located in some set X⊂RdX \subset \mathbb{R}^d. We provide several examples, such as Mat\'ern kernels or Gaussian kernels, that illustrate how many reproducing-kernel Hilbert spaces of well-known reproducing kernels are isometrically equivalent to a generalized Sobolev space. These examples further illustrate how we can rescale the Sobolev spaces by the vector distributional operator P\mathbf{P}. Introducing the notion of scale as part of the definition of a generalized Sobolev space may help us to choose the "best" kernel function for kernel-based approximation methods.Comment: Update version of the publish at Num. Math. closed to Qi Ye's Ph.D. thesis (\url{http://mypages.iit.edu/~qye3/PhdThesis-2012-AMS-QiYe-IIT.pdf}

    Statistical properties of the method of regularization with periodic Gaussian reproducing kernel

    Get PDF
    The method of regularization with the Gaussian reproducing kernel is popular in the machine learning literature and successful in many practical applications. In this paper we consider the periodic version of the Gaussian kernel regularization. We show in the white noise model setting, that in function spaces of very smooth functions, such as the infinite-order Sobolev space and the space of analytic functions, the method under consideration is asymptotically minimax; in finite-order Sobolev spaces, the method is rate optimal, and the efficiency in terms of constant when compared with the minimax estimator is reasonably high. The smoothing parameters in the periodic Gaussian regularization can be chosen adaptively without loss of asymptotic efficiency. The results derived in this paper give a partial explanation of the success of the Gaussian reproducing kernel in practice. Simulations are carried out to study the finite sample properties of the periodic Gaussian regularization.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000045
    • …
    corecore