68,208 research outputs found

    Determining full conditional independence by low-order conditioning

    Full text link
    A concentration graph associated with a random vector is an undirected graph where each vertex corresponds to one random variable in the vector. The absence of an edge between any pair of vertices (or variables) is equivalent to full conditional independence between these two variables given all the other variables. In the multivariate Gaussian case, the absence of an edge corresponds to a zero coefficient in the precision matrix, which is the inverse of the covariance matrix. It is well known that this concentration graph represents some of the conditional independencies in the distribution of the associated random vector. These conditional independencies correspond to the "separations" or absence of edges in that graph. In this paper we assume that there are no other independencies present in the probability distribution than those represented by the graph. This property is called the perfect Markovianity of the probability distribution with respect to the associated concentration graph. We prove in this paper that this particular concentration graph, the one associated with a perfect Markov distribution, can be determined by only conditioning on a limited number of variables. We demonstrate that this number is equal to the maximum size of the minimal separators in the concentration graph.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ193 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Algorithms and Bounds for Very Strong Rainbow Coloring

    Full text link
    A well-studied coloring problem is to assign colors to the edges of a graph GG so that, for every pair of vertices, all edges of at least one shortest path between them receive different colors. The minimum number of colors necessary in such a coloring is the strong rainbow connection number (\src(G)) of the graph. When proving upper bounds on \src(G), it is natural to prove that a coloring exists where, for \emph{every} shortest path between every pair of vertices in the graph, all edges of the path receive different colors. Therefore, we introduce and formally define this more restricted edge coloring number, which we call \emph{very strong rainbow connection number} (\vsrc(G)). In this paper, we give upper bounds on \vsrc(G) for several graph classes, some of which are tight. These immediately imply new upper bounds on \src(G) for these classes, showing that the study of \vsrc(G) enables meaningful progress on bounding \src(G). Then we study the complexity of the problem to compute \vsrc(G), particularly for graphs of bounded treewidth, and show this is an interesting problem in its own right. We prove that \vsrc(G) can be computed in polynomial time on cactus graphs; in contrast, this question is still open for \src(G). We also observe that deciding whether \vsrc(G) = k is fixed-parameter tractable in kk and the treewidth of GG. Finally, on general graphs, we prove that there is no polynomial-time algorithm to decide whether \vsrc(G) \leq 3 nor to approximate \vsrc(G) within a factor n1−εn^{1-\varepsilon}, unless P==NP
    • …
    corecore