3,734 research outputs found

    Even-cycle decompositions of graphs with no odd-K4K_4-minor

    Full text link
    An even-cycle decomposition of a graph G is a partition of E(G) into cycles of even length. Evidently, every Eulerian bipartite graph has an even-cycle decomposition. Seymour (1981) proved that every 2-connected loopless Eulerian planar graph with an even number of edges also admits an even-cycle decomposition. Later, Zhang (1994) generalized this to graphs with no K5K_5-minor. Our main theorem gives sufficient conditions for the existence of even-cycle decompositions of graphs in the absence of odd minors. Namely, we prove that every 2-connected loopless Eulerian odd-K4K_4-minor-free graph with an even number of edges has an even-cycle decomposition. This is best possible in the sense that `odd-K4K_4-minor-free' cannot be replaced with `odd-K5K_5-minor-free.' The main technical ingredient is a structural characterization of the class of odd-K4K_4-minor-free graphs, which is due to Lov\'asz, Seymour, Schrijver, and Truemper.Comment: 17 pages, 6 figures; minor revisio

    Decomposing 8-regular graphs into paths of length 4

    Full text link
    A TT-decomposition of a graph GG is a set of edge-disjoint copies of TT in GG that cover the edge set of GG. Graham and H\"aggkvist (1989) conjectured that any 2â„“2\ell-regular graph GG admits a TT-decomposition if TT is a tree with â„“\ell edges. Kouider and Lonc (1999) conjectured that, in the special case where TT is the path with â„“\ell edges, GG admits a TT-decomposition D\mathcal{D} where every vertex of GG is the end-vertex of exactly two paths of D\mathcal{D}, and proved that this statement holds when GG has girth at least (â„“+3)/2(\ell+3)/2. In this paper we verify Kouider and Lonc's Conjecture for paths of length 44

    Shortest path embeddings of graphs on surfaces

    Get PDF
    The classical theorem of F\'{a}ry states that every planar graph can be represented by an embedding in which every edge is represented by a straight line segment. We consider generalizations of F\'{a}ry's theorem to surfaces equipped with Riemannian metrics. In this setting, we require that every edge is drawn as a shortest path between its two endpoints and we call an embedding with this property a shortest path embedding. The main question addressed in this paper is whether given a closed surface S, there exists a Riemannian metric for which every topologically embeddable graph admits a shortest path embedding. This question is also motivated by various problems regarding crossing numbers on surfaces. We observe that the round metrics on the sphere and the projective plane have this property. We provide flat metrics on the torus and the Klein bottle which also have this property. Then we show that for the unit square flat metric on the Klein bottle there exists a graph without shortest path embeddings. We show, moreover, that for large g, there exist graphs G embeddable into the orientable surface of genus g, such that with large probability a random hyperbolic metric does not admit a shortest path embedding of G, where the probability measure is proportional to the Weil-Petersson volume on moduli space. Finally, we construct a hyperbolic metric on every orientable surface S of genus g, such that every graph embeddable into S can be embedded so that every edge is a concatenation of at most O(g) shortest paths.Comment: 22 pages, 11 figures: Version 3 is updated after comments of reviewer

    On the Generalised Colouring Numbers of Graphs that Exclude a Fixed Minor

    Full text link
    The generalised colouring numbers colr(G)\mathrm{col}_r(G) and wcolr(G)\mathrm{wcol}_r(G) were introduced by Kierstead and Yang as a generalisation of the usual colouring number, and have since then found important theoretical and algorithmic applications. In this paper, we dramatically improve upon the known upper bounds for generalised colouring numbers for graphs excluding a fixed minor, from the exponential bounds of Grohe et al. to a linear bound for the rr-colouring number colr\mathrm{col}_r and a polynomial bound for the weak rr-colouring number wcolr\mathrm{wcol}_r. In particular, we show that if GG excludes KtK_t as a minor, for some fixed t≥4t\ge4, then colr(G)≤(t−12) (2r+1)\mathrm{col}_r(G)\le\binom{t-1}{2}\,(2r+1) and wcolr(G)≤(r+t−2t−2)⋅(t−3)(2r+1)∈O(r t−1)\mathrm{wcol}_r(G)\le\binom{r+t-2}{t-2}\cdot(t-3)(2r+1)\in\mathcal{O}(r^{\,t-1}). In the case of graphs GG of bounded genus gg, we improve the bounds to colr(G)≤(2g+3)(2r+1)\mathrm{col}_r(G)\le(2g+3)(2r+1) (and even colr(G)≤5r+1\mathrm{col}_r(G)\le5r+1 if g=0g=0, i.e. if GG is planar) and wcolr(G)≤(2g+(r+22)) (2r+1)\mathrm{wcol}_r(G)\le\Bigl(2g+\binom{r+2}{2}\Bigr)\,(2r+1).Comment: 21 pages, to appear in European Journal of Combinatoric
    • …
    corecore