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PATH AND CYCLE DECOMPOSITIONS OF DENSE GRAPHS

ANTÓNIO GIRÃO, BERTILLE GRANET, DANIELA KÜHN, AND DERYK OSTHUS

Abstract. We make progress on three long standing conjectures from the 1960s about path
and cycle decompositions of graphs. Gallai conjectured that any connected graph on n vertices
can be decomposed into at most

⌈
n
2

⌉
paths, while a conjecture of Hajós states that any Eulerian

graph on n vertices can be decomposed into at most
⌊
n−1

2

⌋
cycles. The Erdős-Gallai conjecture

states that any graph on n vertices can be decomposed into O(n) cycles and edges.
We show that if G is a sufficiently large graph on n vertices with linear minimum degree,

then the following hold.

(i) G can be decomposed into at most n
2

+ o(n) paths.

(ii) If G is Eulerian, then it can be decomposed into at most n
2

+ o(n) cycles.

(iii) G can be decomposed into at most 3n
2

+ o(n) cycles and edges.

If in addition G satisfies a weak expansion property, we asymptotically determine the required
number of paths/cycles for each such G.

(iv) G can be decomposed into max
{

odd(G)
2

, ∆(G)
2

}
+ o(n) paths, where odd(G) is the

number of odd-degree vertices of G.

(v) If G is Eulerian, then it can be decomposed into ∆(G)
2

+ o(n) cycles.

All bounds in (i)–(v) are asymptotically best possible.

1. Introduction

1.1. Background. Graph decomposition is a central field of graph theory, which encompasses
some of the oldest and most famous problems in combinatorics. For example, the decomposition
of complete graphs into Hamilton cycles or Hamilton paths was attributed to Walecki and dates
back to 1883 [30] (see [2] for a description in English of Walecki’s construction). Extensive
research has also been done on decompositions of graphs into (not necessarily Hamiltonian)
paths and/or cycles. One of the most famous results in this area is due to Lovász.

Theorem 1.1 ([29]). Let G be a graph on n vertices. Then G can be decomposed into at
most

⌊
n
2

⌋
paths and cycles.

We observe that this result is sharp. Indeed, a vertex of odd degree in a graph G must be the
endpoint of at least one path in a path and cycle decomposition of G. Thus, n-vertex graphs
with at most one vertex of even degree cannot be decomposed into fewer than

⌊
n
2

⌋
paths and

cycles.
The result of Lovász was inspired by the following conjecture of Gallai (see [29]).

Conjecture 1.2 (Gallai). Any connected graph on n vertices can be decomposed into at most
⌈
n
2

⌉
paths.

Complete graphs show that the conjecture of Gallai would be best possible. Lovász [29]
observed that Theorem 1.1 implies that any graph can be decomposed into at most n − 1
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2 ANTÓNIO GIRÃO, BERTILLE GRANET, DANIELA KÜHN, AND DERYK OSTHUS

paths. This was later improved by Donald [12] who showed that
⌊

3n
4

⌋
paths are sufficient. It

was subsequently shown by Dean and Kouider [11] and independently by Yan [33] that
⌊

2n
3

⌋
paths suffice. The covering version of Gallai’s conjecture (where the paths are not necessarily
edge-disjoint) was solved by Fan [15].

Although the conjecture of Gallai remains open, it has been verified for several classes of
graphs. We direct the readers to [5, 7, 17,21,24,29,32] for some of these results.

The analogous problem for cycle decompositions was posed by Hajós (see [29]). We note that
the original problem suggested by Hajós asked for a decomposition of Eulerian n-vertex graphs
into at most

⌊
n
2

⌋
cycles, but Dean [10] observed that this is equivalent to the following.

Conjecture 1.3 (Hajós). Any Eulerian graph on n vertices can be decomposed into at most
⌊
n−1

2

⌋
cycles.

Eulerian graphs with maximum degree n− 1 demonstrate that the conjecture of Hajós would
be best possible. Conjecture 1.3 has only been verified for specific classes of graphs. See [18] for
some of these results. Again, the analogous covering problem was resolved by Fan [16].

Jackson [22] conjectured the analogue of Conjecture 1.3 for Eulerian oriented graphs. However,
Dean [10] observed that this conjecture is false and conjectured instead that any Eulerian
oriented graph on n vertices can be decomposed into

⌊
2n
3

⌋
dicycles and any Eulerian digraph on

n > 1 vertices can be decomposed into 8n
3 − 3 dicycles.

Very little progress has been made on Conjecture 1.3 for general graphs. In particular, the
related problem of decomposing Eulerian graphs into O(n) cycles is still open and is equivalent
to a problem posed in [14] which is known as the Erdős-Gallai conjecture (see [13]).

Conjecture 1.4 (Erdős-Gallai). Any graph on n vertices can be decomposed into O(n) cycles
and edges.

Observe that given any n-vertex graph G, by repeatedly removing cycles until no longer
possible, we obtain a forest F such that G\F is Eulerian. Since this forest contains at most n−1
edges, the problem of decomposing graphs into O(n) cycles and edges reduces to decomposing
Eulerian graphs into O(n) cycles. Conversely, given a decomposition of an Eulerian graph G
into O(n) cycles and edges, one can easily obtain a decomposition of G into O(n) cycles. Thus,
Conjecture 1.4 is equivalent to the problem of decomposing Eulerian graphs into O(n) cycles.
Also observe that Conjecture 1.3 would imply that any graph can be decomposed into at

most 3(n−1)
2 cycles and edges. Thus, the Erdős-Gallai conjecture holds for all classes of graphs

for which Conjecture 1.3 has been verified. Additionally, the Erdős-Gallai conjecture was verified
for graphs of linear minimum degree by Conlon, Fox, and Sudakov [8]. More precisely, they
showed the following.

Theorem 1.5 ([8]). For any α > 0, if G is a graph on n vertices with minimum degree δ(G) ≥ αn,
then G can be decomposed into O(α−12n) cycles and edges.

Conjecture 1.4 remains open for general graphs, while the covering version was proved by
Pyber [31].

It is not hard to show that n log(n)
2 +O(n) cycles and edges are sufficient to decompose any

graph (see [13]). An example of Erdős [13] shows that at least (3
2 − o(1))n cycles and edges are

necessary for some graphs. It was recently shown in [8] that O(n log logn) cycles and edges are
sufficient, and this is currently the best known result for general graphs. More precisely, they
proved the following.

Theorem 1.6 ([8]). Let G be a graph on n vertices with average degree d. Then G can be
decomposed into O(n log log d) cycles and edges.

Progress on Conjectures 1.2 and 1.4 was also made for random graphs. As proved in [8],
for any edge probability p := p(n), the binomial random graph G(n, p) satisfies Conjecture 1.4
asymptotically almost surely. More details about decompositions of random graphs into cycles and
edges can be found in [26], where Korándi, Krivelevich and Sudakov provided an asymptotically
tight result for a large range of edge probabilities p(n).
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PATH AND CYCLE DECOMPOSITIONS OF DENSE GRAPHS 3

For constant edge probability 0 < p < 1, Glock, Kühn, and Osthus [20] strengthened the
bounds of [8, 26] to obtain precise results for decompositions of G(n, p) into paths or cycles and
into matchings. In fact, they obtained their results for quasirandom graphs. More precisely, they
used the following notion of quasirandomness. An n-vertex graph G is lower-(ε, p)-regular if for
any disjoint S, T ⊆ V (G) with |S|, |T | ≥ εn, we have eG(S, T ) ≥ (p− ε)|S||T |. Given a graph G,
we denote by odd(G) the number of odd-degree vertices of G.

Theorem 1.7 ([20]). For any 0 < p < 1, there exist ε, η, n0 > 0 such that for any n ≥ n0 the
following hold. Let G be a lower-(ε, p)-regular graph on n vertices with ∆(G)− δ(G) ≤ ηn. Then,

(i) G can be decomposed into max
{

odd(G)
2 ,

⌈
∆(G)+1

2

⌉}
paths, and

(ii) if G is Eulerian, then it can be decomposed into ∆(G)
2 cycles.

These bounds are best possible for each G, but do not hold in general (some examples can be
found in Section 6).

Bienia and Meyniel [3] conjectured the analogue of Conjecture 1.4 for Eulerian digraphs.

Conjecture 1.8 (Bienia and Meyniel). There exists α ∈ R such that any Eulerian digraph on n
vertices can be decomposed into at most αn dicycles.

As mentioned in [3,10], unions of complete symmetric digraphs K∗4 which are all sharing a
common vertex show that, if Conjecture 1.8 is true, then α ≥ 4

3 . Conjecture 1.8 is also discussed
in [4]. It is still open but some progress was recently made by Knierim, Larcher, Martinsson,
and Noever [25].

Theorem 1.9 ([25]). Let D be an Eulerian digraph on n vertices and with maximum degree ∆.
Then D can be decomposed into O(n log ∆) dicycles.

1.2. New results. First, we prove approximate versions of Conjectures 1.2 and 1.3 for sufficiently
large graphs of linear minimum degree (see Theorems 1.10(i) and 1.10(ii)). Theorem 1.10(ii)
easily implies Theorem 1.10(iii), which improves Theorem 1.5 and gives (asymptotically) the
best possible constant.

Theorem 1.10. For any α, δ > 0, there exists n0 such that if G is a graph on n ≥ n0 vertices
with δ(G) ≥ αn, then the following hold.

(i) G can be decomposed into at most n
2 + δn paths.

(ii) If G is Eulerian, then it can be decomposed into at most n
2 + δn cycles.

(iii) G can be decomposed into at most 3n
2 + δn cycles and edges.

Secondly, we prove approximate versions of the bounds in Theorem 1.7 for sufficiently large
graphs with linear minimum degree which satisfy a weak version of quasirandomness. More
precisely, we say an n-vertex graph G is weakly-(ε, p)-quasirandom if for any partition A ∪ B
of V (G) with |A|, |B| ≥ εn we have eG(A,B) ≥ p|A||B|. This notion of weak quasirandomness
implies that the reduced graph obtained after applying the regularity lemma to a dense graph is
connected. This is the only property required to obtain the bounds in the following theorem.

Theorem 1.11. For any α, δ, p > 0, there exists n0 such that if G is a weakly-(α2 , p)-quasirandom
graph on n ≥ n0 vertices with δ(G) ≥ αn, then the following hold.

(i) G can be decomposed into at most max
{

odd(G)
2 , ∆(G)

2

}
+ δn paths.

(ii) If G is Eulerian, then it can be decomposed into at most ∆(G)
2 + δn cycles.

In particular, the following holds.

Corollary 1.12. For any δ, ε > 0, there exists n0 such that if G is a graph on n ≥ n0 vertices
with δ(G) ≥ n

2 + εn then the following hold.

(i) G can be decomposed into at most max
{

odd(G)
2 , ∆(G)

2

}
+ δn paths.
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4 ANTÓNIO GIRÃO, BERTILLE GRANET, DANIELA KÜHN, AND DERYK OSTHUS

(ii) If G is Eulerian, then it can be decomposed into at most ∆(G)
2 + δn cycles.

Note that, if in addition G is regular, then the error terms of εn and δn can be removed in
Corollary 1.12(ii), see [9].

The next result shows that one can drop the linear minimum degree condition in Theorem 1.11(i)
if the quasirandomness covers a larger range of partition class sizes.

Theorem 1.13. For any p, δ > 0, there exist ε, n0 > 0 such that the following holds. If G is
a weakly-(ε, p)-quasirandom graph on n ≥ n0 vertices, then G can be decomposed into at most

max
{

odd(G)
2 , ∆(G)

2

}
+ δn paths.

For Theorem 1.10, the linear minimum degree condition is likely to be an artefact of our
proof. On the other hand, in Section 6, we will give some examples to show that neither
the linear minimum degree condition (or even the stronger assumption of linear connectivity),
nor the weakly-

(
α
2 , p
)
-quasirandom property is sufficient on its own to obtain the bounds in

Theorem 1.11. However, Theorem 1.13 shows that, in the case of path decompositions, the linear
minimum degree condition can be dropped if we assume G to be weakly-(ε, p)-quasirandom for
a sufficiently small constant ε > 0. Surprisingly, it turns out that the Erdős-Gallai conjecture
is equivalent to the following analogue of Theorem 1.13 for cycle decompositions of Eulerian
graphs (see Proposition 6.3).

Conjecture 1.14. For any δ, p > 0, there exist ε, n0 > 0 such that the following holds. If G is
an Eulerian weakly-(ε, p)-quasirandom graph on n ≥ n0 vertices, then G can be decomposed into

at most ∆(G)
2 + δn cycles.

We can prove Conjecture 1.14 if weak-(ε, p)-quasirandomness is replaced by weak-( ε
log logn , p)-

quasirandomness (see Proposition 6.4).
We note that Theorems 1.11 and 1.13 differ from Theorem 1.7 in the following way. Firstly, we

have no restriction on the difference between the maximum and minimum degree. Secondly, weak-
(ε, p)-quasirandomness is a significantly weaker property than lower-(ε, p)-regularity. Moreover,
the ε-parameter in Theorem 1.7 is much smaller than the p-parameter. We do not require this in
Theorem 1.11, and while this is necessary in Theorem 1.13, there we do not require the minimum
degree to be linear. On the other hand, Theorems 1.11 and 1.13 have an additional o(n) term in
the number of paths/cycles compared to Theorem 1.7.

Finally, we observe that the following is immediately implied by Corollary 1.12.

Corollary 1.15. For any ε > 0, there exists n0 such that the conjecture of Hajós is true for all
Eulerian graphs G on n ≥ n0 vertices with δ(G) ≥ n

2 + εn and ∆(G) ≤ n− εn.

We remark that by Theorem 1.11, Corollary 1.15 holds more generally for sufficiently large
weakly-quasirandom graphs with maximum degree bounded away from n.

A key tool in our proofs will be the main technical result of [27], which generates a Hamilton
decomposition of a graph satisfying certain robust expansion properties (see Section 4.4 for the
statement). This was developed originally in [27] to give a proof of Kelly’s conjecture (which
states that every large regular tournament has a Hamilton decomposition), and applied e.g. in
[9] to prove the 1-factorisation conjecture (see also [28] for some early applications).

1.3. Organisation of the paper. The paper is organised as follows. We start by providing a
proof overview of our main theorems in Section 2. Notation and probabilistic tools are introduced
in Section 3, and preliminary results are collected in Section 4. Theorems 1.10(i), 1.10(ii), 1.11,
and 1.13 are proved in Section 5. Finally, we derive Theorem 1.10(iii) and make some concluding
remarks in Section 6.

2. Proof overview of the main theorems

The proofs of Theorems 1.10(i), 1.10(ii), 1.11 and 1.13 follow a similar strategy, and so, for
simplicity, we only sketch the proof of Theorem 1.10(ii).
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PATH AND CYCLE DECOMPOSITIONS OF DENSE GRAPHS 5

Fix additional constants ε, ζ, β, and n0 such that 0 < 1
n0
� ε� ζ � β � α, δ ≤ 1. Let G be

a graph on n ≥ n0 vertices with δ(G) ≥ αn. We decompose G by repeatedly constructing cycles.
For simplicity, whenever edges are used to form a cycle, they are implicitly deleted from the
graph (so all the cycles constructed below are edge-disjoint, as desired). We obtain the bulk of
our cycles in Step 3, all other cycles will contribute to the error term. In Step 3, we need to
be very efficient (i.e. the average length of the cycles needs to be large), while there is room to
spare in the other steps.

Step 1: Applying Szemerédi’s regularity lemma and setting aside some random
subgraphs Γ and Γ′. We start by applying Szemerédi’s regularity lemma and a cleaning
procedure similar to the one used to prove the degree form of the regularity lemma. We
will thus obtain a subgraph H ⊆ G of small maximum degree and a partition of V (G) into
clusters V1, . . . , Vk and an exceptional set V0. Moreover, in each non-empty pair of clusters
of G \H, almost all vertices have degree close to the density of the pair, while the few other
vertices are isolated. Moreover, in each pair, the vertices of positive degree span an ε-regular
bipartite graph.

We also set aside two sparse edge-disjoint random spanning subgraphs Γ,Γ′ ⊆ G \H such
that, in Γ, each non-empty pair of clusters has density close to β, while in Γ′ each such pair
has density close to ζ. By Theorem 1.1 and by splitting clusters if necessary, we may assume

that the reduced graph R′ of Γ can be decomposed into at most |R
′|

2 = k
2 cycles of even length

(this will be needed in Step 5). Let G∗ := G \ (H ∪ Γ ∪ Γ′). Denote by G∗ij the ε-regular (almost

spanning) subgraph of the pair G∗[Vi, Vj ], and define Γij similarly. Γ and Γ′ will be used to tie
together given sets of paths of G∗ into cycles.

Step 2: Covering the edges of G[V0]. Apply Theorem 1.1 to G[V0]. The paths obtained
are extended to paths with endpoints in V (G) \ V0 and then closed into cycles using edges of Γ.
Since V0 is small, this results in only a few cycles and we can use edges of Γ sparingly so that its
properties are not destroyed.

Step 3: Covering most of G∗ with at most roughly n
2 cycles. The idea is to decompose

the edges of G∗ into paths and then link some of these paths together using the edges in Γ ∪ Γ′

to form cycles. The bipartite graph G∗[V0, V (G) \ V0] is decomposed into paths of length 2 with
midpoints in V0, called exceptional paths, while ε-regular pairs G∗ij are approximately decomposed
into long but not spanning paths, so that a few vertices are set aside for tying up paths. We then
use edges of Γ∪Γ′ to link these paths into cycles. More precisely, we proceed as follows. Suppose

first that the reduced graph R of G is connected. We construct an auxiliary reduced graph R̂

such that the multiplicity of the edges between Vi and Vj in R̂ is proportional to the density of

corresponding pair G∗ij of G∗. We optimally decompose R̂ into matchings. Given a matching M

of R̂, we form sets P of paths consisting of exactly one path of G∗ij for each ViVj ∈M , and of
exceptional paths which cover vertices of V0 with highest degree. Since M is a matching of
clusters and our non-exceptional paths do not span entire clusters, we can ensure that each
set P of paths obtained in this way consists of vertex-disjoint paths and does not span entire
clusters. Thus, after this step, we still have some uncovered vertices, called reservoir vertices,
which can be used to link the paths in each set P into a cycle using edges of Γ ∪ Γ′.

Since the edge multiplicity between two clusters in R̂ is proportional to the density of the
corresponding pair of G∗ and at each stage we cover exceptional vertices of highest degree, we

obtain an upper bound of roughly ∆(G∗)
2 cycles in total. In general, R may be disconnected and,

by construction, Γ ∪ Γ′ contains no edges between the different components of R. Thus, we
cannot tie together paths from different components and we need to apply the above argument to
each component of R separately. But, if a component of R contains n′ vertices of G∗ (say), then
the subgraph of G∗ induced by this component has maximum degree at most n′ and we obtain
at most roughly n′

2 cycles from that component. Thus, we get an upper bound of roughly n
2

cycles in total.
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6 ANTÓNIO GIRÃO, BERTILLE GRANET, DANIELA KÜHN, AND DERYK OSTHUS

By alternating which vertices are used as reservoir vertices, we ensure that the leftover graph H ′

has small maximum degree. Moreover, we use edges of Γ sparingly so that the properties of Γ
are maintained. Since the density ζ of Γ′ is small, we can add the remaining edges of Γ′ to H ′

without significantly increasing the maximum degree of H ′.
We remark that in Step 2 it was possible to tie together paths using only Γ because we had

some room to spare (in the sense that the number of cycles produced might be fairly large
compared to the number of edges covered). But in Step 3, we need to use edges of both Γ and Γ′

in order to be efficient and obtain the desired number of cycles. (The reason that using Γ ∪ Γ′ is
more efficient is that the reduced graph of Γ ∪ Γ′ equals that of G∗. We cannot guarantee this
property for Γ alone since for Step 4 the non-empty pairs Γij of Γ need to be fairly dense.)

Step 4: Covering the leftovers. By construction, H ∪H ′ has small maximum degree and
so can be decomposed into few small matchings. We tie the edges of each matching into a cycle
using edges of Γ. Once again, we make sure that the relevant properties of Γ are preserved.

Step 5: Fully decomposing Γ. It only remains to decompose (the remainder of) Γ. The

M

M
′

M
′

M

(a) Pair of matchings (M,M ′) in the
reduced graph.

w z

x y

M ′

M ′

(b) We set aside an edge from each pair
in M ′ (dashed grey) and replace them by
a fictive edge in each pair of M (dashed
black).

w

x

z

y

M ′

M ′

(c) We find a Hamilton cycle of each
pair of M containing a single fictive edge
(dashed black).

w

x

z

y

M ′

M ′

(d) We remove the fictive edges from the
cycles of pairs of M and insert back the
edges set aside from pairs of M ′ (dashed
grey).

Figure 1. Construction of a cycle of Γ.

idea is to initially decompose the reduced graph of Γ into k
2 cycles of even length (as discussed

in Step 1). For each such cycle C, the subgraph ΓC of Γ corresponding to the blow-up of C is
first approximately decomposed into Hamilton cycles of ΓC that “wind around” C. The leftover
is then decomposed using the main technical result of [27] as follows.

The cycle C is initially decomposed into a pair (M,M ′) of matchings. For each ViVj ∈M ∪M ′,
we first set aside a small set Eij of edges of Γij and then decompose the remaining edges into
a set Hij of Hamilton paths. We make sure the set of endpoints of the paths in

⋃
ViVj∈M Hij

equals the set of endpoints of the edges in
⋃
ViVj∈M ′ Eij , and similarly for M and M ′ exchanged.

Thus we can tie together a path of Hij for each ViVj ∈ M using exactly one edge of Ei′j′ for
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PATH AND CYCLE DECOMPOSITIONS OF DENSE GRAPHS 7

each Vi′Vj′ ∈M ′. We proceed similarly to tie paths of
⋃
ViVj∈M ′ Hij into cycles. We thus obtain

a Hamilton decomposition of ΓC .
In order to prescribe the endpoints of the Hamilton paths, we add some suitable edges to ΓC ,

called fictive edges, and then actually find a Hamilton decomposition of each pair Γij \ Eij
such that each cycle in the decomposition contains exactly one fictive edge (see Figure 1).
Such decompositions are guaranteed by the “robust decomposition lemma” of [27]. Since by

construction all pairs of Γ have density close to β, we obtain, in total, about βn
2 � δn cycles.

3. Notation, definitions, and probabilistic tools

3.1. Notation. Let G be a graph. If X ⊆ V (G) is a set of vertices of G we write G[X] for the
subgraph of G induced by X and G−X for G[V (G) \X]. Given a set F ⊆ E(G) of edges of G,
we write G \ F for the graph obtained from G by deleting all edges in F . Similarly, given a
subgraph H ⊆ G, we write G \H for G \E(H). If F is a set of non-edges of G, we write G ∪ F
for the graph obtained from G by adding all edges in F . If G and H are edge-disjoint graphs we
write G ∪H for the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

Assume G is a graph. For any x ∈ V (G), we denote by NG(x) the set of neighbours of x and
by dG(x) the degree of x in G. Given x, y ∈ V (G), we define dG(x, y) := |NG(x) ∩NG(y)|. The
subscripts may be omitted if this is unambiguous. We say G is Eulerian if all its vertices have
even degree. (Note that G is not necessarily connected.)

Given a graph G and A,B ⊆ V (G), we write eG(A,B) for the number of edges of G which
have an endpoint in A and an endpoint B. If A,B are disjoint then we write G[A,B] for the
bipartite subgraph of G with vertex classes A and B and all edges of G with an endpoint in A
and an endpoint in B.

Let
−→
G be a digraph. Given vertices x, y ∈ V (

−→
G), we write xy for the edge directed from x

to y. The vertex x is called the initial vertex of xy and y the final vertex of xy. Given a

vertex x ∈ V (
−→
G), the outneighbourhood of x, denoted N+

−→
G

(x), is the set of vertices y such

that xy ∈ E(
−→
G). Similarly, the inneighbourhood N−−→

G
(x) of a vertex x ∈ V (

−→
G) is the set of

vertices y such that yx ∈ V (
−→
G). We say

−→
G is r-regular if for any vertex x ∈ V (G), we have

|N+
−→
G

(x)| = |N−−→
G

(x)| = r. For any A,B ⊆ V (
−→
G), we write e−→

G
(A,B) for the number of edges

of
−→
G whose initial vertex belongs to A and whose final vertex belongs to B. For any disjoint

A,B ⊆ V (
−→
G), we write

−→
G [A,B] for the bipartite subdigraph of

−→
G with vertex classes A and B

and whose edges are all the edges of
−→
G whose initial vertex belongs to A and whose final vertex

belongs to B.
The length of a path is number of edges it contains. An (x, y)-path is a path whose endpoints

are x and y. Given a path P and x, y ∈ V (P ), we write xPy for the (x, y)-path induced by P .
We use the terms set of vertex-disjoint paths and linear forest interchangeably. In particular, by
slightly abusing notation, given a set P of vertex-disjoint paths, we write V (P) for the set of
vertices of the paths in P and define E(P) similarly.

We write N for the set of natural numbers (including 0) and N∗ for the set of positive natural
numbers. For any k ∈ N∗, we write [k] := {1, 2, . . . , k}, [k]odd := {i ∈ [k] | k is odd}, and,
similarly, [k]even := {i ∈ [k] | k is even}.

Let a, b, c ∈ R. We write a = b ± c if b − c ≤ a ≤ b + c. For simplicity, we use hierarchies
instead of explicitly calculating the values of constants for which statements hold. Namely, if
we write 0 < a� b� c ≤ 1 in a statement, we mean that there exist non-decreasing functions
f : (0, 1] −→ (0, 1] and g : (0, 1] −→ (0, 1] such that the statement holds for all 0 < a, b, c ≤ 1
satisfying b ≤ f(c) and a ≤ g(b). Hierarchies with more constants are defined in a similar way.
We assume large numbers to be integers and omit floors and ceilings, provided this does not
affect the argument.

Let G be a graph. A decomposition of G is a set D of edge-disjoint subgraphs of G such
each edge of G belongs to exactly one subgraph in D. A path decomposition (respectively, cycle
decomposition) is a decomposition D of G such that each subgraph in D is a path (respectively,
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8 ANTÓNIO GIRÃO, BERTILLE GRANET, DANIELA KÜHN, AND DERYK OSTHUS

a cycle). We say G can be decomposed into d paths (respectively, decomposed into d cycles)
if G has a path (respectively, cycle) decomposition D of size d. Similarly, we say G can be
decomposed into d paths and cycles (respectively, decomposed into d cycles and edges) if G has a
decomposition D of size d such that each subgraph in D is either a path or a cycle (a cycle or
an edge, respectively).

3.2. Regularity. Let G be a bipartite graph on vertex classes A,B. The density of G is

dG(A,B) := eG(A,B)
|A||B| . We may write d(A,B) instead of dG(A,B) if this is unambiguous. For any

ε > 0, we say G is ε-regular if, for any A′ ⊆ A and B′ ⊆ B with |A′| ≥ ε|A| and |B′| ≥ ε|B|, we
have |d(A′, B′)− d(A,B)| < ε.

Let d ∈ [0, 1]. We say G is (ε, d)-regular if G is ε-regular and has density d. We write G is
(ε,≥ d)-regular is G if ε-regular of density at least d. We say G is [ε, d]-superregular if G is
ε-regular, for all a ∈ A, d(a) = (d ± ε)|B|, and, for all b ∈ B, d(b) = (d ± ε)|A|. We say G is
[ε,≥ d]-superregular if there exists d′ ≥ d such that G is [ε, d′]-superregular.

We also define a sparse version of ε-(super)regularity to allow for d < ε. Let G be a bipartite
graph on vertex classes A,B of size m. We say G is {ε, d}-regular if for any A′ ⊆ A and B′ ⊆ B
with |A′|, |B′| ≥ εm, we have d(A′, B′) = (1±ε)d. For any 0 < c < 1, we say G is (ε, d, c)-regular
if the following hold:

(Reg 1) G is {ε, d}-regular;

(Reg 2) For any distinct a, a′ ∈ A we have |N(a)∩N(a′)| ≤ c2m, and similarly |N(b)∩N(b′)| ≤
c2m for any distinct b, b′ ∈ B;

(Reg 3) ∆(G) ≤ cm.

For any 0 < d∗ < 1, we say that G is (ε, d, d∗, c)-superregular if it is (ε, d, c)-regular and the
following holds:

(Reg 4) δ(G) ≥ d∗m.

Given a bipartite digraph
−→
G with vertex classes A,B, recall that

−→
G [A,B] denotes the bipartite

subgraph of
−→
G whose edges are all the edges directed from A to B in

−→
G . We often view

−→
G [A,B]

as an undirected bipartite graph. In particular, we say
−→
G [A,B] is ε-regular if this holds

when
−→
G [A,B] is viewed as an undirected graph. We define (ε, d)-regularity, (ε,≥ d)-regularity,

[ε, d]-superregularity, and [ε,≥ d]-superregularity for directed bipartite graphs similarly.
Let G be a graph and V0, V1, . . . , Vk be a partition of V (G) into k clusters V1, . . . , Vk and

an exceptional set V0. The vertices in V0 are called the exceptional vertices of G and an edge
of G is called exceptional if it has an endpoint in V0. The reduced graph of G (with respect
to the partition V0, V1, . . . , Vk) is the graph R with V (R) := {V1, . . . , Vk} and E(R) := {ViVj |
e(G[Vi, Vj ]) > 0}. For clarity, we sometimes abuse notation and denote by 1, . . . , k the vertices
of R. If C is a connected component of R, we let VG(C) :=

⋃
C, i.e. VG(C) is the set of

vertices x ∈ V (G) such that x ∈ Vi for some Vi ∈ V (C). The reduced digraph
−→
R of a digraph

−→
G

is defined similarly.
Let G be an n-vertex graph. Let V0, V1, . . . , Vk be a partition of V (G) and R be the

corresponding reduced graph. For any distinct i, j ∈ [k], the support cluster of Vi with respect
to Vj is the set Vij := {x ∈ Vi | NG(x) ∩ Vj 6= ∅}. We also say Vij and Vji are the support
clusters of the pair G[Vi, Vj ]. Let ij ∈ E(R) and x ∈ Vi. We say x belongs to the superregular
pair G[Vi, Vj ] if x belongs to the support cluster Vij . Let V ′0 , V

′
1 , . . . , V

′
k′ be a partition of V (G)

such that, for all i ∈ [k′], there exists j ∈ [k] such that V ′i ⊆ Vj . We say the support clusters of
the partition V ′0 , V

′
1 , . . . , V

′
k′ are induced by the partition V0, V1, . . . , Vk if, for all i′, j′ ∈ [k′], the

support cluster V ′i′j′ of V ′i′ with respect to V ′j′ satisfies V ′i′j′ = Vij ∩ V ′i′ , where i, j ∈ [k] are such

that V ′i′ ⊆ Vi, V ′j′ ⊆ Vj , and Vij := ∅ if i = j. Let G′ be a graph on V (G) with reduced graph R′

(with respect to the partition V0, V1, . . . , Vk). We say G and G′ have the same support clusters if
for any ij ∈ E(R)∩E(R′), the support clusters of the pairs G[Vi, Vj ] and G′[Vi, Vj ] are the same.

We say V0, V1, . . . , Vk is an (ε,≥ d, k,m,R)-superregular partition of G if the following hold.
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(SRP1) |V1| = · · · = |Vk| = m.

(SRP2) |V0| ≤ εn.

(SRP3) G[Vi] is empty for all i ∈ [k].

(SRP4) R is the reduced graph of G.

(SRP5) For any ij ∈ E(R), let Vij , Vji be the support clusters of G[Vi, Vj ]. Then, G[Vij , Vji]
is [ε,≥ d]-superregular and |Vij |, |Vji| ≥ (1− ε)m.

We say V0, V1, . . . , Vk is an (ε,≥ d, k,m,m′, R)-superregular equalised partition of G if (SRP1)–
(SRP5) are satisfied and, moreover, the following holds.

(SRP6) m′ ≥ (1− ε)m and, for any ij ∈ E(R), |Vij | = |Vji| = m′.

We say V0, V1, . . . , Vk is an (ε, d, k,m,R)-superregular partition of G if (SRP1)–(SRP5) hold,
except that [ε,≥ d]-superregularity is replaced by [ε, d]-superregularity in (SRP5). We define an
(ε, d, k,m,m′, R)-superregular equalised partition of G analogously.

We say a graph G admits a superregular (equalised) partition if there exist V0, V1, . . . , Vk,
ε, d, k,m,R (and m′) such that V0, V1, . . . , Vk is an (ε,≥ d, k,m,R)-superregular (equalised)
partition.

3.3. Probabilistic estimates. Let X be a random variable. We write X ∼ Bin(n, p) if X
follows a binomial distribution with parameters n, p. Let N,n,m ∈ N be such that max{n,m} ≤
N . Let Γ be a set of size N and Γ′ ⊆ Γ be of size m. Recall that X has a hypergeometric
distribution with parameters N,n,m if X = |Γn ∩ Γ′|, where Γn is a random subset of Γ
with |Γn| = n (i.e. Γn is obtained by drawing n elements of Γ without replacement). We will
denote this by X ∼ Hyp(N,n,m).

We will use the following Chernoff-type bound.

Lemma 3.1 (see e.g. [23, Theorem 2.1 and Theorem 2.10]). Assume X ∼ Bin(n, p) or X ∼
Hyp(N,n,m). Then the following hold for any 0 < ε < 1:

(i) P [X ≤ (1− ε)E[X]] ≤ exp
(
− ε2

3 E[X]
)

;

(ii) P [X ≥ (1 + ε)E[X]] ≤ exp
(
− ε2

3 E[X]
)

.

4. Preliminary results

In this section, we introduce some preliminary results which will be useful in the proof of our
main theorems. In Sections 4.1 and 4.2, we collect some useful properties of ε-regular pairs and
prove some lemmas for tying paths together. These results will be used repeatedly in the rest of
the paper. In Sections 4.3 and 4.4, we introduce some tools for regularising superregular pairs
and state the robust decomposition lemma of [27], which will be needed in Section 5.5.

4.1. Regularity. The first lemma follows easily from the definition of ε-regularity.

Lemma 4.1. Let 0 < 1
m � ε ≤ d < 1 and assume ε ≤ η ≤ 1. Let G be a (ε, d)-regular bipartite

graph on vertex classes A,B of size m. If A′ ⊆ A, B′ ⊆ B have size at least ηm, then G[A′, B′]
is ε

η -regular of density ≥ d− ε.

The following lemma states that ε-regularity is preserved if only few vertices and edges are
removed. This result will be used repeatedly in the rest of the paper.

Lemma 4.2 ([27, Proposition 4.3]). Let 0 < 1
m � ε ≤ d′ ≤ d ≤ 1 and G be a bipartite graph on

vertex classes of size m. Suppose G′ is obtained from G by removing at most d′m vertices from
each vertex class and at most d′m edges incident to each vertex from G.

(i) If G is (ε, d)-regular, then G′ is (2
√
d′,≥ d− 2

√
d′)-regular.

(ii) If G is [ε, d]-superregular, then G′ is [2
√
d′, d]-superregular.

An analogous result holds for the sparse version of regularity.
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Lemma 4.3 ([27, Proposition 4.8]). Let 0 < 1
m � d′ � ε, d, d∗, c ≤ 1. Let G be an (ε, d, d∗, c)-

superregular bipartite graph on vertex classes of size m. Suppose G′ is obtained from G by
removing at most d′m edges incident to each vertex from G. Then G′ is (2ε, d, d∗ − d′, c)-
superregular.

The following proposition states an ε-regular bipartite graph of linear minimum degree has
small diameter.

Proposition 4.4. Let 0 < 1
mA

, 1
mB
� ε ≤ d ≤ 1. Let G be an ε-regular bipartite graph on

vertex classes A and B of size mA and mB. Suppose that each x ∈ A satisfies dG(x) ≥ dmB and
each y ∈ B satisfies dG(y) ≥ dmA. Then, for any x ∈ A and y ∈ B, G contains an (x, y)-path
of length at most 3. In particular, for any distinct x, y ∈ V (G), G contains an (x, y)-path of
length at most 4.

The following lemma states that balanced ε-regular bipartite graphs of large minimum degree
are Hamiltonian.

Lemma 4.5 (see for instance [20, Lemma 3.3]). Let 0 < 1
m � ε� α ≤ 1. If G is an ε-regular

bipartite graph on vertex classes of size m such that δ(G) ≥ αm, then G contains a Hamilton
cycle.

Corollary 4.6. Let 0 < 1
m � ε� α ≤ 1. If G is an ε-regular bipartite graph on vertex classes

of size m such that δ(G) ≥ αm, then G contains a perfect matching.

The next lemma states that any superregular pair contains a sparse superregular pair as a
subgraph.

Lemma 4.7 ([27, Lemma 4.10]). Let 0 < 1
m � ε, d′ ≤ d ≤ 1 and suppose ε � d. Let G

be an [ε, d]-superregular bipartite graph on vertex classes of size m. Then G contains an

(ε
1
12 , d′, d

′

2 ,
3d′

2d )-superregular spanning subgraph.

By considering a random partition of the edges, one can show that the edges of an ε-regular
pair can be partitioned without destroying the ε-regularity (see e.g. the proof of [27, Lemma
4.10]).

Lemma 4.8 (Partitioning the edges of a regular pair). Assume 0 < 1
m � ε� d1, . . . , d` ≤ d ≤ 1

with
∑`

i=1 di ≤ d. Let G be a bipartite graph on vertex classes A,B of size m. Then G can be
decomposed into edge-disjoint spanning subgraphs G0, G1, . . . , G` ⊆ G such that G0 is empty if∑`

i=1 di = d, and the following hold for each i ∈ [`].

(i) If G is (ε, d)-regular, then Gi is (ε
1
12 , di ± ε

1
12 )-regular.

(ii) If G is [ε, d]-superregular, then Gi is [ε
1
12 , di]-superregular.

Corollary 4.9. Suppose 0 < 1
m � ε� d ≤ 1. Let G be an [ε, d]-superregular bipartite graph on

vertex classes A and B of size m. Then, there exists an orientation
−→
G of the edges of G such

that both
−→
G [A,B] and

−→
G [B,A] are [ε

1
12 , d2 ]-superregular.

Using Lemma 3.1 and a result of [1] which characterises ε-regularity in terms of co-degree, one
can show that the vertex classes of superregular pairs can partitioned into superregular subpairs.

Lemma 4.10 (Partitioning the vertices of a regular pair). Assume 0 < 1
m � ε � d ≤ 1

and 1
m �

1
r , η. Let G be a bipartite graph on vertex classes A and B of size m. Let A′ and B′

be the support clusters of A and B, respectively. Assume that m′ := |A′| = |B′| ≥ (1 − ε)m
and G[A′, B′] is [ε, d]-superregular. Let m1, . . . ,mr ∈ N∗ be such that

∑
i∈[r]mi = m and, for

each i ∈ [r], mi = m
r ± 1. Assume A and B are randomly partitioned into r subsets A1, . . . , Ar

and B1, . . . , Br such that for all i ∈ [r], |Ai| = |Bi| = mi. Then, with high probability, all of the
following hold.

(i) For any i ∈ [r], we have |A′ ∩Ai| = (1± ε)m′r and similarly |B′ ∩Bi| = (1± ε)m′r .
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(ii) G[X,Y ] is [ε
1
7 , d]-superregular for any X ∈ {A′ ∩ Ai, A′ \ Ai | i ∈ [r]} and Y ∈ {B′ ∩

Bi, B
′ \Bi | i ∈ [r]}.

(iii) For any X ∈ {A′ ∩Ai | i ∈ [r]} and Y ∈ {B′ ∩Bi | i ∈ [r]}, ∆(G[X,Y ]) ≤ ∆(G)+ηm′

r and

δ(G[X,Y ]) ≥ δ(G)−ηm′
r .

Finally, the following simple fact will be needed in Section 5.5.

Proposition 4.11. Suppose 0 ≤ 1
m � ε� d ≤ 1 and k ∈ N∗. Let G be a graph and V1, . . . , Vk

be a partition of V (G) into k clusters of size m. Let R be the corresponding reduced graph of G
and assume that for each ij ∈ E(R), the pair G[Vi, Vj ] is [ε,≥ d]-superregular. If R is a cycle
of length k, then G contains εm vertex-disjoint cycles of length k which intersect each of the
clusters V1, . . . , Vk.

4.2. Tying paths together. Throughout the proof of our main theorems, we will form linear
forests and aim to tie together some of the paths in each forest to form cycles. This section
gathers several tools to achieve this. Lemma 4.12 will be used to efficiently reduce the number
of components of linear forests (i.e. to merge paths), from a linear number of components to
bounded number, while Lemma 4.13 will be used to further reduce the number of components,
from a large constant to a smaller one. Lemma 4.16 will be used to turn linear forests with few
components into small sets of vertex-disjoint cycles. Finally, we will use Lemmas 4.14, 4.15,
and 4.19 to turn small linear forests into a cycle each.

Let Γ be a graph and P1, . . . , P` be vertex-disjoint paths with endpoints in V (Γ). By tying
the paths P1, . . . , P` together into a path P (a cycle C) using the edges of Γ, we mean forming a
path P (a cycle C) such that for each i ∈ [`], the path Pi is a subpath of P (of C), the other
edges of P (of C) are edges of Γ and the endpoints of P are in

⋃
i∈[`] V (Pi). A subpath P ′ of P

(of C) is called a link path if E(P ′) ∩ E(Pi) = ∅ for each i ∈ [`] and the endpoints of P ′ are
in
⋃
i∈[`] V (Pi). In particular, we say P ′ links Pi and Pj if the endpoints of P ′ are an endpoint

of Pi and an endpoint of Pj . Moreover, if A,B are distinct clusters, we say P ′ is an (A,B)-link
path if E(P ′) ⊆ E(Γ[A,B]) and both endpoints of P ′ belong to A.

The idea behind the next lemma is to iteratively tie two paths which have an endpoint in a
common cluster using a single superregular pair of Γ.

Lemma 4.12. Suppose 0 < 1
n �

1
k � ε ≤ ζ � β ≤ 1. Let Γ be a graph on vertex set V of

size n such that the following hold.

(i) V0, V1, . . . , Vk is an (ε, β, k,m,R)-superregular partition of Γ.

(ii) Any x ∈ V \ V0 belongs to at least βk superregular pairs of Γ.

Let P1, . . . ,P` be sets of paths satisfying the following.

(iii) For each i ∈ [`], Pi is a set of vertex-disjoint paths with endpoints in V \ V0.

(iv) For each i ∈ [`] and j ∈ [k], |V (Pi) ∩ Vj | ≤ ζm. In particular, |Pi| ≤ ζn.

(v) For any x ∈ V , there are at most εn paths in P1 ∪ · · · ∪P` which have x as an endpoint.

Then, there exist disjoint E1, . . . , E` ⊆ E(Γ) such that the following hold.

(a) For any i ∈ [`], by using each edge in Ei exactly once, we can tie together some of
the paths in Pi to form a set Qi of vertex-disjoint paths such that, for any j ∈ [k], at
most 2β−2 paths in Qi have an endpoint in Vj.

(b) For any distinct i, j ∈ [k] and x ∈ Vi, E1∪· · ·∪E` contains at most 3ε
1
4m edges of Γ[Vi, Vj ]

which are incident to x.

(c) For any i ∈ [`] and j ∈ [k], |V (Pi ∪ Ei) ∩ Vj | ≤
√
ζm.

To prove Lemma 4.12, we will use edges of Γ to tie together some of the paths in Pi, for
each i ∈ [`]. We will only tie together paths which have an endpoint in a common cluster and
use a single superregular pair of Γ to do so.
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Proof. Let E1, . . . , E` ⊆ E(Γ) be (possibly empty) disjoint sets of edges of Γ and assume
inductively that for each i ∈ [`], by using each edge in Ei exactly once, we can tie together some
of the paths in Pi to form a set Qi of vertex-disjoint paths such that the following is satisfied.

(1) If P ∈ Q1 ∪ · · · ∪ Q` and P ′ is a link path of P , then P ′ is an (A,B)-link path of length
at most 4, for some clusters A,B.

(2) For any clusters A,B and any x ∈ A, there are at most ε
1
2m (A,B)-link paths in Q1 ∪

· · · ∪ Q` which have x as an endpoint.

(3) For any clusters A,B and any x ∈ A∪B, Q1 ∪ · · · ∪Q` contains at most ε
1
4m (A,B)-link

paths which have x as an internal vertex.

(4) For any cluster A and i ∈ [`], there are at most
√
ζm
4 tuples (B,P ) such that B 6= A is a

cluster and P is a (B,A)-link path in Qi.
(In (2)–(4) and below, by a link path in Qi, we mean a link path of some path in Qi.)

If for any i ∈ [`] and j ∈ [k], the set Qi contains at most 2β−2 paths with an endpoint in Vj ,
then (a) holds. Moreover, (2) and (3) imply (b), while (c) follows from (1), (4), and (iv), and we
are done.

We may therefore assume that there exist i ∈ [`] and j ∈ [k] such that Qi contains more
than 2β−2 paths with an endpoint in Vj . Then, we claim that there exist distinct P, P ′ ∈ Qi,
each with an endpoint in Vj , such that the following hold. There exists j′ ∈ [k] such that

(I) x ∈ Vj is an endpoint of P and x′ ∈ Vj is an endpoint of P ′;

(II) x, x′ ∈ Vjj′ , where Vjj′ is the support cluster of Vj with respect to Vj′ ;

(III) Q1 ∪ · · · ∪ Q` contains fewer than ε
1
2m (Vj , Vj′)-link paths which have x as an endpoint,

and similarly for x′;

(IV) there are fewer that
√
ζm
4 tuples (A,Q) such that A 6= Vj′ is a cluster and Q is an (A, Vj′)-

link path in Qi.
Indeed, for any x ∈ Vj , there are at least βk indices j′ ∈ [k] such that x ∈ Vjj′ (by (ii)). By (v),

there are at most 2ε
1
2k such indices j′ ∈ [k] such that Q1 ∪ · · · ∪ Q` contains ε

1
2m (Vj , Vj′)-link

paths with x as an endpoint. Moreover, by (iv), there are at most 5
√
ζk indices j′ ∈ [k] such

that there exist
√
ζm
4 tuples (A,Q) where A 6= Vj′ is a cluster and Q is an (A, Vj′)-link path

in Qi. Thus, for any x ∈ Vj , there are at least β2k
2 indices j′ such that x satisfies (II)–(IV).

Therefore, since by assumption Qi contains more than 2β−2 paths with an endpoint in Vj , we
can find P, P ′, x, x′, and j′ satisfying (I)–(IV).

We can now find an (x, x′)-path in Γ[Vjj′ , Vj′j ] to tie P and P ′ together as follows. Let

Γ′ := Γ \ (E1 ∪ · · · ∪ E`). By (2) and (3), Lemma 4.2 implies that Γ′[Vjj′ , Vj′j ] is still [ε
1
9 , β]-

superregular. Let V ′j be obtained from Vjj′ by deleting the following vertices:

• vertices in V (Qi) \ {x, x′} (by (1), (iv), and (4), there are at most
√
ζm such vertices);

• vertices in Vjj′ \ {x, x′} which are an internal vertex of ε
1
4m (Vj , Vj′)-link paths of Q1 ∪

· · · ∪ Q` (by (1) and (2), there are at most ε
1
4m such vertices).

Note that the number of deleted vertices is |Vjj′ \ V ′j | ≤
√
ζm + ε

1
4m ≤ 2

√
ζ|Vjj′ |. Define V ′j′

similarly. Then, by Lemma 4.2, Γ′[V ′j , V
′
j′ ] is [ζ

1
5 , β]-superregular. Thus, by Proposition 4.4,

Γ′[V ′j , V
′
j′ ] contains an (x, x′)-path P ′′ of length at most 4. Add the edges of P ′′ to Ei and replace

in Qi the paths P and P ′ by the concatenation of P, P ′′, and P ′. By construction, (1)–(4) are
still satisfied, as desired for the induction step. �

After applying Lemma 4.12, we obtain linear forests with few components. One can then be
less economical and use several superregular pairs of Γ to tie paths together. This is achieved in
the next lemma.
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Lemma 4.13. Suppose 0 < 1
n �

1
k � ε ≤ ζ � β ≤ 1. Let Γ be a graph on vertex set V of

size n and P1, . . . ,P` be sets of paths. Assume Γ and P1, . . . ,P` satisfy properties (i)–(v) of
Lemma 4.12, as well as the following.

(vi) ` ≤ n.

(vii) For any i ∈ [`] and j ∈ [k], Pi contains at most 2β−2 paths with an endpoint in Vj (and
thus at most 2β−2k paths in total).

Then, there exist disjoint E1, . . . , E` ⊆ E(Γ) such that the following hold.

(a) For any i ∈ [`], by using each edge in Ei exactly once, we can tie together some of
the paths in Pi to form a set Qi of vertex-disjoint paths such that for any connected
component C of R, Qi contains at most one path with an endpoint in VΓ(C).

(b) For any distinct i, j ∈ [k] and x ∈ Vi, E1∪· · ·∪E` contains at most 3ε
1
4m edges of Γ[Vi, Vj ]

which are incident to x.

(c) For any i ∈ [`] and j ∈ [k], |V (Pi ∪ Ei) ∩ Vj | ≤
√
ζm.

This is proved similarly to Lemma 4.12 but since we now have fewer paths to link, we can
use several superregular pairs of Γ to tie together paths whose endpoints are not necessarily
in a same cluster. Thus, the main difference to the proof of Lemma 4.12 is that, in order to
link two paths, we no longer need to find a suitable superregular pair of Γ but a suitable walk
in the reduced graph of Γ. Moreover, since we have few paths to tie together, we no longer
need to ensure that no superregular pair is used too many times (condition (4) in the proof of
Lemma 4.12). Finally, note that since link paths may now intersect several superregular pairs
of Γ, it no longer makes sense to talk about (A,B)-link paths, so we only use the generic term
link path (defined at the beginning of Section 4.2).

Proof. Let E1, . . . , E` ⊆ E(Γ) be (possibly empty) disjoint sets of edges of Γ and assume
inductively that for each i ∈ [`], by using each edge in Ei exactly once, we can tie together some
of the paths in Pi to form a set Qi of vertex-disjoint paths such that the following is satisfied.

(1) If P ∈ Q1 ∪ · · · ∪ Q` and P ′ is a link path of P , then P ′ contains at most 3 vertices from
each cluster and at most 4 edges from each superregular pair of Γ.

(2) For any clusters A and B, and any x ∈ A, the set Q1 ∪ · · · ∪ Q` contains at most ε
1
2m

link paths which have x as an endpoint and whose edge incident to x belongs to Γ[A,B].

(3) For any x ∈ V (Γ), there are at most ε
1
4m link paths in Q1 ∪ · · · ∪ Q` which contain x as

an internal vertex.

If for any i ∈ [`] and any connected component C of R, the set Qi contains at most one path
with an endpoint in VΓ(C), then (a) holds. Moreover, (2) and (3) imply (b), while (c) follows
from (1), (iv), and (vii), and we are done.

We may therefore assume that there exist i ∈ [`], a component C of R, distinct paths P, P ′ ∈ Qi
and distinct vertices x, x′ ∈ VΓ(C) such that x and x′ are endpoints of P and P ′, respectively.
We find an (x, x′)-path in Γ to link P and P ′ as follows. Let Γ′ := Γ \ (E1 ∪ · · · ∪ E`). By (2)

and (3), Lemma 4.2 implies that for any jj′ ∈ E(R), Γ′[Vjj′ , Vj′j ] is still [ε
1
9 , β]-superregular,

where Vjj′ and Vj′j are the support clusters of Γ[Vj , Vj′ ].
Let i′, i′′ ∈ [k] be such that x ∈ Vi′ and x′ ∈ Vi′′ . Choose j′ ∈ [k] such that x ∈ Vi′j′

and Q1 ∪ · · · ∪ Q` contains fewer than ε
1
2m link paths which have x as an endpoint and whose

edge incident to x belongs to Γ[Vi′ , Vj′ ]. The existence of such an index j′ is guaranteed by

(ii) and (v). Indeed, by (v), there are at most 2ε
1
2k < βk indices j′ such that Q1 ∪ · · · ∪ Q`

contains ε
1
2m link paths which have x as an endpoint and whose edge incident to x belongs

to Γ[Vi′ , Vj′ ]. The existence of the desired index j′ now follows from (ii). Similarly, pick j′′ ∈ [k]

such that x′ ∈ Vi′′j′′ and Q1 ∪ · · · ∪ Q` contains fewer than ε
1
2m link paths which have x′ as an

endpoint and whose edge incident to x′ belongs to Γ[Vi′′ , Vj′′ ].
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Let Vi1 . . . Vir be a (Vj′ , Vj′′)-path in R, where i1 := j′ and ir := j′′. Let i0 := i′ and ir+1 := i′′.
Then, Vi0Vi1 . . . VirVir+1 is a (Vi′ , Vi′′)-walk in R where the clusters Vi′ and Vi′′ appear at most
twice and all other clusters occur at most once. For 0 ≤ s ≤ r + 1, let V ′is be obtained from Vis
by deleting the following vertices:

• vertices in Vis \ (Vis−1is ∩ Visis+1) (by (i), there are at most 2εm such vertices);

• vertices in V (Qi) \ {x, x′} (by (1), (iv), and (vii), there are at most 3ζm
2 such vertices);

• vertices in Vis \ {x, x′} which are an internal vertex of ε
1
4m link paths in Q1 ∪ · · · ∪ Q`

(by (1) and (vi), there are at most εm such vertices).

Then, |V ′is | ≥ m − 2ζm. So for any s ∈ [r + 1], by Lemma 4.2, Γ′[V ′is−1
, V ′is ] is still [ζ

1
3 , β]-

superregular. We can therefore find an (x, x′)-path P ′′ in Γ′ containing exactly one edge of
Γ′[V ′is−1

, V ′is ] for each s ∈ [r] and at most 3 edges of Γ′[V ′ir , V
′
ir+1

]. We add the edges of P ′′ to Ei
and replace in Qi the paths P, P ′ by the concatenation of P, P ′′, and P ′. By construction, (1)–(3)
are still satisfied, as desired. �

The methods used to prove the previous lemma can be used to close a path P into a cycle
provided the endpoints of P lie in a same connected component of Γ. More generally, one can
show the following.

Lemma 4.14. Suppose 0 < 1
n �

1
k � ε ≤ ζ � β ≤ 1. Let Γ be a graph on vertex set V of

size n and P1, . . . ,P` be sets of paths. Assume Γ and P1, . . . ,P` satisfy properties (i)–(vii) of
Lemmas 4.12 and 4.13. Suppose moreover that the following holds.

(viii) For each i ∈ [`], there exists an ordering Pi,1, . . . , Pi,`i of the paths in Pi, and, for
each j ∈ [`i], an ordering xi,j , x

′
i,j of the endpoints of Pi,j such that the following holds.

For each i ∈ [`] and j ∈ [`i], there exists a component C of R such that x′i,j , xi,j+1 ∈ VΓ(C),
where xi,`i+1 := xi,1.

Then, there exist disjoint E1, . . . , E` ⊆ E(Γ) such that the following hold.

(a) For any i ∈ [`], Pi ∪ Ei forms a cycle.

(b) For any distinct i, j ∈ [k] and x ∈ Vi, E1∪· · ·∪E` contains at most 3ε
1
4m edges of Γ[Vi, Vj ]

which are incident to x.

Proof. The idea is to link the paths Pi,j and Pi,j+1 together for each i ∈ [`] and j ∈ [`i], where
Pi,`i+1 := Pi,1. This can be done by using the arguments of Lemma 4.13 to find an (x′i,j , xi,j+1)-

path in Γ for each i ∈ [`] and j ∈ [`i]. �

In general, our sets of paths will not satisfy property (viii) of Lemma 4.14. In that case, we
need to add suitable edges to our sets of paths before applying Lemma 4.14. This is achieved in
the next lemma.

Lemma 4.15. Suppose 0 < 1
n �

1
k � ε � ζ � β ≤ 1. Let Γ be a graph on vertex set V of

size n and P1, . . . ,P` be sets of paths. Assume Γ and P1, . . . ,P` satisfy properties (i)–(vi) of
Lemmas 4.12 and 4.13, as well as the following.

(vii′) For any i ∈ [`] and any connected component C of R, Pi contains at most one path with
an endpoint in VΓ(C).

Let Γ′ be a graph on V such that Γ and Γ′ are edge-disjoint and the following hold.

(ix) V0, V1, . . . , Vk is an (ε, ζ, k,m,R′)-superregular partition of Γ′.

(x) R ∪R′ is connected.

Then, there exist disjoint E1, . . . , E` ⊆ E(Γ) and E′1, . . . , E
′
` ⊆ E(Γ′) such that the following

hold.

(a) For any i ∈ [`], Pi ∪ Ei ∪ E′i forms a cycle.
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(b) For any distinct i, j ∈ [k] and x ∈ Vi, E1∪· · ·∪E` contains at most 3ε
1
4m edges of Γ[Vi, Vj ]

which are incident to x and E′1 ∪ · · · ∪ E′` contains at most εm edges of Γ′[Vi, Vj ] which
are incident to x.

Proof. We add some edges of Γ′ to each Pi in order to satisfy property (viii) of Lemma 4.14 as
follows. For any i ∈ [`], denote Pi := {Pi,1, . . . , Pi,`i} and, for each j ∈ [`i], denote by xi,j , x

′
i,j the

endpoints of Pi,j . For each i ∈ [`], indices ranging in [`i] are taken modulo `i, in particular `i+1 :=
1.

Assume inductively that for some 0 ≤ i ≤ `, E′1, . . . , E′i ⊆ E(Γ′) are disjoint and satisfy the
following.

(1) For each j ∈ [i], the edges in E′j are vertex-disjoint from each other and from paths in Pj .
In particular, P ′j := Pj ∪ E′j is a set of vertex-disjoint paths.

(2) For any distinct j, j′ ∈ [k] and x ∈ Vj , E′1∪· · ·∪E′i contains at most εm edges of Γ′[Vj , Vj′ ]
which are incident to x.

(3) For any x ∈ V , there are at most εn paths in P ′1 ∪ · · · ∪ P ′i ∪Pi+1 ∪ · · · ∪ P` which have x
as an endpoint.

(4) For each j ∈ [i], there exists a partition E′j,1 ∪ · · · ∪ E′j,`j of E′j such that the following

holds. For each j′ ∈ [`j ], there exist an ordering y1y
′
1, . . . , yty

′
t of the edges in E′j,j′ , and,

distinct connected components C0, . . . , Ct of R such that x′j,j′ ∈ VΓ(C0), xj,j′+1 ∈ VΓ(Ct)

and, for each s ∈ [t], ys ∈ VΓ(Cs−1) and y′s ∈ VΓ(Cs).

Assume i = `. Then, by (2), the second part of property (b) holds. Also note that P ′1, . . . ,P ′`
satisfy conditions (i)–(viii) of Lemma 4.14, with 2ζ playing the role of ζ. Indeed, (i)–(iii) and (vi)
are clearly satisfied. Moreover, by (ii), R has at most β−1 connected components and thus (4)
and (vii′) imply |P ′i| ≤ (1 + β−1)|Pi| ≤ 2β−2. Therefore, (vii) holds. By (4), for each i ∈ [`]
and j ∈ [k], we have |V (P ′i)∩Vj | ≤ |V (Pi)∩Vj |+ 2|Pi| ≤ 2ζm, so (iv) holds with 2ζ playing the
role of ζ. Finally, (v) holds by (3) and (viii) follows from (4). Thus, we can apply Lemma 4.14
and we are done. We may therefore assume that i < `.

We construct E′i+1 as follows. Consider the auxiliary reduced graph R̃ with the connected
components of R as vertices and an edge between C and C ′ if R′ contains an edge between C

and C ′. Note that by (x), R̃ is connected. For each j ∈ [`i+1], let Cj , C
′
j be the connected

components of R such that xi+1,j ∈ VΓ(Cj) and x′i+1,j ∈ VΓ(C ′j). For each j ∈ [`i+1], fix

a (C ′j , Cj+1)-path Qj in R̃.

Let Γ′′ be obtained from Γ′ by deleting the following edges:

• edges in E′1 ∪ · · · ∪ E′i (by (2), we delete at most εm2 such edges from each superregular
pair of Γ′);

• edges incident to some vertex x such that P ′1 ∪ · · · ∪ P ′i ∪ Pi+1 ∪ · · · ∪ P` contains εn
paths which have x as an endpoint (by (vi) and since for all i ∈ [`], |Pi| ≤ |P ′i| ≤ 2β−2,
we delete at most εm2 such edges per superregular pair of Γ);

• edges incident to some vertex in V (Pi+1) (by (iv) and (ix), we delete at most 3ζ2m2

such edges from each superregular pair of Γ′);

• for each i′, i′′ ∈ [k], edges of Γ′[Vi′ , Vi′′ ] which are incident to some vertex x such that
E′1 ∪ · · · ∪ E′i contains εm edges of Γ′[Vi′ , Vi′′ ] incident to x (by the fact that R has at
most β−1 connected components (by (ii)) as well as (4), (vi), (vii′), and (ix), we delete
at most 2εζm2 such edges from each superregular pair of Γ′).

Then, note that by (ix), for any i′i′′ ∈ E(R′), e(Γ′′[Vi′ , Vi′′ ]) ≥ (ζ − ε)(1− ε)2m2 − εm2 − εm2 −
3ζ2m2 − 2εζm2 ≥ εm2. Thus, there exists a set E′i+1 ⊆ E(Γ′′) of vertex-disjoint edges of Γ′′

such that (1)–(4) are still satisfied for i = i+ 1, where, for j = i+ 1 and each j′ ∈ [`i+1], the
components in Qj′ play the roles of C0, . . . , Ct in (4). �

We will not always be able to add suitable edges to our sets of paths in order to apply
Lemma 4.14. This problem can be circumvented by splitting paths and forming new sets of
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paths. This is achieved in the next lemma. Note that the cost of this approach is that we may
obtain more cycles than in Lemma 4.15, as well as a few leftover edges. Thus, Lemma 4.16 will
only be used when we have some room to spare.

Lemma 4.16. Suppose 0 < 1
m �

1
k � ε ≤ ζ � β ≤ 1. Let Γ be a graph on vertex set V

of size n. Let P1, . . . ,P` be sets of paths on V . Assume Γ and P1, . . . ,P` are all pairwise
edge-disjoint and satisfy properties (i)–(iv) of Lemma 4.12, property (vii′) of Lemma 4.15, as
well as the following.

(v′) For any x ∈ V \ V0, E(P1 ∪ · · · ∪ P`) contains at most εn edges incident with x.

(vi′) ` ≤ ζn.

(xi) For any x ∈ V0, if xy and xy′ are distinct edges in E(P1 ∪ · · · ∪ P`) then y ∈ VΓ(C)
and y′ ∈ VΓ(C ′) for some distinct components C and C ′ of R.

Then, there exists E ⊆ E(Γ) such that the following hold.

(a) (P1 ∪ · · · ∪ P`)∪E can be decomposed into a set C of at most βn edge-disjoint cycles and
a set E′ of at most β−2 edges.

(b) For any distinct i, j ∈ [k], and x ∈ Vi, E contains at most ε
1
73m edges of Γ[Vi, Vj ] which

are incident to x.

To prove Lemma 4.16, we need the following results.

Theorem 4.17 (Vizing’s theorem (see e.g. [6, Theorem 17.5])). Let G be a multigraph with
multiplicity µ(G). Then the edge-chromatic number χ′(G) of G satisfies χ′(G) ≤ ∆(G) + µ(G).
In particular, if G is simple, then χ′(G) ≤ ∆(G) + 1.

Lemma 4.18. Assume G is a multigraph with maximum degree ∆, multiplicity µ, and |E(G)|
even. Then, G can be decomposed into at most 3(∆+µ)

2 matchings of even size and at most ∆+µ
2

paths and cycles of length 2.

Proof. Let M1, . . . ,Mr be an optimal matching decomposition of G . By Theorem 4.17, r ≤ ∆+µ.
Let S be the set of indices i ∈ [r] such that |Mi| = 1 and T be the set of indices i ∈ [r] such
that |Mi| is odd and at least 3. If |S| is odd, remove some i ∈ S and add it to T so that |S| is
now even. Note that since |E(G)| is even, |T | must also be even.

For any distinct i, j ∈ S, by minimality of r, Mi ∪Mj is either a path of length 2 or a pair of

parallel edges. Therefore,
⋃
i∈SMi can be decomposed into at most ∆+µ

2 paths and cycles of
length 2. For each distinct i, j ∈ T , since |Mi| and |Mj | are odd and at most one of |Mi| and |Mj |
is equal to 1, we can find vertex-disjoint ei ∈ Mi and ej ∈ Mj , and thus decompose Mi ∪Mj

into at most 3 matchings of even size: Mi \ ei,Mj \ ej , and {ei, ej}. Thus
⋃
i∈[r]\SMi can be

decomposed into at most 3(∆+µ)
2 matchings of even size. �

Proof of Lemma 4.16. Start with C := ∅. Note that by (i) and (ii), R has c ≤ β−1 connected
components C1, . . . , Cc. For each i ∈ [c], colour each x ∈ VΓ(Ci) with colour i. We say a path in
some Pj is monochromatic if its endpoints are coloured with the same colour, and bichromatic
otherwise. We say a monochromatic path is coloured i if its endpoints are coloured i, and we
say a bichromatic path is coloured with {i, i′} if one of its endpoint is coloured i and the other
is coloured i′. Observe that exceptional vertices are left uncoloured but, by (iii), all paths in
P1 ∪ · · · ∪ P` have coloured endpoints. A path of length 2 with internal vertex in V0 is called an
exceptional path.

By (vii′), for each i ∈ [`], |Pi| ≤ c ≤ β−1. Moreover, (iii) and (xi) imply that no path in
P1 ∪ · · · ∪ P` contains an edge inside V0. Thus, by repeatedly taking maximal monochromatic
subpaths, each path in P1 ∪ · · · ∪ P` admits a decomposition Dmono ∪ Dbi, where Dmono is a set
of at most c ≤ β−1 monochromatic paths of distinct colours and Dbi is a set of bichromatic
edges and exceptional paths such that, if P, P ′ ∈ Dbi are distinct, then they are coloured with
distinct pairs of colours. This induces a decomposition of P1 ∪ · · · ∪ P` into

• `′ ≤ β−2` monochromatic subpaths P1, . . . , P`′ ; and
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• for each 1 ≤ i < i′ ≤ c, a set Qii′ of at most β−1` bichromatic edges and exceptional
paths coloured with {i, i′}.

Each monochromatic path Pi will be tied into a cycle. In order to cover the bichromatic paths,
we partition each Qii′ as follows. Observe that, by (xi), the following holds.

(†) For any 1 ≤ i < i′ ≤ c, the exceptional paths in Qii′ have distinct internal vertices.

By removing at most one edge or exceptional path from each Qii′ , we may assume |Qii′ | is
even for any 1 ≤ i < i′ ≤ c. Let E′ be the set of deleted edges. Then, |E′| ≤ β−2, as desired for
(a).

Let 1 ≤ i < i′ ≤ c. Define a multiset Q∗ii′ of bicoloured edges coloured with {i, i′} by replacing
each exceptional path in Qii′ by a fictive edge between its endpoints. Since |V0| ≤ εn, each edge
in Q∗ii′ has multiplicity at most εn+1. Then, by (v′), we can apply Lemma 4.18 with Q∗ii′ playing
the role of G, ∆ ≤ εn, and µ ≤ εn + 1 to obtain `∗ii′ ≤ 4εn matchings of even size, `ii′ ≤ 2εn
monochromatic paths of length 2, and `′ii′ ≤ 2εn cycles of length 2. Denote the matchings
by M∗ii′s, with s ∈ [`∗ii′ ]. Replace, in the paths and cycles of length 2, the fictive edges by their
corresponding exceptional paths. By (†), we thus obtain `ii′ edge-disjoint monochromatic paths,
which we denote by Pii′s, with s ∈ [`ii′ ], and `′ii′ edge-disjoint cycles which we add to C. Note
that |C| =

∑
1≤i<i′≤c `

′
ii′ ≤

√
εn. Each monochromatic path Pii′s will be tied into a cycle.

For each 1 ≤ i < i′ ≤ c and j ∈ [`∗ii′ ], if there exists j′ ∈ [k] such that |V (M∗ii′j) ∩ Vj′ | > ζm,

then randomly partition M∗ii′j into 2ζ−1 submatchings whose sizes are even and approximately
equal. By Lemma 3.1, we may assume that each of the submatchings obtained contains at
most ζm edges with an endpoint in Vj′ , for each j′ ∈ [k]. Denote by Qii′s, with s ∈ [`′′ii′ ], the

`′′ii′ ≤
8εn
ζ sets of paths obtained from these submatchings by replacing the fictive edges by their

corresponding exceptional paths. By construction and (†), the following hold.

(1) For any j′ ∈ [k], |V (Qii′j) ∩ Vj′ | ≤ ζm.

(2) |Qii′j | is even.

(3) All paths in Qii′j are pairwise vertex-disjoint, bichromatic, and coloured with {i, i′}.
(4) The paths in Qii′s, for all s ∈ [`′′ii′ ], and the paths Pii′s, for all s ∈ [`ii′ ], are all pairwise

edge-disjoint.

Each set Qii′s will be tied into a cycle.
We now aim to apply Lemmas 4.12 and 4.14. Note that all the edges that we still need to

cover with cycles belong to one the monochromatic paths Pi, or one of the monochromatic
paths Pii′s, or one of the sets Qii′s. As mentioned above, the goal is tie each of these into a
cycle, i.e. the sets P1, . . . ,P` in Lemmas 4.12 and 4.14 will consist of the sets of the form {Pi},
{Pii′s}, or Qii′s. Formally, proceed as follows. Let `′′ := `′ +

∑
1≤i<i′≤c(`ii′ + `′′ii′). Then, by

(vi′), `′′ ≤ `β−2 + β−2
(

2εn+ 8εn
ζ

)
≤ β2n. Denote by P ′1, . . . ,P ′`′′ the sets in{

{Pi} | i ∈ [`′]
}
∪
{
{Pii′j} | 1 ≤ i < i′ ≤ c, j ∈ [`′ii′ ]

}
∪
{
Qii′j | 1 ≤ i < i′ ≤ c, j ∈ [`′′ii′ ]

}
.

By construction, we can successively apply Lemmas 4.12 and 4.14 to tie up the paths in
each P ′i into a cycle as follows. First, let E1, . . . , E`′′ be the sets of edges of Γ obtained after
applying Lemma 4.12 with P ′1, . . . ,P ′`′′ , and `′′ playing the roles of P1, . . . ,P`, and `, respectively.
Let Q1, . . . ,Q`′′ be the sets of paths as in part (a) of Lemma 4.12. Note that, for any i ∈ [`′′]
and j ∈ [k], by part (c) of Lemma 4.12, |V (Qi) ∩ Vj | ≤

√
ζm. Moreover, condition (viii) of

Lemma 4.14 holds for the sets Q1, . . . ,Q`′′ since, by construction, each P ′i either contains a
single monochromatic path or, an even number of bichromatic paths coloured with the same
pair of colours. Let Γ′ := Γ \ (E1 ∪ · · · ∪ E`′′) and note that, by Lemma 4.2 and part (b) of

Lemma 4.12, V0, V1, . . . , Vk is an (ε
1
9 , β, k,m,R)-superregular partition of Γ′. Thus, we can now

apply Lemma 4.14 with Q1, . . . ,Q`′′ , `′′,Γ′, ε
1
9 , and

√
ζ playing the roles of P1, . . . ,P`, `,Γ, ε,

and ζ, respectively. Add all cycles obtained to C and note that |C| ≤
√
εn+ β2n ≤ βn. Denote

by E′1, . . . , E
′
`′′ the sets of edges of Γ′ obtained. Define E := E1 ∪ · · · ∪ E`′′ ∪ E′1 ∪ · · · ∪ E′`′′ and
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observe that property (b) of Lemma 4.16 holds by part (b) of Lemmas 4.12 and 4.14. This
completes the proof. �

Finally, in Step 5 of the proof of Theorem 1.10(ii) (see the proof overview), we will need to
cover a few excess edges. This will be achieved using Lemma 4.19. The idea is similar to the
approach described in Figure 1. An even cycle in the reduced graph can be decomposed into
two matchings M and M ′. We can then use a few of the edges of the pairs in M ′ to tie together
a path from each pair in M , and similarly for M and M ′ exchanged. More precisely, we prove
the following.

Lemma 4.19. Let 0 < 1
m � ε, ζ � d ≤ 1 and suppose k ∈ N∗ is even. Let G be a graph

on vertex set V and V1, . . . , Vk be a partition of V into k clusters of size m. Suppose that for
any i ∈ [k], the pair G[Vi, Vi+1] is [ε, d]-superregular (where Vk+1 := V1). Suppose that P1, . . . ,P`
are sets of paths on V satisfying the following.

(i) ` ≤ ζm.

(ii) For each i ∈ [`], there exists Ii ⊆ [k]odd or Ii ⊆ [k]even such that we can write Pi = {Pi,j |
j ∈ Ii}, where, for each j ∈ Ii, Pi,j is a path of length at most dm

10 with an endpoint in Vj,
an endpoint in Vj+1 and V (Pi,j) ⊆ Vj ∪ Vj+1.

(iii) Any vertex x ∈ V is an endpoint of at most 4 paths in P1 ∪ · · · ∪ P`.
Then there exist disjoint E1, . . . , E` ⊆ E(G) such that the following hold.

(a) Each x ∈ V is an endpoint of at most 6 edges in E1 ∪ · · · ∪ E`.
(b) For each i ∈ [`], Pi ∪ Ei forms a cycle.

Proof. Assume inductively that for some 0 ≤ i ≤ `, we have constructed disjoint sets E1, . . . , Ei ⊆
E(G) such that the following hold.

(1) For each j ∈ [i], Pj ∪ Ej forms a cycle Cj .

(2) Each x ∈ V is an internal vertex of at most one link path in C1 ∪ · · · ∪ Ci.
(3) Let j ∈ [i] and i1 < · · · < is be an enumeration of Ij . Let Q be a link path in Cj .

Then there exists t ∈ [s] such that the following hold. The path Q links Pj,it and Pj,it+1 ,
where is+1 := i1. Moreover, V (Q) ⊆ Vit+1∪· · ·∪Vit+1 . Finally, Q contains at most 3 edges
of G[Vit+1, Vit+2] and at most one edge of G[Vj′ , Vj′+1] for each j′ = it+2, it+3, . . . , it+1−1.

Observe that by (2) and (iii), a vertex x ∈ V is an endpoint of at most 6 edges in E1 ∪ · · · ∪ Ei.
Thus, if i = `, we are done. We may therefore assume that i < `.

Let i1 < i2 < · · · < is be an enumeration of Ii+1. For each t ∈ [s], denote by xit and xit+1

the endpoints of Pit in Vit and Vit+1, respectively. Define G′ := (G \
⋃
j∈[i]Ej) − (V (Pi+1) ∪

V (
⋃
j∈[i]Ej) \ {xit , xit+1 | t ∈ [s]}). For any j ∈ [k], let V ′j be obtained from Vj by removing

the vertices in V (Pi+1) ∪ V (E1 ∪ · · · ∪ Ei) \ {xit , xit+1 | t ∈ [s]} and note that, by (3) and (iii),

|Vj \ V ′j | ≤ dm
10 + 2` ≤ dm

5 . Thus, by Lemmas 4.1 and 4.2, G′[V ′j , V
′
j+1] is ε

1
3 -regular. Moreover,

each x ∈ V ′j satisfies |NG′(x) ∩ V ′j+1| ≥ (d − ε)m − 6 − dm
5 ≥

3d
5 |V

′
j+1| and, similarly, each

x′ ∈ V ′j+1 satisfies |NG′(x
′) ∩ V ′j | ≥ 3d

5 |V
′
j |.

Then, for each t ∈ [s], we find an (xit+1, xit+1)-path Qit in G′ as follows. First, we find
a path Q′it = xit+2 . . . xit+1 in G′ where xj ∈ V ′j for each j = it + 2, . . . , it+1. Then, we

apply Proposition 4.4 (with G′[V ′it+1, V
′
it+2], ε

1
3 , and 3d

5 playing the roles of G, ε, and d) to find
an (xit+1, xit+2)-path Q′′it of length at most 3 in G′[V ′it+1, V

′
it+2]. Let Qit := xit+1Q

′′
it
xit+2Q

′
it
xit+1 .

Setting Ei+1 :=
⋃
t∈[s]E(Qit) completes the proof. �

4.3. Making superregular pairs Eulerian and regular. As discussed in the proof overview,
in Step 5 of the proof of Theorem 1.10(ii), we will need to decompose superregular pairs into
Hamilton cycles. Thus we will need to ensure that our superregular pairs are Eulerian and
regular. In this section, we introduce efficient tools for achieving this.
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Lemma 4.20. Let 0 < 1
m �

1
k � ε� d ≤ 1. Then there exists a constant c = c(d, k) such that

the following holds. Let G be an Eulerian graph and V0, V1, . . . , Vk be an (ε,≥ d, k,m,m′, R)-
superregular equalised partition of G. Suppose that V0 is a set of isolated vertices in G. Then,
there exists a spanning subgraph G′ ⊆ G such that the following hold. For any ij ∈ E(R),
G′[Vi, Vj ] is Eulerian. Moreover, G′ can be obtained from G by removing at most c edge-disjoint
cycles. In particular, by Lemma 4.2, V0, V1, . . . , Vk is an (2

√
ε,≥ d, k,m,m′, R)-superregular

equalised partition of G′.

Proof. For simplicity, we assume that R is connected. If R is not connected, we can proceed
similarly, but apply our arguments to each component of R separately. For any AB ∈ E(R), we
write AB for the support cluster of A with respect to B. Let H ⊆ G, i ∈ [k], and x ∈ Vi. We define
the oddity of x in H, denoted OH(x), as the number of indices j ∈ [k] such that |NH(x)∩Vj | is odd.
The oddity of H is defined as O(H) :=

∑
x∈V (H)OH(x). Let S(H) := {x ∈ V (H) | OH(x) > 0}

and N (H) := |S(H)|. Thus, G[Vi, Vj ] is Eulerian for all ij ∈ E(R) if and only if N (G) = 0, or,
equivalently, if and only if O(G) = 0. Our argument relies on the two following observations:

(i) any graph contains an even number of odd degree vertices, and,

(ii) in an Eulerian graph, the oddity of each vertex is even.

Our proof splits into three steps. In Step 1, we significantly reduce the number of vertices of
positive oddity by removing cycles of linear length. Then, in Step 2, we will proceed similarly
but optimise the number of vertices whose oddity is reduced in order to decrease N (G) to a
bounded number. Then, in Step 3, we will be able to use a greedy approach.

Step 1: Decreasing the number of vertices with positive oddity to fewer than dm′

2 .

IfN (G) < dm′

2 , let G1 := G and go to the next step. Otherwise, we claim that there exists G1 ⊆ G
such that N (G1) < dm′

2 and G1 can be obtained from G by removing at most c1 := 20k2

d cycles.
Consider the following algorithm. Pick x0 ∈ S(G) and let P0 be the path x0 of length 0.

Suppose that after i ≥ 0 steps, we have extended P0 to an (x0, xi)-path Pi. Let Ai be the cluster
such that xi ∈ Ai. Let Gi := G− (V (Pi) \ {xi}) and Gi,0 := G− (V (Pi) \ {xi, x0}).

Case 1: Pi has length less than dm′

4 .

(a) If there exist a cluster Bi and a vertex xi+1 ∈ (Ai∪Bi)∩ (S(G)\V (Pi)) such that both xi
and xi+1 have odd degree in (G \ Pi)[Ai, Bi], pick such Bi and xi+1.

Note that |V (Pi)| ≤ dm′

4 , so δ((Gi − V (Pi))[A
Bi
i , B

Ai
i ]) ≥ 2dm′

3 . Moreover, by Lemma 4.1,

(Gi−V (Pi))[A
Bi
i , B

Ai
i ] is

√
ε-regular. Apply Proposition 4.4 (with (Gi−V (Pi))[A

Bi
i , B

Ai
i ],√

ε, and 2d
3 playing the roles of G, ε, and d) to find an (xi, xi+1)-path Q of length at most

4 in Gi[Ai, Bi]. Let Pi+1 := x0PixiQxi+1. Finally, observe that for any x ∈ V (G),

OG\Pi+1
(x) = OG\Pi(x)− 1, if x ∈ {xi, xi+1};(4.1a)

OG\Pi+1
(x) = OG\Pi(x), otherwise.(4.1b)

(b) Otherwise, pick any xi+1 ∈ S(G) \ V (Pi). Let Ai+1 denote the cluster which contains
xi+1. We claim that there exists an (xi, xi+1)-path Q of length at most 2k in Gi −
(V (Pi) \ {xi, xi+1}). Indeed, observe that for any UW ∈ E(R), δ((Gi − (V (Pi) \
{xi, xi+1}))[U,W ]) ≥ (d − ε)m′ − dm′

4 ≥ 2dm′

3 and, by Lemma 4.1, (Gi − (V (Pi) \
{xi, xi+1}))[U,W ] is

√
ε-regular. Thus, if Ai = Ai+1, we can let U ∈ NR(Ai) and apply

Proposition 4.4 (with (Gi − (V (Pi) \ {xi, xi+1}))[Ai, U ],
√
ε, and 2d

3 playing the roles

of G, ε, and d) to obtain an (xi, xi+1)-path Q of length at most 4 in Gi − (V (Pi) \
{xi, xi+1}). Similarly, if AiAi+1 ∈ E(R), then we can apply Proposition 4.4 (with
(Gi − (V (Pi) \ {xi, xi+1}))[Ai, Ai+1],

√
ε, and 2d

3 playing the roles of G, ε, and d) to

obtain an (xi, xi+1)-path Q of length at most 4 in Gi − (V (Pi) \ {xi, xi+1}). Suppose
that Ai 6= Ai+1 and AiAi+1 /∈ E(R). Let Q′ be an (Ai, Ai+1)-path in R. (This is
possible since, by assumption, R is connected.) Note that Q′ is a path of length at most
k − 1. Denote Q′ = AiU1 . . . U`Ai+1. (Note that, by assumption, ` ≥ 1.) By the above,
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there exists a path xiu1 . . . u` in Gi − (V (Pi) \ {xi, xi+1}) such that, for each j ∈ [`],
uj ∈ Uj . Apply Proposition 4.4 (with (Gi − (V (Pi) \ {xi, xi+1}))[U`, Ai+1],

√
ε, and 2d

3
playing the roles of G, ε, and d) to obtain a (u`, xi+1)-path Q′′ of length at most 4 in
(Gi − (V (Pi) \ {xi, xi+1}))[U`, Ai+1]. Then, Q := xiu1 . . . u`Q

′′xi+1 is a path of length at
most (k − 2) + 4 ≤ 2k in Gi − (V (Pi) \ {xi, xi+1}), as desired.
Let Pi+1 := x0PixiQxi+1. Note that (ii) implies that there exists a cluster Bi such that xi
has odd degree in (G \ Pi)[Ai, Bi]. Thus, Case 1(b) can only occur at most |E(R)| < k2

times in total. Finally, observe that for any x ∈ V (G),

OG\Pi(x)− 1 ≤ OG\Pi+1
(x) ≤ OG\Pi(x) + 1, if x ∈ {xi, xi+1};(4.2a)

OG\Pi(x)− 2 ≤ OG\Pi+1
(x) ≤ OG\Pi(x) + 2, if x ∈ V (Pi+1)\(V (Pi) ∪ {xi+1});(4.2b)

OG\Pi+1
(x) = OG\Pi(x), otherwise.(4.2c)

Case 2: Pi has length at least dm′

4 . Note that, by Case 1, Pi has length at most dm′

4 + 2k.

Thus, by similar arguments as above, there exists an (xi, x0)-path Q in Gi,0 of length at most 2k.

Output the cycle C := x0PixiQx0 and observe that C has length at least dm′

4 . Moreover, for
any x ∈ V (G),

OG\Pi(x)− 1 ≤ OG\C(x) ≤ OG\Pi(x) + 1, if x ∈ {xi, x0};(4.3a)

OG\Pi(x)− 2 ≤ OG\C(x) ≤ OG\Pi(x) + 2, if x ∈ V (C)\V (Pi);(4.3b)

OG\C(x) = OG\Pi(x), otherwise.(4.3c)

We claim that O(G \ C) ≤ O(G)− dm′

20 . Indeed, as observed above, Case 1(b) can only occur

fewer than k2 times, and, clearly, Case 2 can only occur at most once. Thus, Case 1(a) occurs

at least dm′

32 times and, therefore, (4.1)–(4.3) imply O(G \ C) ≤ O(G)− 2 · dm′32 + 2(2k + 1)k2 ≤
O(G)− dm′

20 .

If N (G \ C) < dm′

2 , let G1 := G \ C. Otherwise, repeatedly run the algorithm (where, in
each iteration, the current graph plays the role of G) and delete the resulting cycle until a

graph G1 with N (G1) < dm′

2 is obtained. Note that we need to run the algorithm and delete

the cycle obtained at most c1 = 20k2

d times. Indeed, assume we repeatedly ran the algorithm
and deleted the resulting cycle c1 times and let G1 be the graph obtained. First, observe that
we have delete at most 2c1 edges incident to each vertex, so ε-regular pairs still have minimum
degree at least (d − 2ε)m′ and, thus, in each iteration, the algorithm is always well defined.

Since O(G) ≤ m′k2, we have O(G1) ≤ m′k2 − dm′

20 ·
20k2

d < dm′

2 and in particular N (G1) < dm′

2 .
Thus G1 can be obtained from G by removing at most c1 cycles, as desired.

Step 2: Decreasing the number of vertices of positive oddity to fewer than 100k4.
If N (G1) < 100k4, let G2 := G1 and go to the next step. Otherwise, we claim that there
exists G2 ⊆ G such that G2 can be obtained from G1 by removing at most c2 := 21k

2 cycles and

such that N (G2) < 100k4.
We proceed similarly as above, but since the number of vertices of positive oddity has now

been significantly reduced, we can proceed more carefully. Indeed, we observe that, in the
above algorithm, oddity may be created whenever Case 1(b) occurs (as well as in Case 2).
Note that Case 1(b) occurs at stage i if, for all Bi as in Case 1(a), all vertices of odd degree
in G1[Ai, Bi] already belong to V (Pi). Thus, in order to make our algorithm more efficient,
we shall add the extra condition that the internal vertices of the short path used to extend
the paths Pi have oddity 0. Namely, we now let Gi := G1 − ((S(G1) ∪ V (Pi)) \ {xi}) and
Gi,0 := G1 − ((S(G1) ∪ V (Pi)) \ {xi, x0}). We note that this improvement could not have been
implemented in Step 1 since N (G) was large. Moreover, we observe that Case 1(b) may still

occur. We proceed as in Case 1 of Step 1 if Pi has length less than dm′

4 and S(G1) 6⊆ V (Pi) and

as in Case 2 of Step 1 if Pi has length at least dm′

4 (Case 2(a)) or S(G1) ⊆ V (Pi) (Case 2(b)),
with G1 playing the role of G.
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By similar arguments as above, |S(G1)| ≤ 5dm′

8 implies the desired short paths always exist
and so the algorithm is well defined. Using similar arguments as in Step 1, one can show that
N (G1 \ C) < N (G1) + (2k + 1)k2. Moreover, if the algorithm terminates in Case 2(a) (i.e. if Pi
has length at least dm′

4 ), then, as before, O(G1 \C) ≤ O(G1)− dm′

20 . If the algorithm terminates

in Case 2(b) (i.e. if S(G1) ⊆ V (C)), then we note that, since Cases 1(b) and 2 occur at most k2

times in total, by (4.1a), (4.2a), and (4.3a), we have OG1\C(x) = OG1(x) − 2 for all but at

most 2k2 vertices x ∈ S(G1).
If N (G1 \ C) < 100k4, then let G2 := G1 \ C. Otherwise, repeatedly run the algorithm

(where, in each iteration, the current graph plays the role of G1) and delete the resulting cycle
until a graph G2 ⊆ G1 with N (G2) < 100k4 is obtained. We claim that we need to run the
algorithm and delete the cycle obtained at most c2 = 21k

2 times. Indeed, assume we ran the
algorithm and deleted the resulting cycle c2 times and let G2 be the graph obtained. Note that,
in each iteration of the algorithm, the current graph has fewer than dm′

2 + 5c2k
3 ≤ 5dm′

8 vertices
of positive oddity, so the algorithm is well defined in each of the iterations. If the algorithm
terminates in Case 2(b) in at least k

2 of the iterations, then we note that all but at most 2c2k
2 of

the vertices in S(G1) now have oddity 0. Therefore, N (G2) ≤ 2c2k
2 + 5c2k

3 < 100k4, as desired.
Otherwise, the algorithm terminates in Case 2(a) in at least 10k of the iterations. Therefore,

O(G2) ≤ O(G1) − 10k · dm′20 ≤ 0 and so N (G2) = 0. Thus G2 can be obtained from G1 by
removing at most c2 cycles.

Step 3: Removing all oddity. If N (G2) = 0, we set G′ := G2. Otherwise, we claim that
there exists G′ ⊆ G2 such that G′ can be obtained from G2 by removing at most c3 := 25k4(k−1)
cycles and such that N (G′) = 0.

Consider the following algorithm. Pick a vertex x0 ∈ S(G2) and let P0 be the path x0 of
length 0. Suppose that after |S(G2)| ≥ i ≥ 0 steps we have extended P0 to an (x0, xi)-path Pi
of length at most 4i such that xi ∈ S(G2), OG2\Pi(xi) = OG2(xi)− 1 and OG2\Pi(x) ≤ OG2(x)
for all x ∈ V (G) \ V0. Denote by Ai the cluster such that xi ∈ Ai. Let xi+1 ∈ S(G2) \ {xi}
be such that there exists a cluster Bi 6= Ai such that both xi and xi+1 have odd degree in
(G2 \ Pi)[Ai, Bi]. Observe that such cluster and vertex exist by (i) and (ii).

Since |V (Pi) ∪ S(G2)| ≤ 6|S(G2)| ≤ 600k4, Lemma 4.2 implies that (G2 − ((V (Pi) ∪ S(G2)) \
{xi, xi+1}))[ABii , B

Ai
i ] is [2

√
ε,≥ d]-superregular. Apply Proposition 4.4 (with (G2 − ((V (Pi) ∪

S(G2)) \ {xi, xi+1})[ABii , B
Ai
i ], 2

√
ε, and d − 2

√
ε playing the roles of G, ε, and d) to obtain

an (xi, xi+1)-path Qi+1 of length at most 4 in (G2 − ((V (Pi) ∪ S(G2)) \ {xi, xi+1}))[ABii , B
Ai
i ].

Then,

(1) if xi+1 ∈ V (Pi), output the cycle C := xi+1PixiQi+1xi+1;

(2) if xi+1 /∈ V (Pi), let Pi+1 := x0PixiQi+1xi+1.

Note that if i = S(G2), then S(G2) ⊆ V (Pi). Thus, if we are in case (2), then i+ 1 ≤ |S(G2)|,
as desired.

Clearly, this algorithm eventually terminates, and, for each x ∈ V (G), we have

OG2\C(x) =

{
OG2(x)− 2, if x ∈ V (C) ∩ S(G2),;

OG2(x), otherwise.

Moreover, |V (C) ∩ S(G2)| ≥ 2 and, thus, O(G2 \ C) ≤ O(G2)− 4.
If N (G2 \ C) = 0, then let G′ := G2 \ C. Otherwise, repeatedly run the algorithm (where,

in each iteration, the current graph plays the role of G2) and delete the resulting cycle until a
graph G′ with N (G′) = 0 is obtained. By the above, we clearly need to run the algorithm and
delete the cycle obtained at most c3 = 25k4(k − 1) times. Let c := c1 + c2 + c3. This completes
the proof. �

To regularise an Eulerian ε-regular pair, we adapt an argument of [20]. The idea is to
repeatedly remove cycles covering all vertices of maximum degree. By ensuring that each vertex
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of minimum degree is covered by at most half of the cycles, we are able to regularise the pair by
deleting only a few cycles.

Lemma 4.21. Suppose 0 < 1
m � η, ε � d ≤ 1 and let ε′ := max{2

√
ε, 4
√
η}. Let G be an

Eulerian (ε, d)-regular bipartite graph on vertex classes A,B of size m. Let Θ := ∆(G)−δ(G) and
suppose Θ ≤ ηm. Then there exists a spanning subgraph H ⊆ G such that H is regular, ε′-regular,
and can be obtained from G by removing at most 2Θ edge-disjoint cycles of length at least 2m

3 .
In particular, H is r-regular for some r ≥ ∆(G)− 4Θ.

Proof. First note that δ(G) ≥ dm
2 . Let G0 := G. We proceed inductively to build

• spanning subgraphs G1 ⊇ G2 ⊇ · · · ⊇ G` of G;

• sets of vertices A∆
0 ⊆ A∆

1 ⊆ · · · ⊆ A∆
`−1 ⊆ A and B∆

0 ⊆ B∆
1 ⊆ . . . B∆

`−1 ⊆ B;

• sets of vertices Aδ,1j , Aδ,2j ⊆ A and Bδ,1
j , Bδ,2

j ⊆ B for each even j ∈ {0, 1, . . . , `− 1};
• sets of vertices SAj ⊆ A and SBj ⊆ B for each j ∈ {0, 1, . . . , `− 1}; and

• edge-disjoint cycles C0, C1, . . . , C`−1;

such that G` is regular, ` ≤ 2Θ, and, for each i ∈ {0, 1, . . . , `− 1}, the following hold.

(i) A∆
i = {a ∈ A | dGi(a) = ∆(Gi)} and B∆

i = {b ∈ B | dGi(b) = ∆(Gi)}.
(ii) If i is even, Aδ,1i and Aδ,2i are disjoint and such that Aδ,1i ∪A

δ,2
i = {a ∈ A | dGi(a) = δ(Gi)},

and, similarly, Bδ,1
i and Bδ,2

i are disjoint and such that Bδ,1
i ∪B

δ,2
i = {b ∈ B | dGi(b) =

δ(Gi)}.
(iii) If i is even, then A∆

i ⊆ SAi ⊆ A \A
δ,1
i , B∆

i ⊆ SBi ⊆ B \B
δ,1
i and |SAi | = |SBi | ≥ m

3 .

(iv) If i is odd, then A∆
i ⊆ SAi ⊆ A \ (Aδ,2i−1 ∩ SAi−1), B∆

i ⊆ SBi ⊆ B \ (Bδ,2
i−1 ∩ SBi−1) and

|SAi | = |SBi | ≥ m
3 .

(v) Ci is a Hamilton cycle of Gi[S
A
i ∪ SBi ].

(vi) Gi+1 = Gi \ Ci.
Assume that for some even 0 ≤ i ≤ 2Θ, we have already constructed subgraphs Gj for

each j ∈ [i], sets A∆
j and B∆

j for each j ∈ {0, 1, . . . , i− 1}, sets Aδ,1j , Aδ,2j and Bδ,1
j , Bδ,2

j for each

even j ∈ {0, 2, . . . , i− 2}, sets SAj and SBj for each j ∈ {0, 1, . . . , i− 1}, and cycles Cj for each

j ∈ {0, . . . , i − 1} such that (i)–(vi) are satisfied with j playing the role of i for all 0 ≤ j ≤ i.
If Gi is regular, let ` := i. Otherwise, proceed as follows.

Let A∆
i := {a ∈ A | dGi(a) = ∆(Gi)} and B∆

i := {b ∈ B | dGi(b) = ∆(Gi)}, so that (i) is
satisfied for i. Also define Aδi := {a ∈ A | dGi(a) = δ(Gi)} and Bδ

i := {b ∈ B | dGi(b) = δ(Gi)}.
We will now construct Aδ,1i , Aδ,2i and Bδ,1

i , Bδ,2
i , but, first note that, by (ii)–(vi), δ(Gi) ≥

δ(G0) − i ≥ dm
2 − 2ηm ≥ dm

3 . A simple application of Lemma 3.1 shows that there exists a

partition Aδ,1i ∪A
δ,2
i of Aδi such that all of the following hold.

(a) If |Aδi | ≥ dm
6 , then

|Aδi |
3 ≤ |A

δ,2
i | ≤ |A

δ,1
i | ≤

2|Aδi |
3 .

(b) If |Aδi | < dm
6 , then |Aδ,1i | =

⌈
|Aδi |

2

⌉
and |Aδ,2i | =

⌊
|Aδi |

2

⌋
.

(c) For any b ∈ B, |NGi(b) \A
δ,1
i |, |NGi(b) \A

δ,2
i | ≥

dm
12 .

Similarly, there exists a partition Bδ,1
i ∪B

δ,2
i of Bδ

i satisfying analogous properties. Note that,

in particular, (ii) holds for i. We will now construct sets SAi , S
B
i such that (iii) is satisfied

and Gi[S
A
i ∪ SBi ] is Hamiltonian (in order to satisfy (v)).

We may assume without loss of generality that |A\Aδ,1i | ≥ |B \B
δ,1
i | (the other case is similar).

Clearly, |A∆
i | ≤ m− |Bδ

i |. Thus,

(4.4) m− |Bδ,1
i | − |A

∆
i | ≥ |B

δ,2
i |.
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Let SBi := B \Bδ,1
i and TAi ⊆ A\ (Aδ,1i ∪A∆

i ) be a set of size |B \Bδ,1
i |− |A∆

i | chosen uniformly

at random. Let SAi := TAi ∪A∆
i . By construction, (iii) holds for i. Thus, by (vi), Lemmas 4.1

and 4.2 imply that Gi[S
A
i ∪ SBi ] is 3ε′-regular.

Claim 1. With positive probability, Gi[S
A
i ∪ SBi ] is Hamiltonian.

Proof of Claim. By Lemma 4.5, it suffices to show that δ(Gi[S
A
i ∪ SBi ]) ≥ d2m

103 with positive

probability. By construction, for any a ∈ SAi , we have dSBi
(a) ≥ dm

12 , as needed. It remains to

show that, with high probability, dSAi
(b) ≥ d2m

103 for all b ∈ SBi . If |Bδ,1
i | − |A

δ,1
i | ≤

dm
24 , then

|A \ (Aδ,1i ∪ SAi )| ≤ dm
24 and thus, by (c), dSAi

(b) ≥ dm
24 for all b ∈ SBi .

We may therefore assume that |Bδ,1
i | − |A

δ,1
i | ≥

dm
24 . Then, |Bδ,1

i | ≥
dm
24 , and, by (a) and (b),

|Bδ,2
i | ≥

|Bδ,1i |
2 ≥ dm

48 . Let b ∈ SBi . Then,

E
[
dSAi

(b)
]
≥ E

[
dTAi

(b)
]

+ dA∆
i

(b)
(c), (4.4)

≥ d2m

800
.

Thus, by Lemma 3.1, P
[
dSAi

(b) < d2m
103

]
≤ 1

m2 , and, a union bound over all b ∈ SBi gives that,

with positive probability, dSAi
(b) ≥ d2m

103 for all b ∈ SBi . �

Thus, we can let Ci be a Hamilton cycle of Gi[S
A
i ∪ SBi ] and Gi+1 := Gi \ Ci. Then, (v)

and (vi) are satisfied for i.
If Gi+1 is regular, let ` := i + 1. Otherwise, proceed as follows. Let A∆

i+1 := {a ∈ A |
dGi+1(a) = ∆(Gi+1)}, B∆

i+1 := {b ∈ B | dGi+1(b) = ∆(Gi+1)}, so that (i) is satisfied for i + 1.

We will now proceed similarly as above to construct SAi+1, S
B
i+1, Ci+1 and Gi+2.

If ∆(Gi) − δ(Gi) = 2, we have |A∆
i | = |B∆

i |, |Aδi | = |Bδ
i |, A = Aδi ∪ A∆

i , and B = Bδ
i ∪ B∆

i .

Then, by construction of Gi+1, we have A∆
i+1 = A∆

i ∪A
δ,1
i ∪ (Aδ,2i \ SAi ) and B∆

i+1 = B∆
i ∪B

δ,1
i .

Moreover, all vertices of A \A∆
i+1 and B \B∆

i+1 are vertices of minimum degree in Gi+1. Thus

we can let SAi+1 := A∆
i+1 and SBi+1 := B∆

i+1 in order to satisfy (iv). We can then proceed as above
to define Ci+1 and Gi+2 satisfying (v) and (vi) (and, in particular, Gi+2 is regular). We may
therefore assume that ∆(Gi)− δ(Gi) > 2. Note that

(4.5) m ≥

{
|Bδ

i |+ |A∆
i+1|, if |A \Aδ,2i | ≥ |B \B

δ,2
i |,

|Aδi |+ |B∆
i+1|, otherwise.

We construct SAi+1, S
B
i+1, Ci+1, and Gi+2 similarly as above, but, we now let A∆

i+1 ⊆ SAi+1 ⊆
A \Aδ,2i , B∆

i+1 ⊆ SBi+1 ⊆ B \B
δ,2
i , and use (4.5) instead of (4.4).

We now show that we eventually obtain a regular graph G`, with ` ≤ 2Θ. Assume i is
even and Gi is not regular. By (i) and (iii)–(vi), ∆(Gi) = ∆(G0)− 2i. Moreover, by (ii)–(vi),
δ(Gi) ≥ δ(G0)− i. Thus,

0 < ∆(Gi)− δ(Gi) ≤ (∆(G0)− 2i)− (δ(G0)− i) ≤ Θ− i,
and, therefore, i < Θ. Thus, ` ≤ Θ + 1 ≤ 2Θ, as desired.

Let H := G` . Clearly, H is regular. Moreover, G −H =
⋃`−1
i=0 Ci, with ` ≤ 2Θ, and so H

can be obtained from G be removing at most 2Θ cycles. Moreover, by (iii)–(v), the cycles
C0, . . . , C`−1 have length at least 2m

3 , as desired. Finally, by Lemma 4.2, H is ε′-regular. This
completes the proof. �

4.4. Robust decomposition lemma. Note that the contents of this section will only be used
in Section 5.5 and so the reader may skip it and return to it later on.

A key tool in our proofs will be the robust decomposition lemma of [27], which implies the
existence of a “robust” Hamilton decomposition of superregular pairs. More precisely, given
a graph G consisting of suitable superregular pairs, it guarantees the existence of a spanning
superregular graph Grob such that Grob∪H has a Hamilton decomposition for any very sparse H,
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i.e. Grob is “robustly” Hamilton decomposable. (The graph H will be the “leftover” of an
approximate decomposition of G \ Grob.) Moreover, we can prescribe that a given Hamilton
cycle in this decomposition contains a given set of edges. These edges will be the “fictive edges”
discussed in the proof overview (see Figure 1 for example). To formalise the latter property, we
need the notion of special path systems and special factors defined below. The fictive edges are
extended into such special path systems prior to applying the robust decomposition lemma. It
turns out to be more convenient to consider digraphs rather than graphs.

Given a digraph
−→
G and a partition P of V (

−→
G) into k clusters V1, . . . , Vk of equal size, a

partition P ′ of V (
−→
G) is an `-refinement of P if P ′ is obtained by splitting each Vi into `

subclusters of equal size. Let
−→
R be the reduced digraph of

−→
G with respect to P and assume that

for any VW ∈ E(
−→
R ), the pair

−→
G [V,W ] is [ε, d]-superregular. We say P ′ is an ε-superregular `-

refinement of P if the following holds. For any V,W ∈ P and V ′,W ′ ∈ P ′ with V ′ ⊆ V

and W ′ ⊆W , if VW ∈ E(
−→
R ) then

−→
G [V ′,W ′] is [ε, d]-superregular.

We say (
−→
G,P,P ′,

−→
R,
−→
R ′, C) is an (`, k,m, ε, d)-bi-setup if the following properties are satisfied.

(BST1)
−→
G is a directed graph.

(BST2) P is a partition of V (G) into k clusters of size m, where k is even, and,
−→
R is the

reduced digraph of
−→
G with respect to P.

(BST3) C is a Hamilton cycle of
−→
R .

(BST4) P ′ is an `-refinement of P, and,
−→
R ′ is the reduced digraph of

−→
G with respect to P ′.

(BST5) R and R′ are complete balanced bipartite digraphs.

(BST6) For each VW ∈ E(
−→
R )∪E(

−→
R ′), the corresponding pair

−→
G [V,W ] is [ε, d]-superregular.

This is a special case of the setting in [27], which also requires the existence of a “universal

walk” U in the reduced digraph
−→
R . This is trivially implied by assumption (BST5).

Let
−→
G be a digraph, P be a partition of V (

−→
G) into 2k clusters A1, . . . , Ak, B1, . . . , Bk of

size m, and
−→
R be the corresponding reduced digraph of

−→
G . Let C := A1B1 . . . AkBk be a

Hamilton cycle of
−→
R . Suppose f ∈ N divides k.

The canonical interval partition I of C into f intervals consists of the intervals

Ii := A(i−1) k
f

+1B(i−1) k
f

+1A(i−1) k
f

+2 . . . Bi k
f
Ai k

f
+1

for all i ∈ [f ], where Ak+1 := A1.
Let P ′ be an `-refinement of P and for each V ∈ P denote by V 1, . . . , V ` the partition of V

induced by P ′. Suppose 2k
f ≥ 3. Let i ∈ [f ], h ∈ [`]. Denote Ii by Vi,1 . . . Vi, 2k

f
+1. A special path

system SPS of style h in
−→
G spanning the interval Ii consists of 2k

f matchings M1, . . . ,M 2k
f

such

that the following hold.

(SPS1) For all j ∈ [2k
f ], Mj is a perfect matching between V h

i,j and V h
i,j+1, with all edges

oriented from V h
i,j to V h

i,j+1.

(SPS2) SPS contains a fictive edge fSPS ∈M 2k
f
−1 such that E(SPS) \ {fSPS} ⊆ E(

−→
G).

A special factor SF with parameters (`, f) with respect to C and P ′ in
−→
G is a 1-regular digraph

on V (
−→
G) consisting of `f special path systems SPSh,i, one for each (h, i) ∈ [`]×[f ], where SPSh,i

is a special path system of style h in
−→
G spanning the interval Ii. We denote the set of fictive

edges of SF by Fict(SF ) := {fSPSh,i | h ∈ [`], i ∈ [f ]}.
More generally, we will use the term fictive edges to refer to auxiliary edges that are artificially

added to graphs. Whenever we add a set F of fictive edges to a (di)graph G, we view them
as being distinct from those in G, even if they create multiple edges. Similarly, we also allow
multiple edges within F and view these edges as being distinct from each other. We are now
ready to state the (bipartite version of the) robust decomposition lemma. As indicated above, it
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Figure 2. A special factor with parameters (2, 4) with respect to C =
A1B1A2 . . . B8 and P ′ = {A1

1, A
2
1, A

1
2 . . . , A

2
8, B

1
1 , . . . , B

2
8}. The fictive edges are

represented by dashed edges. The gray edges form a special path system of style 2
spanning the first interval in the canonical interval partition of C into 4 intervals.

guarantees the existence of a robustly decomposable digraph
−→
G rob which consists of a “chord

absorber”
−→
CA(r) and a “parity extended cycle absorber”

−−−→
PCA(r), as well as a prescribed set of

special factors (which contain the fictive edges).

Lemma 4.22 (Robust Decomposition Lemma [27]). Let 0 < 1
m �

1
k � ε � 1

q �
1
f �

r1
m �

d� 1
` ,

1
g � 1 and that rk2 ≤ m. Let

r2 := 96`g2kr, r3 :=
rfk

q
, r� := r1 + r2 + r − (q − 1)r3, s := rfk + 7r�

and suppose that k
14 ,

k
f ,

k
g ,

q
f ,

m
4` ,

fm
q ,

2fk
3g(g−1) ,

`
2 ∈ N. Let (

−→
G,P,P ′,

−→
R,
−→
R ′, C) be an (`, k,m, ε, d)-

bi-setup and C = V1 . . . Vk. Suppose that P∗ is a q
f -refinement of P and that SF1, . . . , SFr3

are edge-disjoint special factors with parameters ( qf , f) with respect to C and P∗ in
−→
G . Let

SF := SF1 ∪ · · · ∪ SFr3. Then there exists a digraph
−→
CA(r) for which the following hold.

(i)
−→
CA(r) is an (r1 + r2)-regular spanning subdigraph of

−→
G which is edge-disjoint from SF .

(ii) Suppose that SF ′1, . . . , SF
′
r� are special factors with parameters (1, 7) with respect to C

and P in
−→
G which are edge-disjoint from each other and from

−→
CA(r) ∪ SF . Let SF ′ :=

SF ′1 ∪ · · · ∪ SF ′r�. Then there exists a digraph
−−−→
PCA(r) for which the following hold.

(a)
−−−→
PCA(r) is a 5r�-regular spanning subdigraph of

−→
G which is edge-disjoint from

−→
CA(r) ∪ SF ∪ SF ′.

(b) Let SPS be the set consisting of all the s special path systems contained in SF ∪
SF ′. Let Veven denote the union of all Vi over all i ∈ [k]even and define Vodd

similarly. Suppose that
−→
H is an r-regular bipartite digraph on V (

−→
G) with vertex

classes Veven and Vodd which is edge-disjoint from
−→
G rob :=

−→
CA(r) ∪

−−−→
PCA(r) ∪

SF ∪ SF ′. Then
−→
H ∪

−→
G rob has a decomposition into s edge-disjoint Hamilton

cycles C1, . . . , Cs. Moreover, Ci contains one of the special path systems from SPS,
for each i ∈ [s].
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5. Proof of the main theorems

In Sections 5.1–5.5, we prove the main lemmas that will be needed for the proof of our
theorems. These intermediate results are organised according to the structure of the proof
overview. Theorems 1.10, 1.11, and 1.13 are proved in Section 5.6.

5.1. Applying Szemerédi’s regularity lemma and setting aside random subgraphs Γ
and Γ′. This section corresponds to Step 1 of the proof overview. The proof of Lemma 5.1
relies of a straightforward application of Szemerédi’s regularity lemma and a cleaning procedure
similar to the one used to prove the degree form of the regularity lemma. For details, see the
appendix of the arXiv version.

Lemma 5.1. Let 0 < 1
M � ε � ζ � d � β � α ≤ 1 and 1

M ≤ 1
L � d. Let r ∈ N∗.

Then there exist M ′, n0 ∈ N∗ such that the following holds. Let G be a graph on vertex
set V with |V | = n ≥ n0, and δ(G) ≥ αn. Then G can be decomposed into edge-disjoint
graphs G′,Γ,Γ′, H, and, V can be partitioned into k clusters V1, . . . , Vk of size m and an
exceptional set V0 such that the following properties are satisfied.

(i) M ≤ k ≤M ′.
(ii) m′

r ∈ N∗.
(iii) V0, V1, . . . , Vk is an

• (ε,≥ d, k,m,m′, R)-superregular equalised partition of G′;

• (ε, β, k,m,m′, R′)-superregular equalised partition of Γ;

• (ε, ζ, k,m,m′, R′′)-superregular equalised partition of Γ′.

(iv) R′ and R′′ are edge-disjoint and R = R′ ∪R′′.
(v) G′,Γ and, Γ′ have the same support clusters.

(vi) Each x ∈ V \ V0 belongs to at least βk superregular pairs of Γ.

(vii) There exists a decomposition DR′ of R′ into at most k
2 cycles whose lengths are even and

at least L and such that for any distinct i, j, j′ ∈ [k], if VjViVj′ is a subpath of a cycle
in DR′ then the support clusters of Vi with respect to Vj and Vj′ are the same.

(viii) V0 is a set of isolated vertices in Γ,Γ′, and H.

(ix) ∆(H) ≤ 4dn.

5.2. Covering the edges inside the exceptional set. This section corresponds to Step 2 of
the proof overview.

Lemma 5.2. Suppose 0 < 1
n �

1
k � ε � d � β � α ≤ 1. Let G be a graph on vertex set V

with |V | = n and let Γ be edge-disjoint from G. Assume G and Γ satisfy the following.

(i) V0, V1, . . . , Vk is an (ε, β, k,m,m′, R′)-superregular equalised partition of Γ.

(ii) Any x ∈ V \ V0 belongs to at least βk superregular pairs of Γ.

(iii) V0, V1, . . . , Vk is an (ε,≥ d, k,m,m′, R)-superregular equalised partition of G.

(iv) For any x ∈ V0, dG(x) ≥ αn.

Let ε′ := ε
1
73 . Then there exists H ⊆ G ∪ Γ such that the following hold.

(a) G[V0] = H[V0].

(b) V0, V1, . . . , Vk is an (ε′,≥ d, k,m,m′, R)-superregular equalised partition of G \H.

(c) V0, V1, . . . , Vk is an (ε′, β, k,m,m′, R′)-superregular equalised partition of Γ \H.

(d) There exists a decomposition D ∪D′ of H where D is a set of at most βn cycles and D′
is a set of at most β−2 edges.

Proof. This can be proved in a similar way as Lemma 4.16, so we only provide a sketch of the
proof. Let D := ∅. Let C1, . . . , Cc be the connected components of R′, where, by (ii), c ≤ β−1.
For each x ∈ V0, by (iii) and (iv), |NG(x) \ V0| ≥ (α− ε)n and thus there exists i ∈ [c] such that
|NG(x) ∩ VΓ(Ci)| ≥ β2n. Colour each x ∈ V0 with such a colour i ∈ [c].
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Apply Theorem 1.1 to decompose G[V0] into ` paths P1, . . . , P` and `∗ cycles. Add the `∗

cycles to D and note that |D|, ` ≤ εn. We apply the arguments of the proof of Lemma 4.16
with Pi = {Pi} for each i ∈ [`]. The only difference is that we now have paths with endpoints
in V0. We adapt to this setting as follows.

Partition the paths P1, . . . , P` into monochromatic subpaths and bichromatic edges as in
Lemma 4.16. Let 1 ≤ i < i′ ≤ c. We may assume that the set Qii′ of bichromatic edges coloured
with {i, i′} is a matching. Indeed, if Qii′ contains distinct edges e and e′ with a common endpoint,
then we can delete e and e′ from Qii′ and consider e∪ e′ as a monochromatic path instead. Since
for each 1 ≤ i < i′ ≤ c, we have |Qii′ | ≤ `, we obtain, in total, at most

(
c
2

)
`
2 ≤
√
εn additional

monochromatic paths.
For each i ∈ [c], extend each monochromatic path coloured i to a path with internal vertices

in V0 and endpoints in VΓ(Ci). Similarly, for each 1 ≤ i < i′ ≤ c, extend Qii′ to a set of vertex-
disjoint paths of length 3 with internal vertices in V0, an endpoint in VΓ(Ci) and an endpoint
in VΓ(Ci′). Then, one can easily show that we can proceed as in the proof of Lemma 4.16.

One can easily verify that, in the end, we have covered all but at most β−2 edges of G[V0]
with at most βn cycles, as desired. �

5.3. Main step of the decomposition. This section corresponds to Step 3 of the proof
overview. Lemma 5.3 will be used to obtain a cycle decomposition in the proof of Theorem 1.10(ii)
and Lemma 5.4 will be used to obtain a path decomposition in the proof of Theorem 1.10(i).
Lemma 5.5 will play a similar role in the proof of Theorem 1.11.

Lemma 5.3. Suppose 0 < 1
n �

1
k � ε� ζ � d� β ≤ 1. Let G,Γ,Γ′ be edge-disjoint graphs

on the same vertex set V of order n. Assume V0, V1, . . . , Vk is a partition of V such that the
following hold.

(i) V0, V1, . . . , Vk is

• an (ε,≥ d, k,m,m′, R)-superregular equalised partition of G,

• an (ε, β, k,m,m′, R′)-superregular equalised partition of Γ,

• an (ε, ζ, k,m,m′, R′′)-superregular equalised partition of Γ′.

(ii) R′ and R′′ are edge-disjoint and R′ ∪R′′ = R.

(iii) G,Γ, and Γ′ have the same support clusters.

(iv) V0 is a set of isolated vertices in Γ and Γ′. Moreover, G[V0] is empty.

(v) Any x ∈ V \ V0 belongs to at least βk superregular pairs of Γ.

(vi) For any x ∈ V0, dG(x) is even.

Then, G ∪ Γ ∪ Γ′ can be decomposed into edge-disjoint graphs G′, Γ̃, and H such that G,Γ′ ⊆
G′ ∪H, Γ̃ ⊆ Γ, and the following hold.

(a) ∆(H) ≤ 13ζn and V0 is a set of isolated vertices in H.

(b) V0, V1, . . . , Vk is a (ζ, β, k,m,m′, R′)-superregular equalised partition of Γ̃.

(c) There exists a decomposition D ∪ Dexc of G′ such that D is a set of at most n
2 + 2βn

cycles and Dexc is a set of at most β−2 exceptional edges.

H should be thought of as a sparse “leftover” and Γ is a graph which we want to use as little
as possible. An analogous result can be obtained for path decompositions.

Lemma 5.4. Suppose 0 < 1
n �

1
k � ε � ζ � d � β ≤ 1. Let G,Γ, and Γ′ be edge-disjoint

graphs on the same vertex set V of order n. Assume V0, V1, . . . , Vk is a partition of V such that
properties (i)–(vi) of Lemma 5.3 hold. Let U ⊆ V \ V0 have even size. Then, G ∪ Γ ∪ Γ′ can

be decomposed into edge-disjoint graphs G′, Γ̃, and H such that G,Γ′ ⊆ G′ ∪ H, Γ̃ ⊆ Γ, and
properties (a) and (b) of Lemma 5.3 are satisfied. Moreover,

(c′) there exists a path decomposition D of G′ such that |D| ≤ n
2 + 4βn and, for any x ∈

V \ V0, D contains an odd number of paths with x as an endpoint if and only if x ∈ U .
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The next lemma shows that stronger results can be obtained if the reduced graph R of G is
assumed to be connected.

Lemma 5.5. Suppose 0 < 1
n �

1
k � ε � ζ � d � β ≤ 1. Let G,Γ, and Γ′ be edge-disjoint

graphs on the same vertex set V of order n. Assume V0, V1, . . . , Vk is a partition of V such that
properties (i)–(vi) of Lemma 5.3 hold. Suppose furthermore that R is connected. Then, the
following hold.

(a) G ∪ Γ ∪ Γ′ can be decomposed into edge-disjoint graphs G′, Γ̃, and H such that G,Γ′ ⊆
G′ ∪H, Γ̃ ⊆ Γ, and properties (a) and (b) of Lemma 5.3 hold. Furthermore, G′ can be

decomposed into at most ∆(G)
2 + 7ζn cycles.

(b) Let U ⊆ V \ V0 have even size. Then G ∪ Γ ∪ Γ′ can be decomposed into edge-disjoint

graphs G′, Γ̃, and H such that G,Γ′ ⊆ G′ ∪ H, Γ̃ ⊆ Γ, and properties (a) and (b) of
Lemma 5.4 hold. Furthermore, there exists a path decomposition D of G′ such that

|D| ≤ max
{

∆(G)
2 , |U |2

}
+ 8ζn and each vertex x ∈ V \V0 is an endpoint of an odd number

of paths in D if and only if x ∈ U .

Lemmas 5.3–5.5 will be proved simultaneously. To obtain a path decomposition, the idea is
to insert suitable fictive edges and then construct a cycle decomposition such that each cycle in
the decomposition contains exactly one fictive edge.

We will need the following result of [19].

Theorem 5.6 ([19]). Let 0 < 1
m � ε � d < 1 and assume G is a bipartite graph on vertex

classes A,B of size m. If G is [ε, d]-superregular then G contains (d−19ε)m
2 edge-disjoint Hamilton

cycles.

Proof of Lemmas 5.3–5.5. Define

ε1 := ε
1
12 , ε2 := ε

1
7
1 , ε3 := ε

1
5
2 , ε4 := ε

1
15
2 , ε5 := ε

1
75
2 , ε6 := ε

1
225
2 ,

ε7 := ε
1

1125
2 , ε8 := ε

1
3375
2 , ε9 := ε

1
3375
8 , ζ1 :=

√
2ζ, ζ2 :=

√
ζ1.

Let i, j ∈ [k] be distinct. Denote by Vij and Vji the support clusters of G[Vi, Vj ]. If G[Vi, Vj ]
is empty let dij := 0. Otherwise, by (SRP4), (SRP5), and definition of the reduced graph,
G[Vij , Vji] is [ε,≥ d]-superregular and so we can let dij be a constant such that G[Vij , Vji]
is [ε, dij ]-superregular. We let G′ and H be empty graphs on V . Throughout this proof, we will
repeatedly add edges to G′ and H, and, whenever we do so, these edges are deleted from G∪Γ∪Γ′.

Let Gexc := ∅. For each connected component C of R and x ∈ V0, if |NG(x) ∩ VG(C)| is odd,
add exactly one edge of G[{x}, VG(C)] to Gexc. Delete the edges in Gexc from G. Observe that
we may now assume that for each connected component C of R, any x ∈ V0 has even degree
in G[V0∪VG(C)]. The graph Gexc will be covered in Step 8. Observe that, by (vi), Gexc is empty
in the proof of Lemma 5.5.

We now assume R is connected. If it is disconnected, we will apply Steps 1–7 to each connected
component of R separately and then cover the potentially remaining edges (i.e. the edges of Gexc)
in Step 8. Fix ∆ := ∆(G), ∆0 := max{dG(x) | x ∈ V0}, and ∆′ := max{dG(x) | x /∈ V0}. In
particular, in what follows, ∆,∆′, and ∆0 are left unchanged when we delete some edges from G.

Step 1: Partitioning the edges of G and constructing reservoirs of vertices. We
will partition each superregular pair of G into subgraphs of small comparable density. Each
subgraph will be assigned a reservoir, that is a small number of vertices that will be set aside to
tie paths together later on. To do so, we will partition each cluster into small subclusters of
equal size and, in each subgraph, one of these subclusters will play the role of the reservoir.

Let r :=
⌊
ζ−1
⌋

(r will be the number of reservoirs). For each ij ∈ E(R), let `ij :=
⌊
ζ−1dij

⌋
and apply Lemma 4.8 to partition G[Vij , Vji] into r`ij spanning edge-disjoint [ε1, ζ

2]-superregular

graphs Gij1,1, . . . , G
ij
1,`ij

, Gij2,1, . . . , G
ij
r,`ij

and a leftover graph Gij0 which we add to H. Note that,
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for each ij ∈ E(R), ∆(Gij0 ) ≤ (dij + ε)m− (ζ2 − ε)mr`ij ≤ 3ζm and thus

(5.1) ∆(H) ≤ 3ζn.

For each i ∈ [k], randomly partition Vi into r subclusters V 1
i , . . . , V

r
i of size ζm. (If ζm /∈ N∗,

then the subclusters will only have sizes roughly ζm, but this does not affect the argument
below.) Let V ` :=

⋃
i∈[k] V

`
i . Also define U ` := V ` ∩ U for the proof of Lemmas 5.4 and 5.5(b).

We claim that the following hold with positive probability.

(1) For any ij ∈ E(R), ` ∈ [r], and `′ ∈ [`ij ],

(1a) Gij`,`′ [X,Y ] is [ε2, ζ
2]-superregular for each X ∈ {Vij \ V `

i , Vij ∩ V `
i } and Y ∈

{Vji \ V `
j , Vji ∩ V `

j };
(1b) if ij ∈ E(R′), then Γij` := Γ[Vij ∩ V `

i , Vji ∩ V `
j ] is [ε2, β]-superregular;

(1c) if ij ∈ E(R′′), then Γ′ij` := Γ′[Vij ∩ V `
i , Vji ∩ V `

j ] is [ε2, ζ]-superregular.

(2) For any ij ∈ E(R) and ` ∈ [r], |Vij ∩ V `
i | = (1± ε1)ζm′.

(3) For each ` ∈ [r] and x ∈ V0,
∣∣NG(x) ∩ V `

∣∣ = |NG(x)|
r ± εn.

Additionally, for the proof of Lemmas 5.4 and 5.5(b), the following holds with positive probability.

(4) For each ` ∈ [r], |U `| = |U |
r ± εn.

Indeed, by Lemma 4.10, (1) and (2) hold with high probability, and, a simple application of
Lemma 3.1 shows that (3) and (4) hold with high probability. Therefore, by a union bound, we
may assume that (1)–(4) are satisfied.

For each ij ∈ E(R), ` ∈ [r], and `′ ∈ [`ij ], define G̃ij`,`′ := Gij`,`′ [Vij \ V
`
i , Vji \ V `

i ] and add all

edges of Gij`,`′ [Vij∩V
`
i , Vji∩V `

j ] to H. By (1a), we add, in total, at most (ζ2+ε2)ζm·ζ−1 ·k ≤ 2ζ2n

edges incident to each vertex, so, by (5.1),

(5.2) ∆(H) ≤ 4ζn.

Step 2: Equalising the support cluster sizes. For any distinct i, j ∈ [k] and ` ∈ [r] in
turn, we now construct a subset Vij` ⊆ Vij \ V `

i of size m′′ := (1− ζ − ε)m′ by removing exactly

|Vij \ V `
i | − m′′ vertices. We build these sets one by one and, in each step, we only remove

vertices which have already been removed fewer than
√
ε1k times in the construction so far. This

is possible since in each step, by (2), we need to remove at most 2ε1m vertices, and so, in each
step, there are at most ζm vertices which we are not allowed to remove anymore. On the other
hand, by (2), |Vij \ V `

i | ≥ (1− 2ζ)m for any distinct i, j ∈ [k], and ` ∈ [r]

For any ij ∈ E(R), ` ∈ [r], and `′ ∈ [`ij ], define Ĝij`,`′ := G̃ij`,`′ [Vij`, Vji`]. By (1a) and

Lemma 4.2, Ĝij`,`′ is [2
√
ε2, ζ

2]-superregular. Add to H all edges of G̃ij`,`′ \ Ĝ
ij
`,`′ . Since Ĝij`,`′ is

obtained from G̃ij`,`′ by deleting at most 2ε1m vertices from each cluster, for each x ∈ Vij`, x
has degree at most 2ε1m in G̃ij`,`′ \ Ĝ

ij
`,`′ . Moreover, for each i ∈ [k] and x ∈ Vi, there are at

most
√
ε1k pairs (j, `) ∈ [k]× [r] such that x ∈ V (G̃ij`,`′) \ V (Ĝij`,`′). Thus, we have added to H

at most 2
√
ε1n edges incident to each vertex and, thus, by (5.2),

(5.3) ∆(H) ≤ 5ζn.

Step 3: Decomposing non-exceptional edges of G into long paths with endpoints

in reservoirs. For each ij ∈ E(R), ` ∈ [r], and `′ ∈ [`ij ], apply Theorem 5.6 with Ĝij`,`′ , ζ
2,

and 2
√
ε2 playing the roles of G, d, and ε to obtain a set Hij`,`′ of h :=

(ζ2−38
√
ε2)m′′

2 edge-disjoint

Hamilton cycles of Ĝij`,`′ . We turn each cycle in Hij`,`′ into a path one by one by deleting an

edge xy such that no edge incident to x or y has already been deleted from Hij`,`′ . This is possible

since |Hij`,`′ | ≤
ζ2m′′

2 and each cycle in Hij`,`′ is of length 2m′′. We add all these edges as well as
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all the edges in E(Ĝij`,`′) \ E(Hij`,`′) to H. Thus, we add at most (1 + 40
√
ε2m

′′)rζ−1k ≤ ζ2n

edges incident to each vertex, and so, by (5.3),

(5.4) ∆(H) ≤ 6ζn.

We now extend the paths in Hij`,`′ to paths with internal vertices in Vij` ∪ Vji` and endpoints

in V `
i ∪ V `

j one by one as follows. Given an (x, y)-path P in Hij`,`′ with x ∈ Vij` and y ∈ Vji`,
pick x′ ∈ V `

j and y′ ∈ V `
i such that xx′, yy′ ∈ E(Gij`,`′) and Hij`,`′ contains fewer than ε2m

paths with x′ as endpoint and similarly for y′. Replace P in Hij`,`′ by the path x′xPyy′ and

delete xx′, yy′ from Gij`,`′ . Note that the existence of x′ and y′ is guaranteed by (1a) and (2),

and the fact that |Hij`,`′ | ≤
ζ2m

2 .

Once all paths in Hij`,`′ have been extended as above, add all remaining edges of Gij`,`′ [Vij ∩
V `
i , Vji \ V `

j ] and Gij`,`′ [Vij \ V
`
i , Vji ∩ V `

j ] to H. Note that by (1a), if x ∈ V `
i , then Gij`,`′ [Vij ∩

V `
i , Vji \V `

j ] contains at most 2ζ2m edges incident to x, and if x ∈ Vi \V `
i , Gij`,`′ [Vij \V

`
i , Vji∩V `

j ]

contains at most 2ζ3m edges incident to x. This holds for any ij ∈ E(R), ` ∈ [r], and `′ ∈ [`ij ]
so, in total, we have added to H at most 4ζn edges incident to each vertex and thus, by (5.4)

(5.5) ∆(H) ≤ 10ζn.

Moreover, for each ij ∈ E(R), ` ∈ [r], and `′ ∈ [`ij ], add all edges of Hij`,`′ to G′. Note that all

(remaining) edges of G now have exactly one endpoint in V0.

Step 4: Combining the paths into sets of vertex-disjoint paths. Let R̂ be the
multigraph obtained from R by replacing each edge ij ∈ E(R) by `ij parallel edges denoted

e1
ij , . . . , e

`ij
ij .

Claim 1. ∆(R̂) ≤ ∆′

ζm +
√
εk.

Proof of Claim. Let i ∈ [k] and recall that the graphs G, G′, and H at the end of Step 1 form a
decomposition of the original graph G. Clearly, we have

eG∪G′∪H(Vi, V \ V0) ≤ ∆′m.

Moreover, by (i),

eG∪G′∪H(Vi, V \ V0) ≥
∑
j 6=i

(dij − ε)(1− ε)2m2 ≥
∑
j 6=i

(ζ`ij − 4ε)m2 ≥ ζd
R̂

(Vi)m
2 − 4εm2k

and the claim holds. �
Note that there are at most ζ−1 parallel edges between any two vertices of R̂. Thus, we

can apply Claim 1 and Theorem 4.17 to fix a decomposition D
R̂

of R̂ into at most ∆′

ζm + 2
√
εk

matchings. For each M ∈ D
R̂

and each ` ∈ [r], we decompose
⋃
e`
′
ij∈M

Hij`,`′ into h disjoint sets

of paths containing exactly one path of Hij`,`′ for each e`
′
ij ∈M .

Let P be the collection of all the |D
R̂
|rh linear forests obtained. Note that for each x ∈ V \V0,

all non-exceptional edges incident to x are covered by paths in
⋃

P, apart from those lying

in H. Thus, ∆′

2 −6ζn ≤ |P| ≤ rh
(

∆′

ζm + 2
√
εk
)
≤ ∆′

2 +
√
εn. We also note that for each P ∈P

there exists r(P) ∈ [r] such that P is a set of vertex-disjoint paths with endpoints in V r(P) and

internal vertices in V \ V r(P). For each ` ∈ [r], let P` := {P ∈P | r(P) = `}. By construction,

|P1| = · · · = |Pr| = |P|
r .

Step 5: Including exceptional edges. For each ` ∈ [r], we add exceptional edges to the
linear forests in P` as follows. If possible, pick P ∈ P` such that we have not yet added
exceptional edges to P and such that G contains a set of paths Pexc satisfying the following.

(I) Pexc is a set of vertex-disjoint paths of G of length of 2.
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(II) The paths in Pexc have their endpoints in V ` \ V (P) and internal vertex in V0.

(III) V (Pexc) ∩ V0 is the set of vertices x ∈ V0 such that |NG(x) ∩ V `| is maximum.

(IV) |V (Pexc) ∩ V `
i | ≤ ζ2m for each i ∈ [k].

Fix such a set Pexc and add the paths in Pexc to P. Add the edges of Pexc to G′. We repeat
this procedure until there is no such P. Then, we claim that the following holds.

Claim 2. For each x ∈ V0, dG(x) ≤ max{∆0 −∆′ + 13ζn, ζn}.

Proof of Claim. Note that it is enough to show that for each ` ∈ [r] and x ∈ V0, we have
|NG(x) ∩ V `| ≤ max{1

r (∆0 −∆′ + 13ζn),
√
εn}.

Let ` ∈ [r]. Suppose first that we have added a set Pexc satisfying (I)–(IV) to each P ∈P`.

By (3), each vertex in V0 initially had at most ∆0
r + εn neighbours in V `. Thus, by (II) and (III),

we now have |NG(x) ∩ V `| ≤ ∆0
r + εn− 2|P`| ≤ ∆0

r + εn− 2
r (∆′

2 − 6ζn) ≤ 1
r (∆0 −∆′ + 13ζn)

for each x ∈ V0.
Suppose now that there exists P ∈ P` which does not contain any exceptional edges. We

claim that for any x ∈ V0, we have |NG(x) ∩ V `| ≤
√
εn. Suppose not. Let x1, . . . , xs be an

enumeration of the vertices x ∈ V0 such that |NG(x)∩V `| is maximum. By assumption, we have
|NG(xi)∩V `| >

√
εn. Suppose inductively that, for some 0 ≤ i ≤ s, we have constructed a set of

paths P iexc satisfying (I), (II), and (IV) and such that |V (P iexc)∩V0| = {xj | j ∈ [i]}. If i < s, we

construct P i+1
exc as follows. Let X be the set of indices j ∈ [`] such that |V (P iexc)∩V `

j | = ζ2m. Let

Y := (NG(xi+1) ∩ V`) \ (V (P) ∪ V (P iexc) ∪
⋃
j∈X V

`
j ). Then, |Y | ≥

√
εn− k − 2i− 2i

ζ2m
· ζm ≥ 2.

Let y, y′ ∈ Y be distinct. Set P i+1
exc := P iexc ∪ {yxi+1y

′}. By construction, P i+1
exc satisfies (I),

(II), and (IV) and |V (P i+1
exc ) ∩ V0| = {xj | j ∈ [i + 1]}. Therefore, we can construct a set Psexc

satisfying (I)–(IV), a contraction. Thus, |NG(x) ∩ V `| ≤
√
εn for all x ∈ V0. �

We now split most of the remaining exceptional edges into sets of vertex-disjoint paths, in a
similar way as above. Let P ′ := ∅. Assume there exists a set of paths Pexc satisfying (I) and
the following.

(II′) The paths in Pexc have their endpoints in V \ V0 and internal vertex in V0.

(III′) V (Pexc) ∩ V0 is the set of vertices x ∈ V0 such that |NG(x) ∩ V \ V0| is maximum.

(IV′) |V (Pexc) ∩ Vi| ≤ ζm for each i ∈ [k].

Then add such a set Pexc to P ′ and add the edges of Pexc to G′. We repeat this procedure until
we cannot find any Pexc as above. Then, one can show using similar arguments as in the proof
of Claim 2 that dG(x) ≤

√
εn for each x ∈ V0.

We will now form at most 4
√
εn sets of linear forests which cover all remaining exceptional

edges of G. Assume that P1, . . . ,P4
√
εn are (possibly empty) edge-disjoint sets of paths such

that for each i ∈ [4
√
εn] the following are satisfied and such that

∑
i∈[4
√
εn] |Pi| is maximal.

(I′′) Pi is a set of vertex-disjoint paths of G of length 2.

(II′′) The paths in Pi have their endpoints in V \ V0 and internal vertex in V0.

(IV′′) |V (Pi) ∩ Vj | ≤ ζm for each j ∈ [k].

Add all edges of P1 ∪ · · · ∪ P4
√
εn to G′. If dG(x) = 0 for all x ∈ V0, add P1, . . . ,P4

√
εn to P ′

and we are done. We may therefore assume that there is x ∈ V0 with dG(x) ≥ 2. Pick
distinct y, z ∈ NG(x) and let i, i′ ∈ [k] be such that y ∈ Vi and z ∈ Vi′ . By maximality, we
only need to find j ∈ [4

√
εn] such that (I′′), (II′′), and (IV′′) are still satisfied if we add yxz

to Pj and thus obtain a contradiction. By construction, x belongs to fewer than
√
εn of the Pj ,

and, since |V0| ≤ εn, each of y and z belong to fewer than εn of the Pj . Moreover, there are
at most εnm

ζm−2 ≤
√
εn indices j ∈ [4

√
εn] such that |V (Pj) ∩ Vi| > ζm− 2 and similarly, there

are at most
√
εn indices j ∈ [4

√
εn] such that |V (Pj) ∩ Vi′ | > ζm− 2. Thus, there are at least

4
√
εn −

√
εn − 2εn − 2

√
εn > 0 indices j such that we can add the path yxz to Pj and (I′′),

(II′′), and (IV′′) are still satisfied.
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To summarise, we have constructed sets P`, for each ` ∈ [r], and a set P ′ satisfying the
following.

(A) For each ` ∈ [r] and P ∈ P`, P is a set of vertex-disjoint paths with endpoints in V `

and internal vertices in V \ V`. Moreover, |P| ≤ k
2 + εn and |V (P) ∩ V `

i | ≤ k + ζ2m for
each i ∈ [k].

(B) For each P ∈P ′, P is a set of vertex-disjoint paths with endpoints in V \V0 and internal
vertices in V0. Moreover, |P| ≤ εn and |V (P) ∩ Vi| ≤ ζm for each i ∈ [k].

(C) For each x ∈ V \ V0, there are at most 2εn paths in
⋃

(P ∪P ′) which have x as an
endpoint (recall P = P1 ∪ · · · ∪Pr).

(D) By Step 4, Claim 2, and the above construction, |P ∪P ′| ≤ ∆
2 + 7ζn. Moreover, G is

now empty.

Indeed, in order to check (C), recall from Step 3 that, for each x ∈ V `
i , each Hij`,`′ contains at

most ε2m paths with x as an endpoint.

Step 6: Including fictive edges. We ignore this step for the proof of Lemmas 5.3 and 5.5(a).
For the proof of Lemmas 5.4 and 5.5(b), we construct a multiset Efict of fictive edges on V \ V0.
As discussed in Section 4.4, we view edges in Efict as distinct from each other and from edges
in G,G′,Γ,Γ′, and H. We will add a fictive edge to each linear forest in P ∪P ′. Moreover,
in order to satisfy (c′), we make sure that for any x ∈ V \ V0, Efict contains an odd number of
edges incident to x (counting multiplicity) if and only if x ∈ U .

Start with Efict = ∅. In what follows, we denote by Ueven the set of vertices in U which
are incident to an even number of edges in Efict and, for each ` ∈ [r], we denote by U `even

the set Ueven ∩ U `. In what follows, we will update Ueven and U `even at each step of our
algorithm. For each ` ∈ [r], we add a fictive edge to each linear forest in P` as follows.
Assume P ∈P` does not contain a fictive edge yet. If there exist distinct x, y ∈ U `even \ V (P),
add the edge xy to Efict and to P. If there are no such x and y, then note that, by (A),
|U `even| ≤ |V (P) ∩ V `| + 1 ≤ 2|P| + 1 ≤ 3εn and proceed as follows. If P is the only linear
forest in P` which does not contain a fictive edge, we remove P from P`, add all its edges
to H and we are done. We note that this increases the maximum degree of H by at most 2.
Otherwise, pick P ′ ∈P` \ {P} such that P ′ does not contain a fictive edge. Note that, by (A),

|V ` ∩ V (P ∪ P ′)| ≤
√
εn. Moreover, by (D), there are at most 2|P`|

εn ≤ 2ε−1 vertices in V` which

are incident to at least εn edges in Efict. Thus, we can choose distinct x, y ∈ V ` \ V (P ∪ P ′)
such that Efict contains fewer than εn edges incident to x and fewer than εn edges incident to y.
Add the edge xy to both P and P ′, and, add two edges between x and y to Efict. We repeat
this procedure until each linear forest in P` contains a fictive edge.

We then proceed similarly to add a fictive edge to each linear forest in P ′, now using (B)
instead of (A) and allowing fictive edges to have endpoints in V \V0 instead of V ` for some ` ∈ [r].
Once each linear forest in P ′ contains a fictive edge, observe that we have added at most r + 1
linear forests to H, so, by (5.5),

(5.6) ∆(H) ≤ 11ζn.

Moreover, the following holds.

Claim 3. The set Ueven has even size. Moreover, |Ueven| ≤ max{|U |−2(|P∪P ′|−(r+1)),
√
εn}.

Proof of Claim. By construction and since |U | is even, |Ueven| is even. For the second part of
the claim, we distinguish three cases.

Firstly, assume that for any distinct P,P ′ ∈P ∪P ′, the fictive edge of P is vertex-disjoint
from the fictive edge of P ′. Then we clearly have |Ueven| ≤ |U | − 2(|P ∪P ′| − (r + 1)).

Secondly, assume there exists ` ∈ [r] such that there exist distinct P,P ′ ∈P` and x, y ∈ V `

such that both P and P ′ contain a fictive edge between x and y. Then, by construction,
|U `even| ≤ 3εn, and so |U `| ≤ 2|P`|+ 3εn. By (4), for any `′ ∈ [r], we have |U `′ | ≤ 2|P`′ |+ 5εn

and, thus, |U `′even| ≤ 5εn. Therefore, |Ueven| ≤
√
εn, as desired.
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Thirdly, assume that there exist distinct P,P ′ ∈P ′ and x, y ∈ V \ V0 such that P and P ′
both contain a fictive edge between x and y. Then by construction |Ueven| ≤ 3εn. �

Pair all vertices in Ueven and for each pair (x, y), add xy to Efict and {xy} to P ′. By
construction, (4), (A)–(D), and Claim 3, the following hold.

(A′) For each ` ∈ [r] and P ∈ P`, P is a set of vertex-disjoint paths with endpoints in V `

and internal vertices in V \ V`. Moreover, |P| ≤ k
2 + εn+ 1 and |V (P) ∩ V `

i | ≤ 2ζ2m for
each i ∈ [k].

(B′) For each P ∈P ′, P is a set of vertex-disjoint paths with endpoints in V \V0 and internal
vertices in V0. Moreover, |P| ≤ εn+ 1 and |V (P) ∩ Vi| ≤ 2ζm for each i ∈ [k].

(C′) For each x ∈ V \ V0, there are at most 4εn paths in
⋃

(P ∪P ′) which have x as an
endpoint.

(D′) By (D), Claim 3, and construction, |P ∪P ′| ≤ max
{

∆
2 ,
|U |
2

}
+ 8ζn. Moreover, G is

now empty.

(E′) Each set in P ∈ P ∪P ′ contains exactly one edge of Efict. Moreover, for each x ∈
V \ V0, Efict contains an odd number of edges incident to x if and only if x ∈ U .

Step 7: Tying each set of paths into a cycle. We now tie each linear forest P ∈P ∪P ′

into a cycle using edges of Γ ∪ Γ′. This is achieved by successively applying Lemmas 4.12, 4.13,
and 4.15 several times as follows.

For each ` ∈ [r], we tie the paths of each linear forest in P` as follows. Let Γ` be the
graph on vertex set V0 ∪ V ` and edge set

⋃
ij∈E(R′)E(Γij`). Note that by (1b), V0, V

`
1 , . . . , V

`
k

is an (ε2, β, k, ζm,R
′
`)-superregular partition of Γ`, where V `

i V
`
j ∈ E(R′`) if and only if ViVj ∈

E(R′). Define Γ′` similarly. Moreover, by (1c), V0, V
`

1 , . . . , V
`
k is an (ε2, ζ, k, ζm,R

′′
` )-superregular

partition of Γ′`, where V `
i V

`
j ∈ E(R′′` ) if and only if ViVj ∈ E(R′′).

For each ` ∈ [r], we can then successively apply Lemmas 4.12, 4.13, and 4.15 as follows. Write
P` = {P1, . . . ,P`′}. First, we apply Lemma 4.12 with Γ`, ζm, V

`
1 , . . . , V

`
k , ε2, R

′
`, `
′,P1, . . . ,P`′ ,

and 2ζ playing the roles of Γ,m, V1, . . . , Vk, ε, R, `,P1, . . . ,P`, and ζ, respectively. We thus obtain
disjoint E1, . . . , E`′ ⊆ E(Γ`) such that the following hold. For any distinct i, j ∈ [k], and x ∈ V `

i ,
the set E := E1∪· · ·∪E`′ contains at most ε3ζm edges of Γ`[V

`
i , V

`
j ] which are incident to x, and,

thus, by Lemma 4.2, it follows that V0, V
`

1 , . . . , V
`
k is an (ε4, β, k, ζm,R

′
`)-superregular partition

of Γ` \E. Moreover, for any i ∈ [`′] and j ∈ [k], |V (Pi∪Ei)∩V `
j | ≤ ζ1ζm. Finally, for any i ∈ [`′],

by using each edge in Ei exactly once, we can tie some of the paths in Pi to form a set of
vertex-disjoint paths Qi such that, for any j ∈ [k], at most 2β−2 paths in Qi have an endpoint
in V `

j .

We then apply Lemma 4.13 with Γ` \ E, ζm, V `
1 , . . . , V

`
k , ε4, R

′
`, `
′,Q1, . . . ,Q`′ , and ζ1 playing

the roles of Γ,m, V1, . . . , Vk, ε, R, `,P1, . . . ,P`, and ζ, respectively. We thus obtain disjoint
E′1, . . . , E

′
`′ ⊆ E(Γ`) \ E satisfying the following. For any distinct i, j ∈ [k], and x ∈ V `

i , the set

E′ := E′1 ∪ · · · ∪ E′`′ contains at most ε5ζm edges of Γ`[V
`
i , V

`
j ] which are incident to x, and,

thus, by Lemma 4.2, it follows that V0, V
`

1 , . . . , V
`
k is an (ε6, β, k, ζm,R

′
`)-superregular partition

of Γ` \ (E ∪ E′). Moreover, for any i ∈ [`′] and j ∈ [k], |V (Qi ∪ E′i) ∩ V `
j | ≤ ζ2ζm. Finally, for

any i ∈ [`′], by using each edge in E′i exactly once, we can tie the paths in Qi to form a set of
vertex-disjoint paths Q′i such that, for any component C of R′`, Q′i contains at most one path
with an endpoint in VΓ`(C).

We then apply Lemma 4.15 with Γ` \ (E ∪ E′), ζm, V `
1 , . . . , V

`
k , ε6, R

′
`, `
′,Q′1, . . . ,Q′`′ , ζ2,Γ

′
`,

and R′′` playing the roles of Γ,m, V1, . . . , Vk, ε, R, `,P1, . . . ,P`, ζ,Γ′, and R′, respectively. We
thus obtain disjoint E′′1 , . . . , E

′′
`′ ⊆ E(Γ` ∪ Γ′`) \ (E ∪ E′) satisfying the following. For any

distinct i, j ∈ [k], and x ∈ V `
i ∪ V `

j , the set E′′ := E′′1 ∪ · · · ∪ E′′`′ contains at most ε7ζm edges

of Γ`[V
`
i , V

`
j ] which are incident to x and at most ε7ζm edges of Γ′`[V

`
i , V

`
j ] which are incident

to x. Moreover, Q′i ∪E′′i forms a cycle, i.e. P` ∪ (E ∪E′ ∪E′′) admits a cycle decomposition D`
of size |P`|. Add all edges in E ∪ E′ ∪ E′′ to G′. Proceed in this way for each ` ∈ [r].
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Observe that by construction and since the reservoirs are pairwise disjoint, Lemma 4.2 implies
that V0, V1, . . . , Vk is now an (ε8, β, k,m,m

′, R′)-superregular equalised partition of Γ and an
(ε8, ζ, k,m,m

′, R′′)-superregular equalised partition of Γ′.
We proceed similarly to obtain a set E∗ ⊆ E(Γ ∪ Γ′) such that P ′ ∪ E∗ admits a cycle

decomposition D′ of size |P ′|. Add the edges in E∗ to G′. Then, Lemma 4.2 implies
that V0, V1, . . . , Vk is an (ε9, β, k,m,m

′, R′)-superregular equalised partition of Γ. Add all
remaining edges of Γ′ to H. By (i), we add at most (ζ + ε)n edges incident to each vertex. Thus,
by (5.6), ∆(H) ≤ 13ζn, as desired for (a).

Let D :=
⋃
`∈[r]D` ∪ D′. Observe that for the proof of Lemmas 5.3 and 5.5(a), by (D) and

construction, D is a cycle decomposition of G′ of size at most |P ∪P ′| ≤ ∆
2 +7ζn. For the proof

of Lemmas 5.4 and 5.5(b), remove all fictive edges from D. Then, by (D′) and (E′), D is now a

path decomposition of G′ of size at most max
{

∆
2 ,
|U |
2

}
+ 8ζn. Moreover, each vertex x ∈ V \ V0

is an endpoint of an odd number of paths in D if and only if x ∈ U . This completes the proof of

Lemma 5.5 (where we set Γ̃ := Γ).

Step 8: Covering the remaining exceptional edges. If R is disconnected, we apply the
above argument to each component of R. More precisely, for each connected component C
of R, we apply Steps 1–7 with R[C] and G[V0 ∪ VG(C)] playing the roles of R and G, and, for
the proof of Lemma 5.4, U ∩ VG(C) playing the role of U . In particular, observe that for each
component C of R, ∆(G[V0 ∪ VG(C)]) ≤ |VG(C)| + εn. Moreover, by (ii) and (v), R has at
most β−1 components. Therefore, we obtain, in the proof of Lemma 5.3 (Lemma 5.4), a cycle

(path) decomposition D of G of size at most n
2 + 8ζn

β + εn
β ≤

n
2 + βn. Then, there only remains

to decompose Gexc into at most βn cycles and β−2 exceptional edges for Lemma 5.3, or, 3βn
paths for Lemma 5.4.

Recall that Gexc was introduced at the beginning of the proof. By construction, all edges
of Gexc are exceptional and for any x ∈ V0, if xy, xy′ ∈ E(Gexc) are distinct then there exist
distinct components C and C ′ of R such that y ∈ VG(C) and y′ ∈ VG(C ′). Decompose Gexc

into s ≤ ζn paths of length 2 with endpoints in V \ V0 and an internal vertex in V0. Note
that, by construction, each path has endpoints in clusters which lie in different connected
components of R. Apply Lemma 4.16, with ε9 and s playing the roles of ε and `, and, each Pi
consisting of exactly one of the paths constructed above. We thus obtain E� ⊆ E(Γ) such
that Gexc∪E� admits a decomposition D′′∪Dexc where D′′ is a set of at most βn cycles and Dexc

is a set of at most β−2 exceptional edges. Add all edges in E� and Gexc to G′. By part (b) of
Lemma 4.16, V0, V1, . . . , Vk is a (ζ, β, k,m,m′, R′)-superregular equalised partition of Γ.

Set Γ̃ := Γ. For the proof of Lemma 5.3, add all cycles in D′′ to D. By construction, D ∪Dexc

satisfies the desired properties. For the proof of Lemma 5.4, split each cycle in D′′ into two
paths and add them to D. Add the edges in Dexc to D. This completes the proof of Lemmas 5.3
and 5.4. �

5.4. Covering the leftovers. This section corresponds to Step 4 of the proof overview. We
will need the following fact.

Fact 5.7. Assume G is Eulerian and e ∈ E(G). Then G contains a cycle C such that e ∈ C.

Lemma 5.8. Suppose 0 < 1
n �

1
k � d� β ≤ 1 and d′ := d

1
105 . Let G and Γ be edge-disjoint

graphs on vertex set V of size n such that G∪Γ is Eulerian and ∆(G) ≤ dn. Assume V0, V1, . . . , Vk
is an (d, β, k,m,m′, R)-superregular equalised partition of Γ such that any x ∈ V \ V0 belongs
to at least βk superregular pairs of Γ. Moreover, suppose that V0 is a set of isolated vertices
in G. Then there exists E ⊆ E(Γ) such that G ∪ E can be decomposed into at most 2βn cycles.
Moreover, V0, V1, . . . , Vk is a (d′, β, k,m,m′, R)-superregular equalised partition of Γ \ E.

Proof. Fix an additional constant ζ such that d � ζ � β. The idea is to decompose G into
matchings and then apply Lemmas 4.12, 4.13, and 4.16 to tie the edges in each matching together
to form cycles using Γ.
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By Vizing’s theorem (Theorem 4.17), we can decompose G into ` ≤ dn+1 ≤ 2dn matchings M1,
. . . ,M`. Randomly split each matching Mi into 2ζ−1 submatchings Mi,1, . . . ,Mi,2ζ−1 , by

including each edge of Mi to Mi,j independently with probability ζ
2 for each j ∈

[
2ζ−1

]
.

By Lemma 3.1, we may assume that for each i ∈ [`] and i′ ∈
[
2ζ−1

]
, we have |Mi,i′ | ≤ ζn and

for each j ∈ [k], we have |V (Mi,i′) ∩ Vj | ≤ ζm. For simplicity, set `′ := 2`
ζ ≤ ζn and relabel

M1,1, . . . ,M1,2ζ−1 , . . . ,M`,1, . . . ,M`,2ζ−1 to M1, . . . ,M`′ . We successively apply Lemmas 4.12,
4.13, and 4.16, starting with d,M1, . . . ,M`′ playing the roles of ε,P1, . . . ,P` in Lemma 4.12. We
thus obtain E1 ⊆ E(Γ) such that G ∪ E1 admits a decomposition D ∪ D′ where D is a set of
at most βn cycles and D′ is a set of at most β−2 edges. Moreover, by Lemma 4.2 and part (b)

of Lemmas 4.12, 4.13, and 4.16, V0, V1, . . . , Vk is a (d
1

2·104 , β, k,m,m′, R)-superregular equalised
partition of Γ \ E1. By Fact 5.7 and Lemma 4.2, there exists E2 ⊆ Γ \ E1 such that E(D′) ∪ E2

can be decomposed into at most β−2 cycles and V0, V1, . . . , Vk is a (d′, β, k,m,m′, R)-superregular
equalised partition of Γ \ (E1 ∪ E2). Let E := E1 ∪ E2. This completes the proof. �

5.5. Fully decomposing Γ. This section corresponds to Step 5 of the proof overview.

Lemma 5.9. Let 0 < 1
m �

1
k �

1
K � ε � 1

q �
1
f � d � 1

` ,
1
g � 1 and suppose that

K
7 ,

2K
f ,

2K
g ,

q
f ,

m
4`K ,

fm
qK ,

4fK
3g(g−1) ,

`
2 ∈ N∗. Let G be an Eulerian graph on n vertices. Assume that

V0, V1, . . . , Vk is a partition of V (G) into an exceptional set V0 consisting of at most εn isolated
vertices and k clusters V1, . . . , Vk of size m such that the corresponding reduced graph R of G is
a cycle of even length, and for each ij ∈ E(R), the pair G[Vi, Vj ] is [ε, d]-superregular. Then G

admits a cycle decomposition D of size at most dm+ ε
1
16m.

To prove Lemma 5.9, we will use the robust decomposition lemma (Lemma 4.22). In order to
apply this result, m needs to satisfy certain divisibility conditions and we need to find several
refinements of the partition V0, V1, . . . , Vk. This would not be possible if, for example, m was
prime. This explains why it is necessary to introduce the parameters K, q, f, `, and g in the
statement of Lemma 5.9.

Corollary 5.10. Let 0 < 1
m �

1
k ≤

1
L �

1
K � ε � 1

q �
1
f � d � 1

` ,
1
g � 1 and

suppose that K
7 ,

2K
f ,

2K
g ,

q
f ,

m′

4`K ,
fm′

qK , 4fK
3g(g−1) ,

`
2 ∈ N∗. Let G be an n-vertex Eulerian graph and

assume V0, V1, . . . , Vk is an (ε, d, k,m,m′, R)-superregular equalised partition of G such that V0

is a set of isolated vertices in G. Assume R admits a decomposition DR satisfying the following
properties. DR consists of at most k

2 cycles whose lengths are even and at least L. Moreover, for
any distinct i, j, j′ ∈ [k], if VjViV

′
j is a subpath of a cycle in DR, then the support clusters of Vi

with respect to Vj and Vj′ are the same. Then G admits a cycle decomposition D of size at most
dn
2 + ε

1
33n.

Proof. Let D := ∅. First apply Lemma 4.20 and add the cycles obtained to D and delete
their edges from G. Then, for each cycle C = Vi1 . . . Vik′ in DR, apply Lemma 5.9 with

2
√
ε, Vi1 , . . . , Vik′ , ik′ ,m

′, |V0|+ ik′m
′ and G[V0 ∪ VG(C)] playing the roles of ε, V1, . . . , Vk, k,m, n

and G, respectively, and add the cycles obtained to D. �

To prove Lemma 5.9, we will find an approximate decomposition of G using Lemma 5.12
and cover the leftover using the robust decomposition lemma (introduced in Section 4.4). The
approximate decomposition will be obtained be repeatedly applying the following lemma, which
is a special case of [27, Lemma 6.4].

Lemma 5.11. Let 0 < 1
m � d′ � ε� d� ζ, 1

t ≤
1
2 and k ≥ 3. Let G be a graph and V1, . . . , Vk

be a partition of V (G) into k clusters of size m. Suppose that the following hold.

• For each i ∈ [k − 1], G[Vi, Vi+1] is a perfect matching Mi.

• G[V1, Vk] is (ε, d′, ζd′, td
′

d )-superregular.

Then, G[V1, Vk] contains a perfect matching M such that M ∪
(⋃k−1

i=1 Mi

)
is a Hamilton cycle

of G.
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Lemma 5.12. Suppose 0 < 1
m �

1
k � d′ � ε� d ≤ 1. Let

r :=
18d′m

d
and h := dm− r,

and assume that r, hk , dm ∈ N∗. Let G be an n-vertex graph with vertex set V . Assume that
V0, V1, . . . , Vk is a partition of V into an exceptional set V0 consisting of at most εn isolated
vertices and k clusters V1, . . . , Vk of size m such that the corresponding reduced graph R of G
is a cycle, and, for each ij ∈ E(R), the pair G[Vi, Vj ] is ε-regular and dm-regular. Then there
exists H ⊆ G such that, for each ij ∈ E(R), H[Vi, Vj ] is r-regular and G′ := G \H admits a
decomposition D into h Hamilton cycles of G′ − V0.

Proof. Let H be the empty graph on V . Let

ε1 := ε
1
12 , ε2 := ε

1
25 .

We may assume without loss of generality that E(R) := {ViVi+1 | i ∈ [k]}, where Vk+1 := V1.
For each i ∈ [k], denote Gi := G[Vi, Vi+1].

Let i ∈ [k]. Apply Lemma 4.7 to obtain an (ε1, d
′, d
′

2 ,
3d′

2d )-superregular spanning subgraph Γi ⊆
Gi. Let G′i := Gi \Γi. One can easily verify that G′i is ε1-regular and that, for each x ∈ Vi∪Vi+1,

we have dG′i(x) = (d± 3d′

2d )m.

In order to apply Lemma 5.11, we need to decompose each G′i into perfect matchings. Thus,
we will first ensure that the pairs G′i are Eulerian and then apply Lemma 4.21 to regularise
them.

Let i ∈ [k]. Apply Lemma 4.5 to obtain a Hamilton cycle x1 . . . x2m of G′i. Let i1 < · · · < i`
be the indices of the odd-degree vertices of G′i. For each s ∈ {1, 3, . . . , `− 1}, add the edges of
the path xisxis+1 . . . xis+1 to H and delete them from G′i. By construction and Lemma 4.2, G′i
is now Eulerian and ε2-regular. Moreover, we have dG′i(x) = (d± 2d′

d )m for each x ∈ Vi ∪ Vi+1.

Apply Lemma 4.21 to obtain a regular spanning subgraph G′′i of G′i. By removing perfect

matchings if necessary, we may assume G′′i is (k−1
k h)-regular. Apply Hall’s theorem to obtain a

decomposition of G′′i into edge-disjoint sets Dsi , with s ∈ [k] \ {i}, each containing h
k edge-disjoint

perfect matchings. Add all edges of G′i \G′′i to H.
Let ` ∈ [k]. Let G` be the graph on vertex set V \ V0 with E(G`) := (

⋃
i∈[k]\{`}E(D`i )) ∪ Γ`.

We construct h
k edge-disjoint Hamilton cycles C1, . . . , Ch

k
of G` such that, for each s ∈ [hk ] and

i ∈ [k] \ {`}, Cs contains a perfect matching in D`i . In particular, observe that this implies that
Cs[V`, V`+1] is a perfect matching of G`[V`, V`+1] = Γ`.

Assume inductively that we have already constructed C1, . . . , Cs for some 0 ≤ s < h
k . Delete

from G` all edges of C1, . . . , Cs. Note that since h
km � ε1, d

′, by Lemma 4.3, the pair G`[V`, V`+1]

is still (2ε1, d
′, d
′

4 ,
3d′

2d )-superregular. Let F be a spanning subgraph of G` such that, for each

i ∈ [k] \ {`}, F [Vi, Vi+1] is a perfect matching in D`i which has not been used for C1, . . . , Cs and
F [V`, V`+1] = G`[V`, V`+1]. Then, Lemma 5.11 gives a Hamilton cycle Cs+1 of F ⊆ G` satisfying
the desired properties.

Proceed as above for each ` ∈ [k] and add all cycles obtained to D. Add to H all remaining
edges of

⋃
i∈[k] Γi. This completes the proof. �

We are now ready to prove Lemma 5.9, using the robust decomposition lemma. Recall the
terminology introduced in Section 4.4.

Proof of Lemma 5.9. Let D := ∅. We will repeatedly add cycles to D. Whenever a cycle is
added to D, it is removed from G so that all cycles in D are always pairwise edge-disjoint, as
desired. In Steps 7 and 8, we will construct at most dm edge-disjoint Hamilton cycles of G. The
additional cycles will be created during the regularising step (see Step 6).

Note that k is even. We may assume without loss of generality that E(R) = {ViVi+1 | i ∈ [k]},
where Vk+1 := V1. For each i ∈ [k], denote Gi := G[Vi, Vi+1]. Decompose R into two perfect
matchings M := {ViVi+1 | i ∈ [k]odd} and M ′ := {ViVi+1 | i ∈ [k]even}. As explained in Step 5
of the proof overview, the idea is decompose each superregular pair of G into Hamilton paths
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using the robust decomposition lemma and suitable fictive edges. We will then form Hamilton
cycles of G− V0 by tying together a Hamilton path of each pair in M using an edge from each
pair in M ′, and similarly for M and M ′ exchanged.

Step 1: Choosing the constants. Fix additional constants such that

0 <
1

m
� 1

k
� d′′ � 1

K
� ε� 1

q
� 1

f
� r1K

m
� d� 1

`
,

1

g
� 1.

Let

ε1 := ε
1
12 , ε2 := ε

1
84 , ε3 := ε

1
588 , ε4 := ε

1
1177 ,

and,

ε∗1 := ε
1
3 , ε∗2 := ε

1
7 , ε∗3 := ε

1
15 , ε∗4 := ε

1
31 , ε∗5 := ε

1
125 , ε∗6 := ε

1
875 , ε∗7 := ε

1
1751 .

Let c := c(d, k) be the constant in Lemma 4.20 and define

d′ := d− 11ε∗2, r :=
9d′′m

d′
.

Observe that r(2K)2 ≤ m
K . Let

r2 := 192`g2Kr, r3 :=
2rfK

q
, r� := r1 + r2 + r − (q − 1)r3, s := 2rfK + 7r�.

Note that r, r2, r3 ≤ r1 and r� ≤ 2r1. By adjusting ε, d, and d′′ slightly, we may assume that
(d−10ε∗2)m

2 , d
′m
2 , d

′m−2r
k , r, r3 ∈ N∗.

Step 2: Constructing the bi-setups. Let i ∈ [k]. Apply Corollary 4.9 to obtain an

orientation
−→
G i of Gi such that both

−→
G i[Vi, Vi+1] and

−→
G i[Vi+1, Vi] are [ε1,

d
2 ]-superregular (here

and below, the index is taken modulo k).
For each i ∈ [k], randomly partition Vi into K subclusters Vi,1, . . . , Vi,K of equal size. This

induces, for each i ∈ [k], a partition Pi of V (
−→
G i) into 2K clusters of size m

K . By Lemma 4.10,
we may assume that for each i ∈ [k], the partition Pi is an ε2-superregular K-refinement

of {Vi, Vi+1}. Let
−→
R i be the reduced digraph of

−→
G i with respect to Pi. (Thus,

−→
R i is the

complete bipartite digraph with vertex classes of size K.) Proceed similarly to obtain, for

each i ∈ [k], an ε3-superregular `-refinement P ′i of Pi. Let
−→
R ′i be the reduced digraph of

−→
G i

with respect to P ′i.
For each i ∈ [k], let Ci := Vi,1Vi+1,1Vi,2 . . . Vi+1,K and observe that Ci is a Hamilton cycle of

−→
R i.

Thus, by construction, for each i ∈ [k], (
−→
G i,Pi,P ′i,

−→
R i,
−→
R ′i, Ci) is an (`, 2K, mK , ε3,

d
2)-bi-setup.

Step 3: Selecting the fictive edges. In this step, we will set aside a set E of edges which
will enable us to tie together the Hamilton path obtained with the robust decomposition lemma.
Then, we will construct a corresponding set F of fictive edges which will prescribe the endpoints
of the Hamilton paths (recall Figure 1). These fictive edges will then be incorporated in the
special path systems. Thus, in order to satisfy (SPS2), we will need to ensure that the endpoints
of the edges in E lie in the appropriate subclusters (see Figure 2). We start by choosing the
fictive edges which will be included in the special factors required for finding the chord absorbers
(see part (i) of Lemma 4.22).

First, proceed as in Step 2 to construct, for each i ∈ [k], an ε3-superregular q
f -refinement P∗i

of Pi. For each i ∈ [k] and Vi,j ∈ Pi, denote by Vi,j,1, . . . , Vi,j, q
f

the partition of Vi,j induced

by P∗i .
For each i ∈ [k], denote by Ii := {Ii,1, . . . , Ii,f} the canonical interval partition of Ci into f

intervals of length 2K
f . For each i ∈ [k], j ∈ [f ] and h ∈ [ qf ], apply Corollary 4.6 to obtain a

set ECAi,j,h of r3 vertex-disjoint edges of
−→
G i[Vi,j′,h, Vi+1,j′,h], where j′ := jK

f . Let ei,j,h,1, . . . , ei,j,h,r3
be an enumeration of the edges in ECAi,j,h.
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We construct fictive edges as follows. Let i ∈ [k], j ∈ [f ], and h ∈
[
q
f

]
. For each t ∈ [r3],

let fi,j,h,t be a fictive edge from x to y, where x is the endpoint of ei−1,j,h,t which belongs

to Vi and y is the endpoint of ei+1,j,h,t which belongs to Vi+1. Let FCAi,j,h be the set of all these

fictive edges. Observe that each edge in FCAi,j,h will be a suitable fictive edge for a special path

system of style h spanning the interval Ii,j . Indeed, by construction of ECAi−1,j,h and ECAi+1,j,h,

FCAi,j,h ⊆ E(
−→
G i[Vi,j′,h, Vi+1,j′,h]), where j′ := jK

f . I.e. each edge in FCAi,j,h lies in the “hth subpair”

of the penultimate pair along the interval Ii,j , as desired for (SPS2). Let ECA be the union of
the sets ECAi,j,h for each i ∈ [k], j ∈ [f ], and h ∈ [ qf ]. Let ECAi be the union of the sets ECAi,j,h for

each j ∈ [f ] and h ∈ [ qf ]. Define FCA and FCAi similarly.

Note that for all j ∈ [f ], h ∈ [ qf ], and t ∈ [r3], the graph
(⋃

i∈[k]odd
fi,j,h,t

)
∪
(⋃

i∈[k]even
ei,j,h,t

)
is a (directed) cycle of length k which intersects each of the clusters V1, . . . , Vk. The same holds
with [k]odd and [k]even exchanged. Therefore, in particular, the following property is satisfied.

(††)

ECA ∪ FCA can be decomposed into edge-disjoint (directed) cycles of length k, each
containing either

• an edge of ECA between Vi and Vi+1 for each i ∈ [k]odd and an edge of FCA
between Vi and Vi+1 for each i ∈ [k]even, or

• an edge of FCA between Vi and Vi+1 for each i ∈ [k]odd and an edge of ECA
between Vi and Vi+1 for each i ∈ [k]even.

Property (††) will eventually enable us to construct Hamilton cycles of G− V0 by tying together
a Hamilton path of each pair in M using an edge from each pair in M ′, or vice versa (recall
Figure 1).

We now select the fictive edges which will be included in the special factors required for finding
the parity chord absorbers (see part (ii) of Lemma 4.22). We proceed as above to construct,

for each i ∈ [k] and j ∈ [7], a set EPCAi,j of 5r� vertex-disjoint edges of
−→
G i[Vi,j′ , Vi+1,j′ ], where

j′ := jK
7 . For each i ∈ [k], since ECAi is a matching, by Lemma 4.2, we can ensure that ECAi

and EPCAi,j are edge-disjoint. Let EPCA be the union of the sets EPCAi,j , for i ∈ [k] and j ∈ [7].

For each i ∈ [k] and j ∈ [7], we construct a set FPCAi,j of fictive edges as above and let FPCA

be the union of these sets. Importantly, the edges in EPCA and FPCA satisfy (the analogue of)
property (††).

Define E := ECA ∪ EPCA and F := FCA ∪ FPCA. Delete from
−→
G (and G) all the edges in E .

For each i ∈ [k], note that we have deleted form
−→
G i at most 2 edges incident to each vertex

so, by Lemma 4.2, (
−→
G i,Pi,P ′i,

−→
R i,
−→
R ′i, Ci) is still an (`, 2K, mK , ε4,

d
2)-bi-setup and P∗i is still a

ε4-superregular q
f -refinement of Pi.

Step 4: Constructing the special factors. In this step, we will construct, for i ∈ [k],

edge-disjoint special factors SFi,1, . . . , SFi,r3 with parameters ( qf , f) with respect to Ci, P∗i in
−→
G i

such that, for all t ∈ [r3], Fict(SFi,t) = {fi,j,h,t | j ∈ [f ], h ∈ [ qf ]}. (Recall Figure 2.)

Let i ∈ [k], j ∈ [f ], and h ∈ [ qf ]. Suppose inductively that, for some 0 ≤ t ≤ r3, we have

constructed edge-disjoint special path systems SPSi,j,h,1, . . . , SPSi,j,h,t of style h in
−→
G i spanning

the interval Ij and such that, for each i′ ∈ [t], fi,j,h,i′ is the fictive edge contained in SPSi,j,h,i′ .
If t < r3, we construct SPSi,j,h,t+1 as follows. For simplicity, denote Ii,j = U1 . . . U 2K

f
+1 and, for

each i′ ∈ [2K
f +1], let Ui′,h denote the hth subcluster of Ui′ in P∗i . Let

−→
G ′i :=

−→
G i\

⋃
i′∈[t] SPSi,j,h,i′ .

By Lemma 4.2 and since r3 ≤ ε4
fm
qK = ε4|Ui′,h| = ε4|Ui′+1,h|,

−→
G ′i[Ui′,h, Ui′+1,h] is [2

√
ε4,≥ d

2 ]-

superregular for each i′ ∈ [2K
f ] and

−→
G ′i[U 2K

f
−1,h \V (fi,j,h,t+1), U 2K

f
,h \V (fi,j,h,t+1)] is [2

√
ε4,≥ d

2 ]-

superregular. For each i′ ∈ [2K
f ]\{2K

f −1}, apply Corollary 4.6 with
−→
G ′i[Ui′,h, Ui′+1,h], 2

√
ε4, and

d
3 playing the roles of G, ε, and α to obtain a perfect matching Mi′ in

−→
G ′i[Ui′,h, Ui′+1,h]. Apply
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Corollary 4.6 with
−→
G ′i[U 2K

f
−1,h\V (fi,j,h,t+1), U 2K

f
,h\V (fi,j,h,t+1)], 2

√
ε4, and d

3 playing the roles of

G, ε, and α to obtain a perfect matching M ′2K
f
−1

in
−→
G ′i[U 2K

f
−1,h\V (fi,j,h,t+1), U 2K

f
,h\V (fi,j,h,t+1)].

Let M 2K
f
−1 := M ′2K

f
−1
∪ {fi,j,h,t+1}. Then, SPSi,t+1 :=

⋃
i′∈[ 2K

f
]Mi′ is a special path system of

style h in
−→
G i spanning the interval Ij which is edge-disjoint from SPSi,1, . . . , SPSi,t and which

contains the fictive edge fi,j,h,t+1.
Thus, we can construct, for each i ∈ [k], j ∈ [f ], and h ∈ [ qf ], edge-disjoint special path

systems SPSi,j,h,1, . . . , SPSi,j,h,r3 of style h in
−→
G i spanning the interval Ij such that, for each

t ∈ [r3], fi,j,h,t is the fictive edge contained in SPSi,j,h,t. For each i ∈ [k] and t ∈ [r3], let
SFi,t :=

⋃
j∈[f ]

⋃
h∈[ q

f
] SPSi,j,h,t. Then, for each i ∈ [k], SFi,1, . . . , SFi,r3 are edge-disjoint

special factors with parameters ( qf , f) with respect to Ci, P∗i in
−→
G i such that, for all t ∈ [r3],

Fict(SFi,t) = {fi,j,h,t | j ∈ [f ], h ∈ [ qf ]}. For each i ∈ [k], let SFi := SFi,1 ∪ · · · ∪ SFi,r3 .

Step 5: Finding the robustly decomposable digraphs. For any i ∈ [k], we apply

Lemma 4.22 with m
K , 2K, ε4, d

2 ,
−→
G i, Pi, P ′i,

−→
R i,
−→
R ′i, Ci, and P∗i playing the roles of m, k, ε, d,

−→
G , P, P ′,

−→
R ,
−→
R ′, C, and P∗ to obtain a digraph

−→
CAi(r) satisfying the properties described in

Lemma 4.22.
Since

−→
CAi(r) ∪ SFi is (r1 + r2 + r3)-regular and r1 + r2 + r3 ≤ 3r1, Lemma 4.2 implies

that one can proceed similarly as in Step 4 to construct special factors SF ′i,1, . . . , SF
′
i,r� with

parameters (1, 7) with respect to Ci,Pi in
−→
G i which are edge-disjoint from each other and from

−→
CAi(r) ∪ SFi.

Let
−−−→
PCAi(r) and

−→
G rob
i be as in Lemma 4.22. For each i ∈ [k], delete the edges of

−→
G rob
i

from Gi (and G). Since
−→
G rob
i is (r1 + r2 + r3 + 5r� + r�)-regular, we have deleted at most

2(r1 + r2 + r3 + 5r� + r�) ≤ 30r1 ≤ εm edges incident to each vertex in Vi ∪ Vi+1. Moreover,
recall that, at the end of Step 3, we have already deleted from G the edges in E , which contains
at most two edges incident to each vertex in Gi, for each i ∈ [k]. Thus, Lemma 4.2 implies
that Gi is still [ε∗1, d]-superregular. Furthermore, (††) and its analogue for EPCA and FPCA
ensure that G is still Eulerian.

Step 6: Regularising the superregular pairs. In order to apply Lemma 5.12, we need
to regularise each superregular pair of G. We will first apply the tools of Section 4.3 to each Gi
separately, but, we will see that this yields too many cycles. We will therefore use a few further
edges of G to tie together some of the cycles obtained to form longer cycles. We make sure that,
when tying some of the cycles together, we use only a bounded number of edges incident to each
vertex. Thus, applying the tools of Section 4.3 once again will only yield a few additional cycles.

First, apply Lemma 4.20 (to the current graph G) with ε∗1 and m playing the roles of ε and m′.
Add the resulting cycles to D and delete their edges from G. Note that we have added at most c
cycles to D. Moreover, for each i ∈ [k], the pair Gi is now Eulerian and [ε∗2, d]-superregular.

For each i ∈ [k], apply Lemma 4.21 with Gi, ε
∗
2, and 2ε∗2m playing the roles of G, ε, and Θ in

order to obtain a set Ci of at most 4ε∗2m edge-disjoint cycles of length at least 2m
3 such that the

following holds. Delete the edges of Ci from Gi. Then, Gi is regular and [ε∗3, d]-superregular.
By adding additional edge-disjoint Hamilton cycles to Ci if necessary, we may assume that Gi
is (d− 10ε∗2)m-regular and |Ci| ≤ 10ε∗2m. We observe that

⋃
i∈[k] Ci may contain up to 10ε∗2mk

cycles, so we need to split each of these cycles into paths and tie them together to form fewer
cycles.

Let i ∈ [k]. Split one by one each cycle in Ci into at most 30
d paths of length at most dm

10 ,
each with an endpoint in Vi and an endpoint in Vi+1, and such that each vertex in Vi ∪ Vi+1 is
an endpoint of at most 2 paths. This is possible since the cycles in Ci have length at least 2m

3

while, on the other hand, in each step there are at most 30
d |Ci| ≤ ε

∗
3m vertices in each cluster

which are already endpoints of 2 paths. Let Pi be the set of paths obtained at the end of this
procedure and observe that |Pi| ≤ ε∗3m.
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Decompose
⋃
i∈[k]odd

Pi into at most ε∗3m sets of paths, each containing at most one path

in Pi for each i ∈ [k]odd. Decompose
⋃
i∈[k]even

Pi similarly. Let P ′
1, . . . ,P

′
`′ be the sets of

paths obtained. Thus, `′ ≤ 2ε∗3m. Apply Lemma 4.19 with ε∗3, 2ε
∗
3, `
′, and P ′

1, . . . ,P
′
`′ playing

the roles of ε, ζ, `, and P1, . . . ,P` to obtain E ⊆ E(G) such that (P ′
1 ∪ · · · ∪P ′

`′) ∪ E can be
decomposed into `′ cycles. Add these cycles to D and delete from G all the edges in E. Note
that, for each i ∈ [k], by Lemma 4.2 and part (a) of Lemma 4.19, Gi is now [ε∗4, d]-superregular
with maximum degree at most (d− 10ε∗2)m and minimum degree at least (d− 10ε∗2)m− 6.

We now need to regularise the superregular pairs of G once again. First, we apply Lemma 4.20
and add the resulting cycles to D. Then, we apply Lemma 4.21 to Gi, for each i ∈ [k], and add
all cycles obtained to D. Using similar arguments as above, we may assume that, for each i ∈ [k],

the pair Gi is now [ε∗5, d]-superregular and d′m-regular. We note that |D| ≤ 3ε∗3m ≤ ε
1
16m, as

desired.

Step 7: Approximately decomposing (the remainder of) G. Apply Lemma 5.12 with
ε∗5, d

′, d′′, and 2r playing the roles of ε, d, d′, and r to obtain H ⊆ G such that, for each i ∈ [k],
Hi := H[Vi, Vi+1] is 2r-regular and G \H can be decomposed into d′m− 2r cycles. Add these
cycles to D.

Step 8: Decomposing the leftover and robustly decomposable graphs. Let i ∈ [k].

Since Hi is 2r-regular, there exists an orientation
−→
H i of Hi such that

−→
H i[Vi∪Vi+1] is an r-regular

bipartite oriented graph with vertex classes Vi and Vi+1. Let Di be the Hamilton decomposition

of
−→
H i ∪

−→
G rob
i guaranteed by Lemma 4.22. Note that, in particular, each cycle in Di contains

exactly one fictive edge and thus corresponds to a Hamilton path of the original graph G[Vi, Vi+1].
Moreover, |Di| = s.

We form 2s cycles by removing the fictive edges in F and inserting back the edges in E as
follows. Fix a decomposition of E ∪F into edge-disjoint cycles of length k satisfying the property
described in (††). Let C be a cycle in this decomposition and assume without loss of generality
that the fictive edges in C lie between Vi and Vi+1 for i ∈ [k]odd. Let f1, e2, f3, . . . , ek be an
enumeration of the edges of C where, for each i ∈ [k], the edge fi (respectively ei) lies between Vi
and Vi+1. For each i ∈ [k]odd, let Ci ∈ Di be the cycle which contains fi. Then, by construction,
(
⋃
i∈[k]odd

Ci \ {fi})∪ (
⋃
i∈[k]even

ei) is a cycle and we add this cycle to D. We proceed in this way

for every cycle C in the cycle decomposition of E ∪ F . This gives a cycle decomposition D of

our original graph G of size at most (d′m− 2r) + 2s+ ε
1
16m ≤ dm+ ε

1
16m. �

5.6. Proof of the main theorems. We are now ready to prove Theorems 1.10(i), 1.10(ii),
1.11 and 1.13.

Proof of Theorem 1.10(ii). Let D := ∅. We will repeatedly add cycles to D. The set D will
eventually be the set of cycles for our final decomposition of G. The proof is structured as
described in Section 2.

Fix additional constants such that 0 < 1
n0
� 1

M � ε � ζ � d � β � α, δ ≤ 1 and

0 < 1
M ≤

1
L �

1
K � d� 1

q �
1
f � β � 1

` ,
1
g � 1, with K

7 .
2K
f ,

2K
g ,

q
f ,

4fK
3g(g−1) ,

`
2 ∈ N∗. Let G be

a graph on n ≥ n0 vertices with δ(G) ≥ αn. Let V := V (G) and

ε′ := ε
1
75 , ζ ′ := ζ

1
3 , d1 := d

1
107 , d2 := d

1
33
1 .

Step 1: Applying Szemerédi’s regularity lemma and setting aside some random
subgraphs Γ and Γ′. Apply Lemma 5.1 with parameters M,L, ε, ζ, d, β, α and with 4q`K
playing the role of r to obtain parameters M ′,m′ ∈ N∗, a decomposition of G into four edge-
disjoint graphs G∗,Γ,Γ′, and H, and a partition of V into k clusters V1, . . . , Vk and an exceptional
set V0 satisfying the properties described in Lemma 5.1. In particular, the following property is
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satisfied.

(‡)

The reduced graph R′ of Γ admits a decomposition DR′ such that the following hold. DR′
consists of at most k

2 cycles whose lengths are even and at least L. Moreover, for any
distinct i, j, j′ ∈ [k], if VjViVj′ is a subpath of a cycle in DR′ then the support clusters
of Vi with respect to Vj and Vj′ are the same.

Step 2: Covering the edges of G[V0]. Apply Lemma 5.2 with G∗ playing the role of G to
obtain a graph H0 ⊆ G∗ ∪ Γ satisfying properties (a)–(d) of Lemma 5.2. In particular, there
exists a decomposition D0∪D′0 of H0 such that D0 is a set of at most βn cycles and D′0 is a set of
at most β−2 edges. Add the cycles in D0 to D. Since G is Eulerian, by Fact 5.7, we can cover the
edges in D′0 with at most β−2 edge-disjoint cycles. Add these cycles to D and delete the edges
in all these cycles from G,G∗,Γ, and Γ′. Observe that by Lemmas 4.2 and 5.2, V0, V1, . . . , Vk is

• an (ε′,≥ d, k,m,m′, R)-superregular equalised partition of G∗;

• an (ε′, β, k,m,m′, R′)-superregular equalised partition of Γ; and

• an (ε′, ζ, k,m,m′, R′′)-superregular equalised partition of Γ′,

where R′ and R′′ are edge-disjoint and satisfy R′ ∪R′′ = R. Moreover, G[V0] is now empty, as
desired.

Step 3: Covering most of G∗ with at most roughly n
2 cycles. We now apply Lemma 5.3

with G∗ and ε′ playing the roles of G and ε to obtain a decomposition of G∗ ∪ Γ ∪ Γ′ into

edge-disjoint graphs G′, Γ̃, and H ′ such that G∗,Γ′ ⊆ G′ ∪H ′, Γ̃ ⊆ Γ, and properties (a)–(c) of
Lemma 5.3 are satisfied. In particular, there exists a decomposition D′ ∪D′exc of G′ such that D′
is a set of at most n

2 + 2βn cycles and D′exc is a set of at most β−2 edges. Add all cycles in D′

to D. Apply Fact 5.7 with Γ̃∪H ∪H ′∪D′exc playing the role of G to cover the edges in Dexc with
at most β−2 edge-disjoint cycles. Add these cycles to D and delete the edges in all these cycles

from Γ̃, H, and H ′. By Lemmas 4.2 and 5.3, V0, V1, . . . , Vk is a (ζ ′, β, k,m,m′, R)-superregular

equalised partition of Γ̃. Also note that ∆(H ∪H ′) ≤ 4dn+ 13ζn ≤ 5dn.

Step 4: Covering the leftovers. We now cover the edges of H∪H ′ by applying Lemma 5.8

with H ∪ H ′, Γ̃, and 5d playing the roles of G,Γ, and d to obtain a subgraph H̃ ⊆ Γ̃ and

a decomposition D̃ of H ∪ H ′ ∪ H̃ into at most 2βn cycles. Add all cycles in D̃ to D and

let Γ̃′ := Γ̃ \ H̃. By Lemma 5.8, V0, V1, . . . , Vk is a (d1, β, k,m,m
′, R′)-superregular equalised

partition of Γ̃′.

Step 5: Fully decomposing Γ. Finally, observe that Γ̃′ is an Eulerian subgraph of Γ with

the same reduced graph and the same support clusters, so property (‡) holds for Γ̃′. Thus, we

can apply Corollary 5.10 with Γ̃′, R′, d1, and β playing the roles of G,R, ε, and d to obtain a

decomposition of Γ̃′ into at most βn
2 + d2n cycles. Add these cycles to D. Then, D forms a cycle

decomposition of G and |D| ≤ n
2 + δn, as desired. �

Proof of Theorem 1.10(i). We modify the proof of Theorem 1.10(ii) to get a path decomposition
as follows. Step 1 is identical. For Step 2, we simply apply Theorem 1.1 to obtain a path
decomposition of G[V0] into at most εn paths. For Step 3, first remove an edge incident to
each exceptional vertex of odd degree in G∗ so that property (vi) of Lemma 5.4 holds. We view
these edges as individual paths in our decomposition. We can thus apply Lemma 5.4 instead of
Lemma 5.3, with the set of odd degree vertices of G∗∪H ∪Γ∪Γ′ playing the role of U . Then, by

Lemma 5.4(c′), H ∪H ′ ∪ Γ̃ is Eulerian at the end of Step 3. Thus, we can apply the arguments
of Steps 4 and 5 and split each cycle obtained in these steps into two paths in order to obtain a

path decomposition of H ∪H ′ ∪ Γ̃. One can easily verify that we obtain at most n
2 + δn paths

in total. �
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The weak quasirandomness assumed in the next two proofs allows for a more efficient
decomposition. The critical property implied by weak quasirandomness is that the reduced
graph R is connected.

Proof of Theorem 1.11. We use the same arguments as in the proof of Theorems 1.10(i) and
1.10(ii) with β � α, δ, p and applying Lemma 5.5 instead of Lemmas 5.3 and 5.4. This is possible
since the reduced graph R of G∗ is connected.

Indeed, assume for a contradiction that R is disconnected and let C be a component of R.
Let A := VG∗(C) and B := V (G) \A. Since δ(G) ≥ αn, it is easy to see that |A|, |B| ≥ αn

2 . But,
by Lemma 5.1,

eG(A,B) = eH(A,B) + eΓ(A,B) + eΓ′(A,B) + eG∗(A, V0)

≤ |A|(4dn+ (β + ε)n+ (ζ + ε)n+ εn)

< p|A||B|,

contradicting the fact that G is weakly-(α2 , p)-quasirandom.
Also observe that in the path decomposition case, we have odd(G∗∪H∪Γ∪Γ′) ≤ odd(G)+|V0|

at the point where we apply Lemma 5.5 (recall the proof of Theorem 1.10(i)), so we obtain a
decomposition of the desired size. �

Proof of Theorem 1.13. First observe that since G is weakly-(ε, p)-quasirandom, G has fewer
than εn vertices of degree less that pn

2 . Let X be the set of these vertices. We modify the proof
Theorem 1.11(i) as follows. Apply the arguments of Step 1 with G−X and p

3 playing the roles
of G and α. Add the vertices in X to the exceptional set and all edges incident to these vertices
to G∗. The remainder of the proof is identical. �

6. Concluding remarks

We conclude by deriving Theorem 1.10(iii) and providing some remarks on our results.

6.1. Proof of Theorem 1.10(iii). We now show how Theorem 1.10(iii) can be derived from
Theorem 1.10(ii). Let G be a graph. We saw in the introduction that one can remove at
most n− 1 edges of G to obtain an Eulerian graph. However, in order to apply Theorem 1.10(ii),
we also need to make sure that the resulting Eulerian graph still has linear minimum degree.

Proof of Theorem 1.10(iii). Fix ` := odd(G). Let Vodd be the set of odd-degree vertices of G.
We repeatedly remove short paths with endpoints in Vodd (but ` is left unchanged). Fix a
maximum matching M of G[Vodd]. Delete the edges of M from G and remove the vertices
in V (M) from Vodd. We observe that Vodd is now an independent set of G.

If there exists a path xyz in G such that x, z ∈ Vodd are distinct and fewer than αn
4 edges

incident to y have been deleted so far, remove the edges xy and yz from G and the vertices x, z
from Vodd. We repeat this procedure until there exists no such path of length 2.

Then, we claim that |Vodd| ≤ 2
α . Indeed, at each stage, there are at most 8

α vertices y ∈ V \Vodd

such that we have deleted at least αn
4 edges incident to y. By construction, for each x ∈ Vodd,

no edge incident to x has been deleted from G and, thus, x has more than αn
2 neighbours y such

that fewer than αn
4 edges incident to y have been deleted so far. Thus, we must have |Vodd| ≤ 2

α .
Pair all remaining vertices of Vodd such that, in each pair, the vertices belong to a same

connected component of G. By construction, δ(G) ≥ 3αn
4 − 1. Thus, for each pair (x, y) in turn,

we can find a path of length at most 5
α between x and y, which we delete from G. Let P be the

set of edge-disjoint paths deleted. Note that |E(P)| ≤ 5
α2 . Moreover, we have deleted at most

`+ 5
α2 ≤ n+ δn

2 edges in total. Finally, G is Eulerian and δ(G) ≥ αn
2 . Applying Theorem 1.10(ii)

with α
2 and δ

2 playing the roles of α and δ completes the proof. �

6.2. Some remarks on Theorem 1.11. As discussed in the introduction, we now show
that neither the linear minimum degree condition (or even the stronger assumption of linear
connectivity), nor the weakly-

(
α
2 , p
)
-quasirandom property is sufficient on its own to obtain the

bounds in Theorem 1.11.
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Proposition 6.1. For any odd integer n ≥ 20, there exists an
⌊
n
10

⌋
-connected Eulerian graph G

on 2n vertices such that the following hold.

(i) G cannot be decomposed into fewer than max
{

odd(G)
2 , ∆(G)

2

}
+ n

10 paths.

(ii) G cannot be decomposed into fewer than ∆(G)
2 + n

10 cycles.

Proof. AssumeG1, G2 are two vertex-disjoint cliques of size n and let V1 ⊆ V (G1) and V2 ⊆ V (G2)
with |V1|, |V2| =

⌊
n
10

⌋
. Let G be obtained from G1 ∪ G2 by adding two edge-disjoint perfect

matchings between V1 and V2. Note that G is an
⌊
n
10

⌋
-connected Eulerian graph on 2n vertices

with ∆(G) = n+ 1.
Since there are at most n

5 edges between G1 and G2, any cycle decomposition of G will contain
at most n

10 cycles with edges of both G1 and G2 and these will cover at most n
5 edges incident

to each vertex of G. Thus any cycle decomposition of G will contain at least 4n+5
10 cycles of G1

and at least 4n+5
10 cycles of G2. Therefore, any cycle decomposition of G will contain at least

4n
5 + 1 > ∆(G)

2 + n
10 cycles. Similar arguments show that G cannot be decomposed into fewer

than 3n
5 + 1 > max{odd(G)

2 , ∆(G)
2 }+ n

10 paths. �

Proposition 6.2. For all 0 < α ≤ 1, and all n0 ∈ N∗, the following hold.

(i) There exists a weakly-
(
α
2 ,

α2

100

)
-quasirandom graph G on n ≥ n0 vertices such that G

cannot be decomposed into fewer than max
{

odd(G)
2 , ∆(G)

2

}
+ αn

10 paths.

(ii) There exists an Eulerian weakly-
(
α
2 ,

α2

100

)
-quasirandom graph G on n ≥ n0 vertices such

that G cannot be decomposed into fewer than ∆(G)
2 + αn

10 cycles.

Proof. Let m be a sufficiently large odd integer, δ := α
10 , and ` := 2δm+4

1−2δ .

For part (i), let S` be a star with ` leaves and Km be a complete graph on m vertices such
that V (S`) ∩ V (Km) = {x} for some leaf x of S`. Let G := Km ∪ S`. Then G is graph of
order n := m+ `, with ∆(G) = m and at least ` vertices of odd degree. Let A∪B be a partition
of V (G) with |A|, |B| ≥ αn

2 . Then, both A and B contain at least αn
10 vertices of Km. Thus,

eG(A,B) ≥ α2n2

100 ≥
α2

100 |A||B| and G is weakly-(α2 ,
α2

100)-quasirandom. But, one can easily show

that G cannot be decomposed into fewer than m+1
2 + `−2

2 > max
{

odd(G)
2 ,

⌈
∆(G)+1

2

⌉}
+ αn

10 paths.

For part (ii), let G be obtained from Km by appending `
2 vertex-disjoint triangles with

exactly one endpoint in V (Km). Clearly, G is an Eulerian graph on n := m + ` vertices
with ∆(G) = m+ 1. Now let A ∪B be a partition of V (G) with |A|, |B| ≥ αn

2 . Then, similarly

as before, it follows that G is weakly-(α2 ,
α2

100)-quasirandom. But G cannot be decomposed into

fewer than m−1
2 + `

2 >
∆(G)

2 + αn
10 cycles. �

6.3. Some remarks on Conjecture 1.14. As discussed in the introduction, we show that the
Erdős-Gallai conjecture is equivalent to Conjecture 1.14.

Proposition 6.3. Conjecture 1.14 is equivalent to the Erdős-Gallai conjecture (Conjecture 1.4).

Proof. (⇐) Assume Conjecture 1.4 holds and let c be a constant such that any N -vertex graph
can be decomposed into at most cN cycles and edges, for each N ∈ N∗. Let ε� c−1, p. Let G
be as in Conjecture 1.14 and D := ∅. We repeatedly add cycles to D until it forms a cycle
decomposition of G. Weak-(ε, p)-quasirandomness implies that fewer than εn vertices of G have
degree less that pn

2 . Let S be the set of these vertices and apply the arguments of Step 1 of the
proof Theorem 1.10(ii) with G−S and p

2 playing the roles of G and α to obtain a decomposition
of G into G∗,Γ,Γ′, and H. Add the vertices in S to the exceptional set V0 and all edges incident
to these vertices to G∗. Note that we now have |V0| ≤ 2εn. Moreover, by similar arguments as
in the proof of Theorem 1.11, the reduced graph R of G∗ is connected.
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Decompose G[V0] into at most 2cεn cycles and edges. Add the cycles obtained to D and
delete their edges from G. By choosing a decomposition where the number of edges is minimal,
we may assume G[V0] is now a forest and, thus, contains at most 2εn edges.

Then, we can decompose G[V0] into ` ≤ 2εn edge-disjoint paths P1, . . . , P` such that the
following hold. For each i ∈ [`], the endpoints xi and yi of Pi have odd degree in G[V0] and,
moreover, each x ∈ V0 is an endpoint of at most one of the Pi. Let i ∈ [`]. Since G is Eulerian,
there exist x′i ∈ NG(xi) \ V0 and y′i ∈ NG(yi) \ V0. If x′i = y′i, add the cycle x′ixiPiyi to D.
Otherwise, let P ′i := x′ixiPiyiy

′
i.

Apply Lemma 4.15 with 2ε playing the role of ε and each Pi consisting of exactly one of the
paths P ′j constructed above. Add all the cycles obtained to D and delete their edges from G∗,Γ,Γ′,

and H. Thus, G∗[V0] is now empty. By Lemma 4.2 and part (b) of Lemma 4.15, V0, V1, . . . , Vk
is now an (ε

1
9 , β, k,m,m′, R′)-superregular equalised partition of Γ and an (ε

1
9 , ζ, k,m,m′, R′′)-

superregular equalised partition of Γ′. Decompose the remainder of G as in Theorem 1.11(ii)
(see Steps 3–5 of the proof of Theorem 1.10(ii)).

(⇒) Assume Conjecture 1.4 does not hold and assume for a contradiction that Conjecture 1.14
is true. Fix δ > 0 and 1

4 ≥ p > 0. Let 1 > ε > 0 and n0 be as in Conjecture 1.14 and fix a

constant c such that c ≥ δ(1 + 2
ε ). Let H be an Eulerian graph on m ≥ εn0 vertices such that

any cycle decomposition of H contains more than cm cycles. Note that such graph exists since,
as mentioned in the introduction, the Erdős-Gallai conjecture is equivalent to the problem of
decomposing Eulerian graphs of order n in O(n) cycles, and, by assumption, the Erdős-Gallai
conjecture is false.

Assume without loss of generality that 2m
ε is an odd integer. Let G be the disjoint union of H

and K 2m
ε

. Note that G is a graph on n = (1 + 2
ε )m ≥ n0 vertices. Moreover, ∆(G) = ∆(K 2m

ε
).

Thus, any cycle decomposition of G will contain more than ∆(G)
2 + cm ≥ ∆(G)

2 + δn cycles. But,

for any partition A,B of V (G) with |A|, |B| ≥ εn, we have |A|, |B| ≥ ε(1 + 2
ε )m ≥ 2m and thus

|A ∩ V (K 2m
ε

)| ≥ |A|2 and |B ∩ V (K 2m
ε

)| ≥ |B|2 . Therefore, eG(A,B) ≥ 1
4 |A||B| ≥ p|A||B| and G

is weakly-(ε, p)-quasirandom, a contradiction. �

Using Theorem 1.6 and the arguments of the proof of Proposition 6.3, one can show the
following.

Proposition 6.4. For any δ, p > 0, there exist ε, n0 > 0 such that the following hold. If G is an
Eulerian weakly-( ε

log logn , p)-quasirandom graph on n ≥ n0 vertices, then G can be decomposed

into at most ∆(G)
2 + δn cycles.
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[9] B. Csaba, D. Kühn, A. Lo, D. Osthus, and A. Treglown. Proof of the 1-factorization and Hamilton

decomposition conjectures. Memoirs of the American Mathematical Society, 244(1154), 2016.

18 Nov 2020 14:43:50 GMT

191113-Girao Version 2 - Submitted to J. London Math. Soc.



PATH AND CYCLE DECOMPOSITIONS OF DENSE GRAPHS 45

[10] N. Dean. What is the smallest number of dicycles in a dicycle decomposition of an Eulerian digraph? Journal
of Graph Theory, 10(3):299–308, 1986.

[11] N. Dean and M. Kouider. Gallai’s conjecture for disconnected graphs. Discrete Mathematics, 213(1-3):43–54,
2000.

[12] A. Donald. An upper bound for the path number of a graph. Journal of Graph Theory, 4(2):189–201, 1980.
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