6,738 research outputs found

    BLOCK: Bilinear Superdiagonal Fusion for Visual Question Answering and Visual Relationship Detection

    Full text link
    Multimodal representation learning is gaining more and more interest within the deep learning community. While bilinear models provide an interesting framework to find subtle combination of modalities, their number of parameters grows quadratically with the input dimensions, making their practical implementation within classical deep learning pipelines challenging. In this paper, we introduce BLOCK, a new multimodal fusion based on the block-superdiagonal tensor decomposition. It leverages the notion of block-term ranks, which generalizes both concepts of rank and mode ranks for tensors, already used for multimodal fusion. It allows to define new ways for optimizing the tradeoff between the expressiveness and complexity of the fusion model, and is able to represent very fine interactions between modalities while maintaining powerful mono-modal representations. We demonstrate the practical interest of our fusion model by using BLOCK for two challenging tasks: Visual Question Answering (VQA) and Visual Relationship Detection (VRD), where we design end-to-end learnable architectures for representing relevant interactions between modalities. Through extensive experiments, we show that BLOCK compares favorably with respect to state-of-the-art multimodal fusion models for both VQA and VRD tasks. Our code is available at https://github.com/Cadene/block.bootstrap.pytorch

    Optimal Transmit Covariance for Ergodic MIMO Channels

    Full text link
    In this paper we consider the computation of channel capacity for ergodic multiple-input multiple-output channels with additive white Gaussian noise. Two scenarios are considered. Firstly, a time-varying channel is considered in which both the transmitter and the receiver have knowledge of the channel realization. The optimal transmission strategy is water-filling over space and time. It is shown that this may be achieved in a causal, indeed instantaneous fashion. In the second scenario, only the receiver has perfect knowledge of the channel realization, while the transmitter has knowledge of the channel gain probability law. In this case we determine an optimality condition on the input covariance for ergodic Gaussian vector channels with arbitrary channel distribution under the condition that the channel gains are independent of the transmit signal. Using this optimality condition, we find an iterative algorithm for numerical computation of optimal input covariance matrices. Applications to correlated Rayleigh and Ricean channels are given.Comment: 22 pages, 14 figures, Submitted to IEEE Transactions on Information Theor
    corecore