5 research outputs found

    Optimal Threshold-Based Multi-Trial Error/Erasure Decoding with the Guruswami-Sudan Algorithm

    Full text link
    Traditionally, multi-trial error/erasure decoding of Reed-Solomon (RS) codes is based on Bounded Minimum Distance (BMD) decoders with an erasure option. Such decoders have error/erasure tradeoff factor L=2, which means that an error is twice as expensive as an erasure in terms of the code's minimum distance. The Guruswami-Sudan (GS) list decoder can be considered as state of the art in algebraic decoding of RS codes. Besides an erasure option, it allows to adjust L to values in the range 1<L<=2. Based on previous work, we provide formulae which allow to optimally (in terms of residual codeword error probability) exploit the erasure option of decoders with arbitrary L, if the decoder can be used z>=1 times. We show that BMD decoders with z_BMD decoding trials can result in lower residual codeword error probability than GS decoders with z_GS trials, if z_BMD is only slightly larger than z_GS. This is of practical interest since BMD decoders generally have lower computational complexity than GS decoders.Comment: Accepted for the 2011 IEEE International Symposium on Information Theory, St. Petersburg, Russia, July 31 - August 05, 2011. 5 pages, 2 figure

    Measurement based fault tolerant error correcting quantum codes on foliated cluster states

    Get PDF

    Aeronautical Engineering: a Continuing Bibliography with Indexes (Supplement 243)

    Get PDF
    This bibliography lists 423 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1989. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore