3 research outputs found

    Memory Protection in a Real-Time Operating System

    Get PDF
    During the last years the number of Electrical Control Units (ECU) in vehicles have increased rapidly with the effect of increasing costs. To meet this trend and reduce costs, applications have to be centralized into more powerful ECUs. This gives rise to new problems such as data and temporal integrity. The thesis gives an introduction to these new problems and a solution based on static time-triggered scheduling combined with memory protection. Memory protection mechanisms and hardware are evaluated, resulting in the recommendation of a platform. The thesis also propose modification and extensions to a real-time operating system used today within the Volvo Group. The work has been conducted at Volvo Technology (VTEC) in Gothenburg. VTEC is a combined research and consulting company within the Volvo Grou

    On Memory Protection in Real-Time OS for Small Embedded Systems

    No full text
    Memory protection is an important OS feature for the reliability and safety of real-time control systems. In this paper, we study the feasibility of memory protection in small embedded systems in which memory size ranges from several tens of KBytes to several hundreds of KBytes. We evaluate various protection methods in terms of memory consumption, processing overhead, multiple-thread support, region enlargement, and hardware support. We present a new protection method called Intermediate-level Skip Multi-Size Paging which skips unused intermediate-level page tables of Multi-level Paging and supports several page sizes. Our evaluation results show that this method along with Paged Segmentation and Short-Circuit Segment Tree are more cost-effective than other known memory protection methods. Also, the feasibility of Intermediate-level Skip Multi-Size Paging can be improved if a MMU supporting several page sizes is available for microprocessors

    Fault-tolerant satellite computing with modern semiconductors

    Get PDF
    Miniaturized satellites enable a variety space missions which were in the past infeasible, impractical or uneconomical with traditionally-designed heavier spacecraft. Especially CubeSats can be launched and manufactured rapidly at low cost from commercial components, even in academic environments. However, due to their low reliability and brief lifetime, they are usually not considered suitable for life- and safety-critical services, complex multi-phased solar-system-exploration missions, and missions with a longer duration. Commercial electronics are key to satellite miniaturization, but also responsible for their low reliability: Until 2019, there existed no reliable or fault-tolerant computer architectures suitable for very small satellites. To overcome this deficit, a novel on-board-computer architecture is described in this thesis.Robustness is assured without resorting to radiation hardening, but through software measures implemented within a robust-by-design multiprocessor-system-on-chip. This fault-tolerant architecture is component-wise simple and can dynamically adapt to changing performance requirements throughout a mission. It can support graceful aging by exploiting FPGA-reconfiguration and mixed-criticality.  Experimentally, we achieve 1.94W power consumption at 300Mhz with a Xilinx Kintex Ultrascale+ proof-of-concept, which is well within the powerbudget range of current 2U CubeSats. To our knowledge, this is the first COTS-based, reproducible on-board-computer architecture that can offer strong fault coverage even for small CubeSats.European Space AgencyComputer Systems, Imagery and Medi
    corecore