13,964 research outputs found

    Fast Decoder for Overloaded Uniquely Decodable Synchronous Optical CDMA

    Full text link
    In this paper, we propose a fast decoder algorithm for uniquely decodable (errorless) code sets for overloaded synchronous optical code-division multiple-access (O-CDMA) systems. The proposed decoder is designed in a such a way that the users can uniquely recover the information bits with a very simple decoder, which uses only a few comparisons. Compared to maximum-likelihood (ML) decoder, which has a high computational complexity for even moderate code lengths, the proposed decoder has much lower computational complexity. Simulation results in terms of bit error rate (BER) demonstrate that the performance of the proposed decoder for a given BER requires only 1-2 dB higher signal-to-noise ratio (SNR) than the ML decoder.Comment: arXiv admin note: substantial text overlap with arXiv:1806.0395

    Trustworthy Communications across Parallel Asynchronous Channels with Glitches

    Get PDF
    Transmission across asynchronous communication channels is subject to laser injection attacks which cause glitches – pulses that are added to the transmitted signal at arbitrary times. This paper presents self-synchronizing zero-latency or near zero-latency coding schemes that require no acknowledge and can perfectly decode any transmission distorted by glitches (as long as the percentage of glitches is not too large)

    Analytical BER Performance of DS-CDMA Ad Hoc Networks using Large Area Synchronized Spreading Codes

    No full text
    The family of operational CDMA systems is interference-limited owing to the Inter Symbol Interference (ISI) and the Multiple Access Interference (MAI) encountered. They are interference-limited, because the orthogonality of the spreading codes is typically destroyed by the frequency-selective fading channel and hence complex multiuser detectors have to be used for mitigating these impairments. By contrast, the family of Large Area Synchronous (LAS) codes exhibits an Interference Free Window (IFW), which renders them attractive for employment in cost-efficient quasi-synchronous ad hoc networks dispensing with power control. In this contribution we investigate the performance of LAS DS-CDMA assisted ad hoc networks in the context of a simple infinite mesh of rectilinear node topology and benchmark it against classic DS-CDMA using both random spreading sequences as well as Walsh-Hadamard and Orthogonal Gold codes. It is demonstrated that LAS DS-CDMA exhibits a significantly better performance than the family of classic DS-CDMA systems operating in a quasi-synchronous scenario associated with a high node density, a low number of resolvable paths and a sufficiently high number of RAKE receiver branches

    Broadcasting Automata and Patterns on Z^2

    Get PDF
    The Broadcasting Automata model draws inspiration from a variety of sources such as Ad-Hoc radio networks, cellular automata, neighbourhood se- quences and nature, employing many of the same pattern forming methods that can be seen in the superposition of waves and resonance. Algorithms for broad- casting automata model are in the same vain as those encountered in distributed algorithms using a simple notion of waves, messages passed from automata to au- tomata throughout the topology, to construct computations. The waves generated by activating processes in a digital environment can be used for designing a vari- ety of wave algorithms. In this chapter we aim to study the geometrical shapes of informational waves on integer grid generated in broadcasting automata model as well as their potential use for metric approximation in a discrete space. An explo- ration of the ability to vary the broadcasting radius of each node leads to results of categorisations of digital discs, their form, composition, encodings and gener- ation. Results pertaining to the nodal patterns generated by arbitrary transmission radii on the plane are explored with a connection to broadcasting sequences and ap- proximation of discrete metrics of which results are given for the approximation of astroids, a previously unachievable concave metric, through a novel application of the aggregation of waves via a number of explored functions

    Analytical Bit Error Rate Performance of DS-CDMA Ad Hoc Networks using Large Area Synchronous Spreading Sequences

    No full text
    The performance of large area synchronous (LAS) direct sequence code division multiple access (DS-CDMA) assisted ad hoc networks is investigated in the context of a single-hop infinite mesh of rectilinearly located ad hoc nodes. It is shown that LAS DS-CDMA exhibits a significantly better performance than the family of traditional spreading sequences used in a quasisynchronous DS-CDMA scenario having a low number of resolvable multipath components and a sufficiently high number of RAKE receiver branches. The benefits of LAS codes in ad hoc networks are multifold: (i) Their performance is noise-limited, rather than interference-limited, provided that the multipath and multi-user interference arrives within their interference free window. (ii) Under the same conditions LAS codes are robust against the ‘near–far’ effects imposed by ad hoc networks operating without base-station-aided power control, without accurate synchronisation and without implementationally complex interference cancellers
    • 

    corecore