18,557 research outputs found

    Low-frequency oscillatory correlates of auditory predictive processing in cortical-subcortical networks: a MEG-study

    Get PDF
    Emerging evidence supports the role of neural oscillations as a mechanism for predictive information processing across large-scale networks. However, the oscillatory signatures underlying auditory mismatch detection and information flow between brain regions remain unclear. To address this issue, we examined the contribution of oscillatory activity at theta/alpha-bands (4–8/8–13 Hz) and assessed directed connectivity in magnetoencephalographic data while 17 human participants were presented with sound sequences containing predictable repetitions and order manipulations that elicited prediction-error responses. We characterized the spectro-temporal properties of neural generators using a minimum-norm approach and assessed directed connectivity using Granger Causality analysis. Mismatching sequences elicited increased theta power and phase-locking in auditory, hippocampal and prefrontal cortices, suggesting that theta-band oscillations underlie prediction-error generation in cortical-subcortical networks. Furthermore, enhanced feedforward theta/alpha-band connectivity was observed in auditory-prefrontal networks during mismatching sequences, while increased feedback connectivity in the alpha-band was observed between hippocampus and auditory regions during predictable sounds. Our findings highlight the involvement of hippocampal theta/alpha-band oscillations towards auditory prediction-error generation and suggest a spectral dissociation between inter-areal feedforward vs. feedback signalling, thus providing novel insights into the oscillatory mechanisms underlying auditory predictive processing

    Entropy-based parametric estimation of spike train statistics

    Full text link
    We consider the evolution of a network of neurons, focusing on the asymptotic behavior of spikes dynamics instead of membrane potential dynamics. The spike response is not sought as a deterministic response in this context, but as a conditional probability : "Reading out the code" consists of inferring such a probability. This probability is computed from empirical raster plots, by using the framework of thermodynamic formalism in ergodic theory. This gives us a parametric statistical model where the probability has the form of a Gibbs distribution. In this respect, this approach generalizes the seminal and profound work of Schneidman and collaborators. A minimal presentation of the formalism is reviewed here, while a general algorithmic estimation method is proposed yielding fast convergent implementations. It is also made explicit how several spike observables (entropy, rate, synchronizations, correlations) are given in closed-form from the parametric estimation. This paradigm does not only allow us to estimate the spike statistics, given a design choice, but also to compare different models, thus answering comparative questions about the neural code such as : "are correlations (or time synchrony or a given set of spike patterns, ..) significant with respect to rate coding only ?" A numerical validation of the method is proposed and the perspectives regarding spike-train code analysis are also discussed.Comment: 37 pages, 8 figures, submitte

    Visually Indicated Sounds

    Get PDF
    Objects make distinctive sounds when they are hit or scratched. These sounds reveal aspects of an object's material properties, as well as the actions that produced them. In this paper, we propose the task of predicting what sound an object makes when struck as a way of studying physical interactions within a visual scene. We present an algorithm that synthesizes sound from silent videos of people hitting and scratching objects with a drumstick. This algorithm uses a recurrent neural network to predict sound features from videos and then produces a waveform from these features with an example-based synthesis procedure. We show that the sounds predicted by our model are realistic enough to fool participants in a "real or fake" psychophysical experiment, and that they convey significant information about material properties and physical interactions

    Uncovering Causality from Multivariate Hawkes Integrated Cumulants

    Get PDF
    We design a new nonparametric method that allows one to estimate the matrix of integrated kernels of a multivariate Hawkes process. This matrix not only encodes the mutual influences of each nodes of the process, but also disentangles the causality relationships between them. Our approach is the first that leads to an estimation of this matrix without any parametric modeling and estimation of the kernels themselves. A consequence is that it can give an estimation of causality relationships between nodes (or users), based on their activity timestamps (on a social network for instance), without knowing or estimating the shape of the activities lifetime. For that purpose, we introduce a moment matching method that fits the third-order integrated cumulants of the process. We show on numerical experiments that our approach is indeed very robust to the shape of the kernels, and gives appealing results on the MemeTracker database

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201
    • …
    corecore