59,322 research outputs found

    Learning to Represent Haptic Feedback for Partially-Observable Tasks

    Full text link
    The sense of touch, being the earliest sensory system to develop in a human body [1], plays a critical part of our daily interaction with the environment. In order to successfully complete a task, many manipulation interactions require incorporating haptic feedback. However, manually designing a feedback mechanism can be extremely challenging. In this work, we consider manipulation tasks that need to incorporate tactile sensor feedback in order to modify a provided nominal plan. To incorporate partial observation, we present a new framework that models the task as a partially observable Markov decision process (POMDP) and learns an appropriate representation of haptic feedback which can serve as the state for a POMDP model. The model, that is parametrized by deep recurrent neural networks, utilizes variational Bayes methods to optimize the approximate posterior. Finally, we build on deep Q-learning to be able to select the optimal action in each state without access to a simulator. We test our model on a PR2 robot for multiple tasks of turning a knob until it clicks.Comment: IEEE International Conference on Robotics and Automation (ICRA), 201

    A scalable multi-core architecture with heterogeneous memory structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs)

    Full text link
    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multi-core neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.Comment: 17 pages, 14 figure

    Nanophotonic reservoir computing with photonic crystal cavities to generate periodic patterns

    Get PDF
    Reservoir computing (RC) is a technique in machine learning inspired by neural systems. RC has been used successfully to solve complex problems such as signal classification and signal generation. These systems are mainly implemented in software, and thereby they are limited in speed and power efficiency. Several optical and optoelectronic implementations have been demonstrated, in which the system has signals with an amplitude and phase. It is proven that these enrich the dynamics of the system, which is beneficial for the performance. In this paper, we introduce a novel optical architecture based on nanophotonic crystal cavities. This allows us to integrate many neurons on one chip, which, compared with other photonic solutions, closest resembles a classical neural network. Furthermore, the components are passive, which simplifies the design and reduces the power consumption. To assess the performance of this network, we train a photonic network to generate periodic patterns, using an alternative online learning rule called first-order reduced and corrected error. For this, we first train a classical hyperbolic tangent reservoir, but then we vary some of the properties to incorporate typical aspects of a photonics reservoir, such as the use of continuous-time versus discrete-time signals and the use of complex-valued versus real-valued signals. Then, the nanophotonic reservoir is simulated and we explore the role of relevant parameters such as the topology, the phases between the resonators, the number of nodes that are biased and the delay between the resonators. It is important that these parameters are chosen such that no strong self-oscillations occur. Finally, our results show that for a signal generation task a complex-valued, continuous-time nanophotonic reservoir outperforms a classical (i.e., discrete-time, real-valued) leaky hyperbolic tangent reservoir (normalized root-mean-square errors = 0.030 versus NRMSE = 0.127)

    PYRO-NN: Python Reconstruction Operators in Neural Networks

    Full text link
    Purpose: Recently, several attempts were conducted to transfer deep learning to medical image reconstruction. An increasingly number of publications follow the concept of embedding the CT reconstruction as a known operator into a neural network. However, most of the approaches presented lack an efficient CT reconstruction framework fully integrated into deep learning environments. As a result, many approaches are forced to use workarounds for mathematically unambiguously solvable problems. Methods: PYRO-NN is a generalized framework to embed known operators into the prevalent deep learning framework Tensorflow. The current status includes state-of-the-art parallel-, fan- and cone-beam projectors and back-projectors accelerated with CUDA provided as Tensorflow layers. On top, the framework provides a high level Python API to conduct FBP and iterative reconstruction experiments with data from real CT systems. Results: The framework provides all necessary algorithms and tools to design end-to-end neural network pipelines with integrated CT reconstruction algorithms. The high level Python API allows a simple use of the layers as known from Tensorflow. To demonstrate the capabilities of the layers, the framework comes with three baseline experiments showing a cone-beam short scan FDK reconstruction, a CT reconstruction filter learning setup, and a TV regularized iterative reconstruction. All algorithms and tools are referenced to a scientific publication and are compared to existing non deep learning reconstruction frameworks. The framework is available as open-source software at \url{https://github.com/csyben/PYRO-NN}. Conclusions: PYRO-NN comes with the prevalent deep learning framework Tensorflow and allows to setup end-to-end trainable neural networks in the medical image reconstruction context. We believe that the framework will be a step towards reproducible researchComment: V1: Submitted to Medical Physics, 11 pages, 7 figure

    Nearly extensive sequential memory lifetime achieved by coupled nonlinear neurons

    Full text link
    Many cognitive processes rely on the ability of the brain to hold sequences of events in short-term memory. Recent studies have revealed that such memory can be read out from the transient dynamics of a network of neurons. However, the memory performance of such a network in buffering past information has only been rigorously estimated in networks of linear neurons. When signal gain is kept low, so that neurons operate primarily in the linear part of their response nonlinearity, the memory lifetime is bounded by the square root of the network size. In this work, I demonstrate that it is possible to achieve a memory lifetime almost proportional to the network size, "an extensive memory lifetime", when the nonlinearity of neurons is appropriately utilized. The analysis of neural activity revealed that nonlinear dynamics prevented the accumulation of noise by partially removing noise in each time step. With this error-correcting mechanism, I demonstrate that a memory lifetime of order N/logNN/\log N can be achieved.Comment: 21 pages, 5 figures, the manuscript has been accepted for publication in Neural Computatio

    Accelerating Training of Deep Neural Networks via Sparse Edge Processing

    Full text link
    We propose a reconfigurable hardware architecture for deep neural networks (DNNs) capable of online training and inference, which uses algorithmically pre-determined, structured sparsity to significantly lower memory and computational requirements. This novel architecture introduces the notion of edge-processing to provide flexibility and combines junction pipelining and operational parallelization to speed up training. The overall effect is to reduce network complexity by factors up to 30x and training time by up to 35x relative to GPUs, while maintaining high fidelity of inference results. This has the potential to enable extensive parameter searches and development of the largely unexplored theoretical foundation of DNNs. The architecture automatically adapts itself to different network sizes given available hardware resources. As proof of concept, we show results obtained for different bit widths.Comment: Presented at the 26th International Conference on Artificial Neural Networks (ICANN) 2017 in Alghero, Ital
    corecore