4 research outputs found

    On large bipartite graphs of diameter 3

    Get PDF
    We consider the bipartite version of the {\it degree/diameter problem}, namely, given natural numbers d≥2d\ge2 and D≥2D\ge2, find the maximum number Nb(d,D)\N^b(d,D) of vertices in a bipartite graph of maximum degree dd and diameter DD. In this context, the bipartite Moore bound \M^b(d,D) represents a general upper bound for Nb(d,D)\N^b(d,D). Bipartite graphs of order \M^b(d,D) are very rare, and determining Nb(d,D)\N^b(d,D) still remains an open problem for most (d,D)(d,D) pairs. This paper is a follow-up to our earlier paper \cite{FPV12}, where a study on bipartite (d,D,−4)(d,D,-4)-graphs (that is, bipartite graphs of order \M^b(d,D)-4) was carried out. Here we first present some structural properties of bipartite (d,3,−4)(d,3,-4)-graphs, and later prove there are no bipartite (7,3,−4)(7,3,-4)-graphs. This result implies that the known bipartite (7,3,−6)(7,3,-6)-graph is optimal, and therefore Nb(7,3)=80\N^b(7,3)=80. Our approach also bears a proof of the uniqueness of the known bipartite (5,3,−4)(5,3,-4)-graph, and the non-existence of bipartite (6,3,−4)(6,3,-4)-graphs. In addition, we discover three new largest known bipartite (and also vertex-transitive) graphs of degree 11, diameter 3 and order 190, result which improves by 4 vertices the previous lower bound for Nb(11,3)\N^b(11,3)

    Degree/diameter problem for mixed graphs

    Get PDF
    The Degree/diameter problem asks for the largest graphs given diameter and maximum degree. This problem has been extensively studied both for directed and undirected graphs, ando also for special classes of graphs. In this work we present the state of art of the degree/diameter problem for mixed graphs
    corecore