24 research outputs found

    A Cheeger-Buser-Type inequality on CW complexes

    Full text link
    We extend the definition of boundary expansion to CW complexes and prove a Cheeger-Buser-Type relation between the spectral gap of the Laplacian and the expansion of an orientable CW complex

    High Dimensional Expanders and Property Testing

    Full text link
    We show that the high dimensional expansion property as defined by Gromov, Linial and Meshulam, for simplicial complexes is a form of testability. Namely, a simplicial complex is a high dimensional expander iff a suitable property is testable. Using this connection, we derive several testability results

    Higher Dimensional Discrete Cheeger Inequalities

    Full text link
    For graphs there exists a strong connection between spectral and combinatorial expansion properties. This is expressed, e.g., by the discrete Cheeger inequality, the lower bound of which states that λ(G)≤h(G)\lambda(G) \leq h(G), where λ(G)\lambda(G) is the second smallest eigenvalue of the Laplacian of a graph GG and h(G)h(G) is the Cheeger constant measuring the edge expansion of GG. We are interested in generalizations of expansion properties to finite simplicial complexes of higher dimension (or uniform hypergraphs). Whereas higher dimensional Laplacians were introduced already in 1945 by Eckmann, the generalization of edge expansion to simplicial complexes is not straightforward. Recently, a topologically motivated notion analogous to edge expansion that is based on Z2\mathbb{Z}_2-cohomology was introduced by Gromov and independently by Linial, Meshulam and Wallach. It is known that for this generalization there is no higher dimensional analogue of the lower bound of the Cheeger inequality. A different, combinatorially motivated generalization of the Cheeger constant, denoted by h(X)h(X), was studied by Parzanchevski, Rosenthal and Tessler. They showed that indeed λ(X)≤h(X)\lambda(X) \leq h(X), where λ(X)\lambda(X) is the smallest non-trivial eigenvalue of the ((k−1)(k-1)-dimensional upper) Laplacian, for the case of kk-dimensional simplicial complexes XX with complete (k−1)(k-1)-skeleton. Whether this inequality also holds for kk-dimensional complexes with non-complete (k−1)(k-1)-skeleton has been an open question. We give two proofs of the inequality for arbitrary complexes. The proofs differ strongly in the methods and structures employed, and each allows for a different kind of additional strengthening of the original result.Comment: 14 pages, 2 figure

    Topology of random simplicial complexes: a survey

    Full text link
    This expository article is based on a lecture from the Stanford Symposium on Algebraic Topology: Application and New Directions, held in honor of Gunnar Carlsson, Ralph Cohen, and Ib Madsen.Comment: After revisions, now 21 pages, 5 figure

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes
    corecore