8,776 research outputs found

    On k-Column Sparse Packing Programs

    Full text link
    We consider the class of packing integer programs (PIPs) that are column sparse, i.e. there is a specified upper bound k on the number of constraints that each variable appears in. We give an (ek+o(k))-approximation algorithm for k-column sparse PIPs, improving on recent results of k22kk^2\cdot 2^k and O(k2)O(k^2). We also show that the integrality gap of our linear programming relaxation is at least 2k-1; it is known that k-column sparse PIPs are Ω(k/logk)\Omega(k/ \log k)-hard to approximate. We also extend our result (at the loss of a small constant factor) to the more general case of maximizing a submodular objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail

    Algorithms to Approximate Column-Sparse Packing Problems

    Full text link
    Column-sparse packing problems arise in several contexts in both deterministic and stochastic discrete optimization. We present two unifying ideas, (non-uniform) attenuation and multiple-chance algorithms, to obtain improved approximation algorithms for some well-known families of such problems. As three main examples, we attain the integrality gap, up to lower-order terms, for known LP relaxations for k-column sparse packing integer programs (Bansal et al., Theory of Computing, 2012) and stochastic k-set packing (Bansal et al., Algorithmica, 2012), and go "half the remaining distance" to optimal for a major integrality-gap conjecture of Furedi, Kahn and Seymour on hypergraph matching (Combinatorica, 1993).Comment: Extended abstract appeared in SODA 2018. Full version in ACM Transactions of Algorithm

    On Polynomial Kernels for Integer Linear Programs: Covering, Packing and Feasibility

    Full text link
    We study the existence of polynomial kernels for the problem of deciding feasibility of integer linear programs (ILPs), and for finding good solutions for covering and packing ILPs. Our main results are as follows: First, we show that the ILP Feasibility problem admits no polynomial kernelization when parameterized by both the number of variables and the number of constraints, unless NP \subseteq coNP/poly. This extends to the restricted cases of bounded variable degree and bounded number of variables per constraint, and to covering and packing ILPs. Second, we give a polynomial kernelization for the Cover ILP problem, asking for a solution to Ax >= b with c^Tx <= k, parameterized by k, when A is row-sparse; this generalizes a known polynomial kernelization for the special case with 0/1-variables and coefficients (d-Hitting Set)

    Algorithms as Mechanisms: The Price of Anarchy of Relax-and-Round

    Full text link
    Many algorithms that are originally designed without explicitly considering incentive properties are later combined with simple pricing rules and used as mechanisms. The resulting mechanisms are often natural and simple to understand. But how good are these algorithms as mechanisms? Truthful reporting of valuations is typically not a dominant strategy (certainly not with a pay-your-bid, first-price rule, but it is likely not a good strategy even with a critical value, or second-price style rule either). Our goal is to show that a wide class of approximation algorithms yields this way mechanisms with low Price of Anarchy. The seminal result of Lucier and Borodin [SODA 2010] shows that combining a greedy algorithm that is an α\alpha-approximation algorithm with a pay-your-bid payment rule yields a mechanism whose Price of Anarchy is O(α)O(\alpha). In this paper we significantly extend the class of algorithms for which such a result is available by showing that this close connection between approximation ratio on the one hand and Price of Anarchy on the other also holds for the design principle of relaxation and rounding provided that the relaxation is smooth and the rounding is oblivious. We demonstrate the far-reaching consequences of our result by showing its implications for sparse packing integer programs, such as multi-unit auctions and generalized matching, for the maximum traveling salesman problem, for combinatorial auctions, and for single source unsplittable flow problems. In all these problems our approach leads to novel simple, near-optimal mechanisms whose Price of Anarchy either matches or beats the performance guarantees of known mechanisms.Comment: Extended abstract appeared in Proc. of 16th ACM Conference on Economics and Computation (EC'15
    corecore