2 research outputs found

    Desarrollo de habilidades relacionadas con el uso de los ordenadores como herramienta para resolver problemas en el primer curso de física para ingeniería

    Full text link
    [ES] Es usual encontrar tres asignaturas en el primer año de las carreras de ingenierías técnicas, es decir: cálculo, física general y programación. Como la física se encuentra en la base de conocimiento de las ingenierías técnicas, es naturalmente apropiada la introducción del Cálculo y la Programación como valiosas herramientas en el contexto de un problema de Física. Esto se puede lograr trasladando algunas Clases Prácticas de Física (dedicadas a la solución de problemas) hacia el laboratorio de ordenadores y por medio de una reformulación del problema, de modo que sea más adecuado para este tipo de situaciones computacionales. En este entorno, los estudiantes logran reunir, por ejemplo, herramientas de programación y métodos numéricos, junto con las leyes de la Física, con el objetivo de abordar modelos más realistas, diferentes de los que usualmente se tratan comúnmente en el pizarrón. Este tipo de problema computacional de Física incrementa la motivación de los estudiantes de ingeniería por medio de una imbibición en escenarios cuyos modelos son más cercanos a los problemas reales que ellos enfrentarán luego en el desempeño profesional y científico. Este hecho es particularmente relevante para el primer año de las carreras de ingeniería donde el desarrollo de habilidades profesionales es obviado y relegado para años superiores. En el presente trabajo ilustraremos estas ideas a través del conocido problema del "Movimiento del un cuerpo sujeto a la fuerza de arrastre del aire". Las ideas básicas de este trabajo han sido experimentadas en el curso de física de primer año de la carrera de telecomunicaciones y electrónica de la Universidad de Pinar del Río, Cuba en el año 2010.[EN] Usually one can find three subjects in the first year of the syllabus of any technical engineering career, namely, calculus, general physics and programming. Being physics a matter lying on the grounds of technical engineering it becomes naturally appropriate to introduce the use of calculus and programming as useful tools in the context of a physics problem. This can be accomplished by moving some Practical Classes of Physics (problem solving) into the computer pool and by reformulating the physics problems in order to make them more appropriate for this kind of approach. In this environment, students put together, for instance, programming tools and numerical methods, along with the physical laws in order to address more realistic models, diferent from those which can usually be treated on the blackboard. This kind of computational physics problems increases the motivation of the engineering students by embedding them into sceneries whose models are closer to those real problems they will be facing later in their professional and scientific life. This is particularly relevant for the first year of the engineering careers when the development of this kind of professional skills is usually skipped. In the present work we will illustrate these ideas by means of the known problem of "The motion of a body subject to air drag force". The basic ideas of this work have been experienced in the physics course of first year undergraduate students of telecommunication and electronics engineering of Pinar del Río University, Cuba in 2010.We would like to thank the Department of physics of Pinar del R´ıo University, Cuba for the application of this problem in its teaching process. This work has been partially supported by the Universitat Polit`ecnica de Val`encia under APICID funds and by the Ministerio de Ciencia e Innovación (Spain) under the grant DPI2008- 02953. This work has been developed is collaboration with the Teaching Innovation Group e-MACAFI from the Universitat Politècnica de ValènciaCastro-Palacio, J.; Velázquez Abad, L.; Crespo Madera, E.; Monsoriu Serra, JA. (2011). Developing computer use skills for problem solving in engineering students from the rst year physics course. Revista Brasileira de Ensino de Física. 33(3):1-11. https://doi.org/10.1590/S1806-11172011000300013S111333Riera, J., Giménez, M. H., Vidaurre, A., & Monsoriu, J. A. (2002). Digital simulation of wave motion. Computer Applications in Engineering Education, 10(3), 161-166. doi:10.1002/cae.10025Vidaurre, A., Riera, J., Giménez, M. H., & Monsoriu, J. A. (2002). Contribution of digital simulation in visualizing physics processes. Computer Applications in Engineering Education, 10(1), 45-49. doi:10.1002/cae.10016Monsoriu, J. A., Villatoro, F. R., Marín, M. J., Urchueguía, J. F., & Córdoba, P. F. de. (2005). A transfer matrix method for the analysis of fractal quantum potentials. European Journal of Physics, 26(4), 603-610. doi:10.1088/0143-0807/26/4/005Smith, R. C., & Taylor, E. F. (1995). Teaching physics on line. American Journal of Physics, 63(12), 1090-1096. doi:10.1119/1.18014Froese, T., Zhu, D., & Bhat, S. (2001). WWW courseware in applied science: Cases and lessons. Computer Applications in Engineering Education, 9(2), 63-77. doi:10.1002/cae.1007Mandal, P., Wong, K. K., & Love, P. E. D. (2000). Internet-supported flexible learning environment for teaching system dynamics to engineering students. Computer Applications in Engineering Education, 8(1), 1-10. doi:10.1002/(sici)1099-0542(2000)8:13.0.co;2-oKaw, A., & Ho, S. (2006). On introducing approximate solution methods in theory of elasticity. Computer Applications in Engineering Education, 14(2), 120-134. doi:10.1002/cae.20070Kuester, F., & Hutchinson, T. C. (2007). A virtualized laboratory for earthquake engineering education. Computer Applications in Engineering Education, 15(1), 15-29. doi:10.1002/cae.20091Sieres, J., & Fernández-Seara, J. (2006). Simulation of compression refrigeration systems. Computer Applications in Engineering Education, 14(3), 188-197. doi:10.1002/cae.20075Johnson, M. (2001). Facilitating high quality student practice in introductory physics. American Journal of Physics, 69(S1), S2-S11. doi:10.1119/1.1286094Castro Palacio, J. C., Rubayo-Soneira, J., Lombardi, A., & Aquilanti, V. (2008). Molecular dynamics simulations and hyperspherical mode analysis of NO in Kr crystals with the use of ab initio potential energy surfaces for the Kr-NO complex. International Journal of Quantum Chemistry, 108(10), 1821-1830. doi:10.1002/qua.21620Castro Palacio, J. C., Velazquez Abad, L., Lombardi, A., Aquilanti, V., & Rubayo Soneíra, J. (2007). Normal and hyperspherical mode analysis of NO-doped Kr crystals upon Rydberg excitation of the impurity. The Journal of Chemical Physics, 126(17), 174701. doi:10.1063/1.2730786Abu-Mulaweh, H. I., & Mueller, D. W. (2008). The use of LabVIEW and data acquisition unit to monitor and control a bench-top air-to-water heat pump. Computer Applications in Engineering Education, 16(2), 83-91. doi:10.1002/cae.20122Rebolj, D., Menzel, K., & Dinevski, D. (2008). A virtual classroom for information technology in construction. Computer Applications in Engineering Education, 16(2), 105-114. doi:10.1002/cae.20129Orquín, I., García-March, M.-Á., de Córdoba, P. F., Urcheguía, J. F., & Monsoriu, J. A. (2007). Introductory quantum physics courses using a LabVIEW multimedia module. Computer Applications in Engineering Education, 15(2), 124-133. doi:10.1002/cae.20100Garrett, S. L. (2004). Resource Letter: TA-1: Thermoacoustic engines and refrigerators. American Journal of Physics, 72(1), 11-17. doi:10.1119/1.1621034Monsoriu, J. A., Villatoro, F. R., Marín, M. J., Pérez, J., & Monreal, L. (2006). Quantum fractal superlattices. American Journal of Physics, 74(9), 831-836. doi:10.1119/1.2209242Timberlake, T. (2004). A computational approach to teaching conservative chaos. American Journal of Physics, 72(8), 1002-1007. doi:10.1119/1.1764559Gillies, A. D., Sinclair, B. D., & Swithenby, S. J. (1996). Feeling physics: computer packages for building concepts and understanding. Physics Education, 31(6), 362-368. doi:10.1088/0031-9120/31/6/016Galili, I., Kaplan, D., & Lehavi, Y. (2006). Teaching Faraday’s law of electromagnetic induction in an introductory physics course. American Journal of Physics, 74(4), 337-343. doi:10.1119/1.2180283Wilson, J. M., & Redish, E. F. (1989). Using Computers in Teaching Physics. Physics Today, 42(1), 34-41. doi:10.1063/1.881202Coulter, B. L., & Adler, C. G. (1979). Can a body pass a body falling through the air? American Journal of Physics, 47(10), 841-846. doi:10.1119/1.1162

    On Introducing Approximate Solution Methods in Theory of Elasticity

    No full text
    This work presents how approximate solution methods were introduced in a graduate level course of Theory of Elasticity. The three methods introduced are the finite difference method, the finite element method, and the boundary element method. All methods are exemplified by the problem of a thick-walled cylinder subject to internal pressure with an axisymmetric response. Choosing a single problem to introduce the three methods demonstrates accuracy and efficacy of each method
    corecore