9,585 research outputs found

    Partitioning the vertex set of GG to make G □ HG\,\Box\, H an efficient open domination graph

    Full text link
    A graph is an efficient open domination graph if there exists a subset of vertices whose open neighborhoods partition its vertex set. We characterize those graphs GG for which the Cartesian product Gâ–¡HG \Box H is an efficient open domination graph when HH is a complete graph of order at least 3 or a complete bipartite graph. The characterization is based on the existence of a certain type of weak partition of V(G)V(G). For the class of trees when HH is complete of order at least 3, the characterization is constructive. In addition, a special type of efficient open domination graph is characterized among Cartesian products Gâ–¡HG \Box H when HH is a 5-cycle or a 4-cycle.Comment: 16 pages, 2 figure

    Identifying codes in vertex-transitive graphs and strongly regular graphs

    Get PDF
    We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2ln(vertical bar V vertical bar) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that reach both bounds. We exhibit infinite families of vertex-transitive graphs with integer and fractional identifying codes of order vertical bar V vertical bar(alpha) with alpha is an element of{1/4, 1/3, 2/5}These families are generalized quadrangles (strongly regular graphs based on finite geometries). They also provide examples for metric dimension of graphs

    Identifying codes of corona product graphs

    Full text link
    For a vertex xx of a graph GG, let NG[x]N_G[x] be the set of xx with all of its neighbors in GG. A set CC of vertices is an {\em identifying code} of GG if the sets NG[x]∩CN_G[x]\cap C are nonempty and distinct for all vertices xx. If GG admits an identifying code, we say that GG is identifiable and denote by γID(G)\gamma^{ID}(G) the minimum cardinality of an identifying code of GG. In this paper, we study the identifying code of the corona product H⊙GH\odot G of graphs HH and GG. We first give a necessary and sufficient condition for the identifiable corona product H⊙GH\odot G, and then express γID(H⊙G)\gamma^{ID}(H\odot G) in terms of γID(G)\gamma^{ID}(G) and the (total) domination number of HH. Finally, we compute γID(H⊙G)\gamma^{ID}(H\odot G) for some special graphs GG
    • …
    corecore