20,760 research outputs found

    Dynamics of spinning test particles in Kerr spacetime

    Get PDF
    We investigate the dynamics of relativistic spinning test particles in the spacetime of a rotating black hole using the Papapetrou equations. We use the method of Lyapunov exponents to determine whether the orbits exhibit sensitive dependence on initial conditions, a signature of chaos. In the case of maximally spinning equal-mass binaries (a limiting case that violates the test-particle approximation) we find unambiguous positive Lyapunov exponents that come in pairs ± lambda, a characteristic of Hamiltonian dynamical systems. We find no evidence for nonvanishing Lyapunov exponents for physically realistic spin parameters, which suggests that chaos may not manifest itself in the gravitational radiation of extreme mass-ratio binary black-hole inspirals (as detectable, for example, by LISA, the Laser Interferometer Space Antenna)

    Certified lattice reduction

    Get PDF
    Quadratic form reduction and lattice reduction are fundamental tools in computational number theory and in computer science, especially in cryptography. The celebrated Lenstra-Lenstra-Lov\'asz reduction algorithm (so-called LLL) has been improved in many ways through the past decades and remains one of the central methods used for reducing integral lattice basis. In particular, its floating-point variants-where the rational arithmetic required by Gram-Schmidt orthogonalization is replaced by floating-point arithmetic-are now the fastest known. However, the systematic study of the reduction theory of real quadratic forms or, more generally, of real lattices is not widely represented in the literature. When the problem arises, the lattice is usually replaced by an integral approximation of (a multiple of) the original lattice, which is then reduced. While practically useful and proven in some special cases, this method doesn't offer any guarantee of success in general. In this work, we present an adaptive-precision version of a generalized LLL algorithm that covers this case in all generality. In particular, we replace floating-point arithmetic by Interval Arithmetic to certify the behavior of the algorithm. We conclude by giving a typical application of the result in algebraic number theory for the reduction of ideal lattices in number fields.Comment: 23 page

    A DEIM Induced CUR Factorization

    Full text link
    We derive a CUR matrix factorization based on the Discrete Empirical Interpolation Method (DEIM). For a given matrix AA, such a factorization provides a low rank approximate decomposition of the form ACURA \approx C U R, where CC and RR are subsets of the columns and rows of AA, and UU is constructed to make CURCUR a good approximation. Given a low-rank singular value decomposition AVSWTA \approx V S W^T, the DEIM procedure uses VV and WW to select the columns and rows of AA that form CC and RR. Through an error analysis applicable to a general class of CUR factorizations, we show that the accuracy tracks the optimal approximation error within a factor that depends on the conditioning of submatrices of VV and WW. For large-scale problems, VV and WW can be approximated using an incremental QR algorithm that makes one pass through AA. Numerical examples illustrate the favorable performance of the DEIM-CUR method, compared to CUR approximations based on leverage scores
    corecore