CERTIFIED LATTICE REDUCTION

THOMAS ESPITAU AND ANTOINE JOUX

ABsTRACT. Quadratic form reduction and lattice reduction are fundamental
tools in computational number theory and in computer science, especially in
cryptography. The celebrated Lenstra—Lenstra—Lovasz reduction algorithm
(so-called LLL) has been improved in many ways through the past decades and
remains one of the central methods used for reducing integral lattice basis. In
particular, its floating-point variants—where the rational arithmetic required
by Gram—Schmidt orthogonalization is replaced by floating-point arithmetic—
are now the fastest known. However, the systematic study of the reduction
theory of real quadratic forms or, more generally, of real lattices is not widely
represented in the literature. When the problem arises, the lattice is usually
replaced by an integral approximation of (a multiple of) the original lattice,
which is then reduced. While practically useful and proven in some special
cases, this method doesn’t offer any guarantee of success in general. In this
work, we present an adaptive-precision version of a generalized LLL algorithm
that covers this case in all generality. In particular, we replace floating-point
arithmetic by Interval Arithmetic to certify the behavior of the algorithm.
We conclude by giving a typical application of the result in algebraic number
theory for the reduction of ideal lattices in number fields.

1. INTRODUCTION

In a general setting, a lattice A is a free Z-module of finite rank, endowed with a
positive-definite bilinear form on its ambient space A®zR,, as presented for instance
in [LS17]. In particular, this definition implies that A is discrete in its ambient space
for the topology induced by the scalar product. This formalism encompasses the
well-known Fuclidean lattices when taking the canonical scalar product of R¢, but
also lattices arising from ideals in rings of integers of number fields. The rank of the
lattice A is defined as the dimension of the vector space A ®z R. By definition of
a finitely-generated free module, there exists a finite set of vectors by, ..., by € A
such that A = @Zg\ b;Z. Such a family is called a basis of the lattice and is not
unique. In fact, as soon as rk A > 2 there are infinitely many bases of A. Some
among those have interesting properties, such as having reasonably small vectors
and low orthogonality defects. They are informally called reduced bases and finding
them is the goal of lattice reduction.

Numerous algorithms arising in algebraic number theory heavily rely on lat-
tice reduction, for example, the computation of normal forms of integral matrices
(see [Jag05] for the Hermite Normal Form and [HMM98| for the Smith Normal

2010 Mathematics Subject Classification. 11H06, 11H55, 11R04.

Key words and phrases. Lattice Reduction, Quadratic forms reduction, Algorithmic number
theory .

This work has been supported in part by the European Union as H2020 Programme under
grant agreement number ERC-669891.

2 THOMAS ESPITAU AND ANTOINE JOUX

Form), class group computations in a number field [GJ16, BF13], or even the enu-
meration of points of small height near algebraic curves [E1k00].

Even for lattices that use the canonical scalar product, there is a deep link with
bilinear forms that clearly appears when considering the Gram matriz of a basis

B ={b1,...,bq}, that is, the real symmetric matrix G = ((b;, b.7>)ij'

The study of these reduction problems is not recent and goes back to the works
of Lagrange and Gauss. These early works were expressed in terms of reduction
of quadratic form, more precisely integral binary quadratic forms' and led to a
method often called Gauss’ algorithm. This method can be seen as a 2-dimensional
extension of the Euclid algorithm for computing the greatest common divisor of
two integers. In 1850, Hermite proved a general upper bound on the length of
the shortest vector in a lattice, given as a function of the dimension and of a very
important invariant called the determinant, which is defined in Section 2.1. This
bound involves the so-called Hermite constant and has recently been rephrased
in algorithmic terms [NgulO, Hermite’s Algorithms|. A century later, in 1982,
Lenstra, Lenstra and Lovasz designed the LLL algorithm [LLL82|, with the poly-
nomial factorization problem as an application, following the work of Lenstra on
integer programming |[Len83]. This algorithm constitutes a breakthrough in the
history of lattice reduction algorithm, since it is the first to have a runtime poly-
nomial in terms of the dimension. It was followed by many improvements lowering
its complexity or improving the output’s quality.

Current implementations of LLL often work with low precision approximations
in order to greatly speed-up the computations. Indeed, the algorithm works sur-
prinsingly well even with such reduced precisions, even if some care needs to be
taken to avoid infinite loops. Moreover, once the result is obtained, it can verified
efficiently as shown in [Vil07].

We propose here an alternative strategy where we not only certify that the end-
result is a reduced basis but also that the algorithm followed a valid computation
path to reach it. This strongly deviates from other approaches that have been
taken to obtain guaranteed lattice reduced basis. At first, this may seems irrele-
vant. After all, one might claim that a basis satisfying the end conditions of LLL
is what is desired and that the computation path doesn’t matter. However, as
shown in [KV16] for Siegel-reduced bases, a reduced basis chosen uniformely at
random behaves as the worst-case allowed by the final inequalities. By constrast,
bases produced by the LLL algorithm are usually much better than this worst-case.
This argues in favor of trying to follow the algorithm defintion exactly to better
understand the phenomenon. In particular, this option might be invaluable for
experiments performed toward analyzing this gap.

The present article also relies on Interval Arithmetic, a representation of reals by
intervals—whose endpoints are floating-point numbers—that contain them. Arith-
metic operations, in particular the basic operations +, —, X, + can be redefined
in this context. The main interest of this representation lies in its certification
property: if real numbers are represented by intervals, the interval resulting from
the evaluation of an algebraic expression contains the exact value of the evaluated
expression.

LThis can be viewed as the reduction of integral dimension-two lattices.

CERTIFIED LATTICE REDUCTION 3

For some authors, Interval Arithmetic was introduced by R. Moore in 1962 in
his Ph.D. thesis [Moo62]. For others, it can be dated back to 1958, in an article
of T. Sunaga [Sun09] which describes an algebraic interpretation of the lattice of
real intervals, or even sooner in 1931 as a proposal in the Ph.D. thesis [You3l]
of R.C. Young at Cambridge. Its main asset—calculating directly on sets—is
nowadays used to deterministically determine the global extrema of a continu-
ous function [RR88] or localizing the zeroes of a function and (dis)proving their
existence [JKDWO01|. Another application of Interval Arithmetic is to be able to
detect lack of precision at run-time of numerical algorithms, thanks to the guar-
antees it provides on computations. This can, in particular, be used to design
adaptive-precision numerical algorithms.

In the present paper, we propose to transform and generalize the LLL algorithm
into an adaptive-precision version, which can reduce arbitrary lattices and follows
a certified flow of execution. More precisely, it uses Interval Arithmetic to validate
the size-reduction and exchange steps that occur within LLL.

Organisation of the paper. In Section 2, we briefly introduce reduction theory
and present the L? variant of the LLL algorithm. Section 3 aims at describing the
basics of Interval Arithmetic used in Section 4 to handle the problem of represen-
tation of real lattices. The framework of this latter section is then used in Section
5 to derive a certified reduction algorithm for real lattices. Section 6 presents an
application to algorithmic number theory.

Notations and conventions.

General notations. As usual, the bold capitals Z, Q, R and C refer respectively to
the ring of integers and the fields of rational, real and complex numbers. Given a real
number z, the integral roundings floor, ceil and round to nearest integer are denoted
respectively by |z], [z], |z]. Note that the rounding operator is ambiguous when
operating on half-integers. However, either choice when rounding is acceptable in
lattice reduction algorithms. In fact, in this context, it is often enough to return
an integer close to x, not necessarily the closest.

These operators are extended to operate on vectors and matrices by point-wise
composition. The complex conjugation of z € C is denoted by the usual bar z
whereas the real and imaginary parts of a complex z are indicated by respectively
R(z) and J(z). All logarithms are taken in base 2.

Matrices and norms. For a field K, let us denote by K%*? the space of square
matrices of dimension d over K, Glg(K) its group of invertible elements and S4(K)
its subspace of symmetric matrices. For a complex matrix A, we write Af for its
conjugate transpose. For a vector v, we denote by ||v|| its absolute (or infinity)
norm, that is the maximum of the absolute value of its entries. We similarly define
the matrix max norm || B|max = max(; jye[1 ... a2 | Bi |, for any matrix B.

Computational setting. The generic complexity model used in this work is the
random-access machine (RAM) model and the computational cost is measured in
bits operations. M (k) denotes the complexity of the multiplication of two integers
of bit length at most k. It is also the cost of the multiplication of two floating-point
numbers at precision k, since the cost of arithmetic over the exponents is negligible
with regards to the cost of arithmetic over the mantissae.

4 THOMAS ESPITAU AND ANTOINE JOUX

2. BAsIcS OF LATTICE REDUCTION

2.1. Orthogonalization. Let us fix an Euclidean space (E, (-, -}), i.e. a real vector
space E together with a positive-definite bilinear form (-,-) : Ex E — R. As usual,
two vectors z,y € E are said to be orthogonal—with respect to the form (-, -)—if
(z,y) = 0. More generally a family of vectors is orthogonal if its elements are
pairwise orthogonal.

Now consider S = (b1,...,b.), a family of linearly independent vectors of E.
The flag Fg associated to S is the finite increasing chain of subspaces:

hRChRe&LRC - CPbR.
i=1

The orthogonal complement S+ is defined as the subspace {z € E | Vi, (,b;) = 0}.
Denote by m; the orthogonal projection on (by, ..., b;_1)*, with the convention that
m = Id. The Gram—Schmidt orthogonalization process—shorthanded as GSO—is
an algorithmic method for orthogonalizing S while preserving its flag. It constructs
the orthogonal set S* = (m1(b1),...,mr(br)). The computation S* can done induc-
tively as follow:

7T1(b1) = bl

i—1
V1<Z§7", Wl(bl):bz— Lj(bmbj
= (mi(b;), m5(bs))
Define the Gram matriz, associated to a family of vectors S = (by,...,b.), as the
symmetric matrix of scalar products: Gg = (<bi’bj>)(i,j)e[1mr]2' The (co)volume
of S, also called its determinant, is defined as the square root of the Gram de-
terminant det Gg. It can be easily computed from the Gram-Schmidt vectors S*

as:

covol(S) = H (|70 (b3 |

2.2. Lattices and reduction.

Definition 2.1. A (real) lattice A is a finitely generated free Z-module, endowed
with a positive-definite bilinear form (-,-) on its ambient space A @z R.

By definition of the tensor product, there is a canonical injection that sends a
vector v to v® 1 in the ambient space and preserves linear independence. Thus, the
rank of A as a Z-module, is equal to the dimension of the vector space A @7z R.

Denoting by d the rank of the lattice, a basis of A is a family by, ..., by of elements
of A such that A = @?:1 bZ.

In the sequel, we identify A with its canonical image A ® 1 and thus view the
lattice as an additive subgroup of its ambient space A ®z R. When the context
makes it clear, we may omit to write down the bilinear form associated to a lattice
A. Throughout this section, || - || stands for the Euclidean norm induced by (-,),
unless stated otherwise. As usual, any two bases (b1, ..., bq) and (b}, ..., b)) of A are
related by a unimodular transformation, i.e., a linear transformation represented
by a d X d integer matrix of determinant +1.

CERTIFIED LATTICE REDUCTION 5

Lemma 2.1. A lattice A is discrete for the topology induced by the given norm on
its ambient space. Ie., there exists a real ey > 0 such that for any pair (z,y) of
elements of A with © # y we have:

[—yll > ea-

The largest possible value for ex in the above inequality is equal to the norm of
the shortest non-zero vector of A, which is traditionally called the first minimum or
the minimum distance of the lattice and denoted by A1 (A).

Proof. Let B = (b1,...,bq) be a basis of A. Let B* = (m1(b1),...,mq(ba)) be
the orthogonal basis obtained by applying Gram-Schmidt orthogonalization to the
canonical image of B in A ®z R. This orthogonalization is taken using as scalar
product the given bilinear form.

Assume by contradiction that there exist pairs of distinct vectors with the norm
of their difference arbitrarily small. Since the difference is also an element of A,
there are non-zero elements of arbitrarily small norm in A. For any integer i > 0,
choose a vector z; in A with ||z;||*> < 27%. Decompose z; in the basis B* as x; =
Z?Zl ng)ﬂj(bj). For any pair of integers 4, j we see that |X§J)|2 175 (017 < |J@i]|? <
27%. As a consequence, each sequence x) converges to zero. Multiplying by the
basis-change matrix, we see that the coordinates of x; in the basis by, ...,bq also
converge to zero. Since these coordinates are integral, the sequences are ultimately
constant and z is also ultimately constant (and null). This contradicts the choice
of x; as a non-zero element. O

2.3. The LLL reduction algorithm. In 1982, Lenstra, Lenstra and Lovasz [LLL82]
proposed a notion called LLL reduction and a polynomial-time algorithm that com-
putes an LLL-reduced basis from arbitrary basis of the same lattice. Their reduction
notion is formally defined as follows:

Definition 2.2 (LLL reduction). A basis B = (b1,...,bq) of a lattice is said to
be §-LLL-reduced for a parameter 1/4 < 6 < 1, if the following conditions are
satisfied:

1
(1) Vi <jg, |(bj,mi(b))] < §||71'i(bi)||2 (size-reduction condition)

<bi+1, Wi(bi»
|7 (bi) ||

In order to find a basis satisfying these conditions, it suffices to iteratively modify
the current basis at any point where one of these conditions is violated. This yields
the simplest version of the LLL algorithm. As in [LLL&2]|, it is only defined for full-
rank sublattice of Z?. It was remarked by Lovész and Scarf in [LS92] that the same
algorithm also works with an arbitrary integral-valued scalar product. The method
can be extended to deal with lattices described by a generating family rather than
by a basis [Poh87].

(2) Vi, O||lmb))? < <||7T7;+1(bi+1)||2 +) (Lovdsz condition)

6 THOMAS ESPITAU AND ANTOINE JOUX

Algorithm 1: The original LLL algorithm.

Parameters: § € (1/4,1)

Input: Initial basis B = (by,...,bq)

Result: A é-LLL-reduced basis
1 k+ 2
2 Compute the 7;(b;)’s with the GSO process (Paragraph 2.1);
3 while £ < d do

4 mrjzk—1mmmm1dom¢—m—[%ﬁg%q-@;

if 0|mh—1(br—1)1* < |7 (0)I* + (O, =1 (br—1))? /|7 -1(bs—1)[|* then
| k+k+1;
else
Swap by and by_1; Update mg(by) and m,—1 (bg—1);
9 k < max(k — 1,2);
10 end
11 return (by,...,bq)

o N o O«

2.3.1. Decrease of the potential and complexity. The algorithm can only terminate
when the current lattice basis is LLL-reduced. Moreover, as shown in [LLL82|, it
terminates in polynomial time when ¢ < 1. Indeed, consider the (square of the)
product of the covolumes of the flag associated with a basis: H?Zl (|70 ()] 2o+,
which is often called its potential. This value decreases by a factor at least ! in
each exchange step and is left unchanged by other operations. Indeed:

e The flag is not modified by any operation other than swaps.
e A swap between by and bx_1 only changes the sublattice spanned by the
first k — 1 vectors. The corresponding covolume Hi:ll ||7(b;)||? decreases

by a factor at least 6! and so does the potential.

Since the total number of iterations can be bounded by twice the number of
swaps plus the dimension of the lattice, this suffices to conclude that it is bounded
by O(d?10g || B||max) Where B is the matrix of the initial basis.

As the cost of a loop iteration is of O(dn) arithmetic operations on rational
coefficients of length at most O(dlog || B||max), the total cost in term of arithmetic
operations is loosely bounded by O(d® log® | Blmax)- By being more precise in the
majoration of the bit length of the integers appearing in LLL, this analysis can be
improved. Kaltofen in [Kal83] bounds the complexity by

d5 1Og2 HB”maX >
——=—————— M (d + log || Bl| max) |-
(T M(d+ 108 | Bl

2.3.2. A bound on the norm of reduced elements.

Proposition 2.1. Let 1/4 < § < 1 be an admissible LLL parameter. Let (b, ..., bq)
be a §-LLL reduced basis of rank-d lattice (A, (-,-)). Then for any 1 <k < d:

N\ - (d—K)k
4
covol(by, ..., bx) < (5 — 4> covol(A)g.

CERTIFIED LATTICE REDUCTION 7

Note that this is an easy generalization of the bound on the norm of b; which
is given in most texts. It appears among other related inequalities in [PT08]. For
completeness, a proof is given in Appendix.

2.3.3. Floating point representation. The total cost of the LLL algorithm is domi-
nated by the computation to handle arithmetic on rational values. A first idea of
De Weger [DW87] to overcome this issue is to avoid the use of denominators by
multiplying all the quantities by their common denominator. This is slightly more
efficient in practice but doesn’t improve the asymptotics. Another idea is to remark
that the norms of the rational values remain small and to try to use approximations
instead of exact values. However, directly replacing rationals in the LLL algorithm
by floating-point approximations leads to severe drawbacks. The algorithm might
not even terminate, and the output basis is not guaranteed to be LLL-reduced.

The first provable floating-point version of the algorithm is due to Schnorr
in [Sch88], with complexity O (d*log(||Blmax)M (d + 10g || Bllmax))- One of the key
ingredients to achieve this reduction is to slightly relax the definition of the size-
reduction, in order to compensate for the approximation errors introduced by the
use of floating-point arithmetic. We call admissible any parameters (d,7) satisfying
1/4 <6< 1,and 1/2 < n < /4 and define:

Definition 2.3 ((d,n)-LLL reduction). Let (8,7) be admissible parameters. A basis
B of a lattice is said to be (8,n)-LLL-reduced if the following condition is satisfied:

(3) Wi<j, Wby, mi(b:))| <nllmi®:)||> (Approzimate size-reduction condition)
together with the Lovdsz condition, which is kept unchanged from Definition 2.2.

Using naive multiplication, the cost of Schnorr’s algorithm is cubic in log(|| B||max)-
The introduction of approximate size reduction removes the need to know with ex-
treme precision values close to half-integers. Instead, approximate size reduction
of such values can be achieved by rounding either up or down in an arbitrary
(possibly randomized) manner. In our pseudo-code, we use a function called 7-
CLOSEST-INTEGER to achieve this rounding, returning an integer at distance at
most 1 of the function’s argument.

2.4. The L? algorithm. The 1.2 algorithm is a variant of Schnorr-Euchner ver-
sion [SE94] of LLL. By contrast with the original algorithm, L2 computes the GSO
coeflicients on the fly as they are needed instead of doing a full orthogonalization at
the start. It also uses a lazy size reduction inspired by the Cholesky factorization
algorithm. These optimizations yield an improved lattice reduction with running
time

O(d(d + 108 B o)) 108 ([Bllma)).

As usual in lattice reduction, while performing the Gram-Schmidt orthogonal-
ization of B, we also compute @QR-decomposition of B into B* - M where B* is
the matrix representing the (7;(b;)); ;<4 and M is the upper unitriangular ma-
trix, whose coefficients with j > ¢ are M, ; = % Thus, the Gram matrix
associated to the basis, i.e., G = BT B satisfies:

G=M".-B".B*-M=M"-D-M

where D is a diagonal matrix whose entries are ||m;(b;)||*>. We denote by R the
matrix D - M, and thus have G = RT - M = M7 - R.

8 THOMAS ESPITAU AND ANTOINE JOUX

We give the pseudo-code of the Lazy Size-Reduction procedure as Algorithm 2
and of the L2 algorithm as Algorithm 3. Both use classical formulas relating R, M
and B* to perform the computations.

2.4.1. Precision required. The precision required by the L2-Algorithm is

1 2
dlog(E(si—Z;z + e) + o(d)

bits for any € > 0, i.e., almost linear in the dimension of the lattice. Moreover, as
discussed in [NS09], it appears that—even though this bound can be shown to be
sharp by specific examples—experiments indicate that the number of bits required
on average is, in fact, lower.

This phenomenom is well-known and is often used in existing algorithms and
softwares in the form of a compute-and-verify paradigm. For example, this is default
strategy of the well-known FPLLL [Teal6]. It relies on the fact that verifying that
a lattice basis is indeed reduced is much less costly than the reduction itself, as
shown in [Vil07]. In addition, it is necessary to take several conservative measures
in order to prevent the implementation to enter potentially infinite loops.

The approach we propose deviates from this paradigm. Instead of guaranteeing
the end-result, we want to make sure that the whole copmputation follows the
mathematical definition of the algorithm. With low-precision approximations, it is
unclear how this could be done. However, interval-arithmetic offers a neat solution
to achieve this goal.

3. INTERVAL ARITHMETIC AND ITS CERTIFICATION PROPERTY

Interval arithmetic is a representation of reals by intervals that contain them. For
instance, one can specify a value x with an error € by giving an interval of length ¢
containing x. For example, the constant 7 can be represented with an error of 1072
by the interval [3.14, 3.15]. Interval arithmetic is crucial in the context of certified
numerical computations, where reals can only be represented with finite precision.
For more details, the interested reader can consult an extensive reference, such
as [Moo77].

In the following, we denote by z a closed interval [z, z"|. We define its diameter
as the positive real z+ — = and its center as the real %(f +z7).

Given a real-valued function f(z1,...,z,) an interval-arithmetic realization of
f is an interval-valued function F' such that the interval F'(z1,...,2,) contains all
the values f(z1,...,2,) for (z1,...,2,) in 21 X --- X zy.

If F' always returns the smallest possible interval, it is called a tight realization,
otherwise it is called loose. In practice, tight realizations can only be achieved in
very simple specific cases. However, even a loose realization can suffice to certify
the correctness of a computation.

Another important property of interval arithmetic is that it can be used to
compare numbers in a certified way, as long as the intervals that represent them
are disjoint.

3.1. Some useful interval-arithmetic realizations.

CERTIFIED LATTICE REDUCTION

Algorithm 2: The lazy size reduction algorithm, n-LAZYRED.

1
2
3
4
5
6
7

8

9
10
11
12
13
14
15
16
17

Input: Initial basis B = (by,...,bq), with G, R and M. An integer
1<k<d.
Result: Size-reduces by, updates G, R, M and returns s*)

done <« false;
while done = false do
for j=1to k—1do
Rk’j — Gk,j; fori=1 to _] —1do Rk’j — Rkyj — Mj,iRk:?i;
My ; < Ry j/R; 5
end
sgk) — Gpp; for j =2 to k do sgk) — s§’i)1 — My ;-1 Ri j—1;
Rk,k — S;k);
if (maxj<r |Mg,;|) < n then done + true;
else
for i =k — 1 downto 1 do
X, < n-CLOSEST-INTEGER(Mj, ;);
for j =1toi—1do Mk,j — MkJ — XiMi,j;
end
by < by, — Zle X;b;; Update G accordingly;
end
end

Algorithm 3: The L? Algorithm.

© 0 N o bk W N

10
11
12
13
14
15
16

Parameters: § € (1/4,1),n € (1/2,V/9).
Input: Initial basis B = (b, ..., bq)
Result: A (d,n)-LLL-reduced basis
Compute G = G(by,- -+ ,by) in exact integer arithmetic;
Ri1 G
k <+ 2;
while £ < d do
Apply size reduction n-LAZYRED(k);
k' <+ k;
while (k> 2 and 6Ry_ 14 1 > s}) dok k—1;
Rk,k < Szl;
if k # k' then
fori=1to k—1do Mk-ﬂ‘ — Mk/ﬂ'; sz — Rk/ﬂ' ;
Rk-Jf — Sz,;
Insert by at pos k (before by) and update matrix G accordingly;
end
k< Ek+1;
end
return (by, - ,bq)

10 THOMAS ESPITAU AND ANTOINE JOUX

3.1.1. Integral representation of fized length. A first convenient way to represent
reals at finite precision is to use integers as an approximate representation.

Definition 3.1 (Integral representation of reals). Let x € R be an arbitrary real
number and n > 0 a non-negative integer. Define an integral representation at
accuracy? n as an interval of diameter 2:

=[X,—-1,X,+1]

together with a guarantee that 2"x belongs to z,,.

Ly

This representation is very compact, since it only requires to store the center X,
of the interval using n+[log z] bits. However, computing with this form of represen-
tation is not convenient. As a consequence, we only use it to represent immutable
values and we convert to a different representation for computations. The reason for
using the interval [X,, — 1, X,, + 1] of diameter 2 rather than [X,, — 1/2, X,, + 1/2]
(of diameter 1) is that when 2"z is very close to a half-integer, it remains possible
to easily provide a valid value for X,, without computing extraneous bits of the
representation of x.

3.1.2. Fized-point representations. In the context of lattice reduction, it is useful
to compute linear combinations with exact integral coefficients. In order to do that
with approximate values initially given by centered integral representation, it is
possible to use a fixed-point representation.

Definition 3.2 (Fixed point representation of reals). Let x € R be an arbitrary
real number and n > 0 a non-negative integer. Define a fixed-point representation
at accuracy n of radius 0 as an interval:

=X, —90,X, +]

together with a guarantee that 2"z belongs to z,,.

Ly

It is easy to add or subtract such intervals by doing the computation on the
center and by adding the two radii. It is also easy to multiply by an exact integer by
multiplying the center by the integer and the radius by its absolute value. Integral
representations are a special case of fixed-point representations, with radius equal
to 1.

3.1.3. Floating-point representation. Another way to handle real values is to use
floating point representations of the two bounds of each interval. For example, if we
denote by |x], and [z], respectively the largest floating-point number below x and
the lowest floating-point number above x written with n bits, the tightest floating-
point representation of x with n bits of precision is the interval I, (x) = [|]n, [Z]4]-

With such a representation, it becomes possible to create a realization of the
elementary operations by using careful rounding when computing approximations
of the bounds of the resulting interval, as shown in Figure 1. When speaking of the
precision of such a representation, we simply refer to the common floating-point
precision of the upper and lower bounds.

Once the elementary operations are available, they can be used to implement
certified versions of any function that can classically be computed with floating
point arithmetic.

2We use here the denomination of “accuracy” instead of “precision” to avoid confusions with
the floating-point precision as defined in paragraph 3.1.3.

CERTIFIED LATTICE REDUCTION 11

2=z + [y, y =z + y .zt +T y"]
272~ [y oyt = [z =y .zt Ty
[27.2"] x [y,y"] = [min~(p), max"(p)] where p=2"y 2y ,z7y" zty"

&
S
_t
|
AN
I
| —
=
of
|
8
+‘ =
5 ‘ —
N———
V)
5

(2]

_+1, 4+ are here respectively the + operator with rounding up or down. The same goes
for the —+, —ﬂmin*,max+ operators.

FIGURE 1. Basic arithmetic operators in Interval Arithmetic

4. APPROXIMATE LATTICES

The need to reduce lattices given by approximations, especially for number-
theoretic applications as been known for long. In particular, Buchmann gives
in [Buc94| a bound on the required precision to achieve this goal by using a di-
rect approximation of the input basis. However, this bound is computed in terms
of a quantity called the defect that can be very large and also involves the first
minimum of the lattice.

Using interval arithmetic, it becomes possible to get finer control on the precision
required to perfomr the lattice reduction, even with approximate lattices.

4.1. Approximate representation of a positive-definite matrix. A real-valued
matrix can easily be represented with the integral representation from Defini-
tion 3.1, using the same accuracy for all of its entries.

Definition 4.1 (Matrix integral representation). Let A = (a;;);; € R¥¢ be an
arbitrary real matriz of dimension d and n > 0 be a fized positive integer. A matrix
of intervals

A, = (@n)(i,j)e[l...d}%
where each a;, i, is an integral representation of a; ; is said to integrally represent A
at accuracy n.

We may omit the subscript n when the accuracy is clear from the context. Given
a matrix A, and a matrix B € A,,, there exists a unique d x d matrix A with entries
in [—2,2] such that B =2"A + A.

In particular, we may apply this representation to symmetric matrices. In that

case, we obtain the following useful lemma:

Lemma 4.1. Let S = (s;;)i; € Sa(R) be a symmetric matriz of dimension d
and S, an integral representation of S at accuracy n. Then, for any symmetric
matriz S’ in S,,, we have:

2"Xa(S) — 2d < Xg(S") < 2" N\g(S) + 2d,
where A\q(T') denotes the smallest eigenvalue of a d-dimensional symmetric ma-

triz T'.

Proof. This is a direct consequence of Weyl’s inequalities for Hermitian matrices
and of the relation S’ = 2"S+ A, where A is real symmetric with entries in [—2, 2].
Note that the eigenvalues of A all belong to [—2d, 2d). a

12 THOMAS ESPITAU AND ANTOINE JOUX

4.2. Representation of lattices. In order to represent arbitrary lattices, we first
need a description of their ambient space. We simply describe the ambient space
V' of dimension d by providing a basis v = (y1,...,74). Then, the scalar product
(;+) on V can be encoded by a Gram matrix Gy = ((¥i: %)) i jyepn .- aj2-

When the Gram matrix G, is integral, this already is a standard description of
the lattice I' spanned by «. This representation appears in particular in [Coh93,
Proposition 2.5.3]. We now extend this in order to represent bases and generating
families of arbitrary sublattices of I'. Let A be a rank r < d sublattice of I given
by a generating family ¢ = (¢1,...,¢,). Since any vector in £ belongs to I', it can
be expressed with integral coordinates in the basis v. As a consequence, we can
represent ¢ by a p x d integral matrix L. Moreover, the knowledge of G, allows us
to easily compute the scalar product of any pair of vectors in A.

All this leads to the following definition:

Definition 4.2 (Approximate representation of a lattice). Let G, and L be as

above and n be a non-negative integer. Denote by G the matriz of centers of an

integral representation G, at accuracy n of the Gram matriz G,. Then the pair
n

(G, L) € Z4xd x Zrxd Eintegml matrices is said to represent at accuracy n the
lattice A in the basis v of T'.

4.2.1. Computation of the inner product in Interval Arithmetic. Let a and b be two
vectors of A described by their vectors A and B of coordinates in the basis v. We
know that:
(a,b) = AT -G, - B.
Thus:

2"(a,b) = AT .G -B+ AT - A . B, where [AT-A-B| < <Z|Ai|> <Z|Bi|>.

This directly gives an interval representation of {(a,b).

4.3. Lattice reduction of approximate lattices. Suppose now that the Gram
matrix G, = ((m,’yj))(i)j)e[l_”d]Q representing the inner product of the ambient
space I'®@z R in the basis v is given indirectly by an algorithm or an oracle O, that
can compute each entry at any desired accuracy. We can restate the definition of a
reduced basis in this framework as:

Definition 4.3 ((J, n)-LLL reduction). Let d,n be admissible LLL parameters. Given
an integral matriz L € ZP*? that describes the vectors of a basis of a lattice A in
the basis vy, we say that (G, L) is a (8,m)-LLL reduced basis of A if and only if there
exists an ng > 0 such that for any n > ng there exists a pair (G,,, L), where G,, is
an integral representation of G, at accuracy n, which is a (§,n)-LLL reduced basis.

The computational problem associated with reduction theory can then be written
as:

Problem (Lattice Reduction for approximate representation). Let 8,7 be admis-
sible LLL parameters. Given as input an algorithm or oracle to compute G at
arbitrary precision and an integral matriz L € ZP*? that describes the vectors of a
generating family of a lattice A in the basis v: find a basis L' of A such that (G, L")
is a (0,m)-LLL reduced basis in the sense of Definition 4.3.

CERTIFIED LATTICE REDUCTION 13

Note that using interval arithmetic it suffices to check the (§,n)-LLL reduction
condition at accuracy ng to be sure it holds at any larger accuracy. Indeed, an in-
tegral representation that satisfies the condition can be refined into a more precise
integral representation by scaling up the integer representing the center by an ade-
quate power of two. This refined representation continues to satisfy the condition.

4.3.1. Accuracy of representation and space complexity. Let (G,,, L) be an integral
representation of A, at accuracy n. Then, the magnitude of the entries of G is
2" times the magnitude of the entries of G,. Thus, G, can be encoded using
O(d?(n +10g [|G+lmax)) bits.

5. GENERALIZED LLL REDUCTION WITH INTERVAL ARITHMETIC

In this Section, we adapt lattice reduction algorithms to our setting. More
precisely, we represent the information related to Gram-Schmidt vectors by interval
arithmetic using a floating-point representation as described in Section 3.1.3. For
the representation of the lattice itself, we consider two cases: either the underlying
Gram matrix is integral, or it is given by an approximate integral representation
as in Section 4.1. In the latter case, our algorithm also asks for representations
with higher accuracy until it is sufficient to yield a reduced basis for the given
lattice. The canonical case with the standard Euclidean scalar product is achieved
by setting the Gram matrix to the (exact) identity matrix.

5.1. Interval Arithmetic L? reduction with fixed precision. We first consider
the simplified case where the lattice representation is fixed. It can be either exact
or approximate with a given accuracy. In both cases, we fix a basis v = (y1,.-.,74)
and a representation of a lattice A in this basis. It is respectively an exact integral
representation (G, L) or an approximate representation (G,,, L) at accuracy n of

Gy, L) o

5.1.1. Using Interval Arithmetic in LLL. We now modify the 1.2 algorithm of [NS09]
in a few relevant places to make use of interval arithmetic instead of floating-point
arithmetic for the Gram-Schmidt-related values. Since the description of the lattice
A is already using intervals, it seems natural to use interval arithmetic in the lattice
reduction algorithm. For completeness, when the input Gram matrix is exact, we
make the updates to the Gram-Schmidt orthogonalized matrix used by LLL explicit
in the algorithm (except the simple displacements). This also emphasizes a subtle
difference with the case of an approximate input Gram matrix. Indeed, in that
case, we update the GSO-values but recompute the errors rather than relying on the
interval arithmetic to do it. This is important to gain a fine control on the error
growth during updates.

In addition, when using the technique from [Poh87] to be able to deal with lattices
given by a generating family instead of a basis, we make a slightly different choice
than in [NS09]. Instead of moving the zero vectors that are encountered during the
computation during the reduction to the start of the basis, we simply remove them.
Note that with an approximate matrix, if we discover a non-zero vector whose length
is given by an interval containing 0, it is not possible to continue the computation.
This means that the accuracy of the input is insufficient and we abort. The core
modification with interval arithmetic appears while testing the Lovész condition.
If it is not possible to decide whether the test is true or false because of interval
overlap, we also abort due to lack of precision. To be more precise, when testing

14 THOMAS ESPITAU AND ANTOINE JOUX

the Lovasz condition, we also need to check that the corresponding p coefficient is
indeed smaller than 7. The reason for this is that, when called with insufficient
precision, the Lazy reduction routine may fail to ensure that property.

In addition, if a negative number occurs when computing the norm of a vector,
it means that the given Gram matrix is not positive-definite and the algorithm
returns an error accordingly.

Algorithm 4: The (interval) lazy size reduction algorithm, 7-ILAZYRED.

Input: Initial basis L = (Lq,..., Lg), precomputed (internal) Gram matrix
Gram, interval matrices R and M, an integer 1 < k < d.

Result: Size-reduce the k-th vector of L and update the Gram matrix
Gram.

1 done < false;

2 while done = false do

3 for j=1tok—1do
Ry, j < CONVERTTOFPINTERVAL(Gramy, ;);
fori=1 to j —1do Rk’j — Rk}j — Mjﬂ‘Rk’i ;
My < Brj/Rjj;

end

o =N o w s

s§k> < CONVERTTOFPINTERVAL(Gramy, j);

9 for j =2 to k do Sg-k) — Sg-li)l — My j—1- Ry j—1;

k
10 Rk,k — S](C);

11 T (ma?](k My 5);
12 | ret < (z. <m);
13 if ret # false then done <« true;

14 else
15 for i =k — 1 downto 1 do
16 X, < n-INTERVALCLOSESTINTEGER(Mj, ;);
17 for j =1toi—1do Mk,j — MkJ' — XiMi,j;
18 Li <+ Ly — XiLi;
// Update the Gram matrix accordingly
19 Gramy, i, + Gramy;, — 2X;Gramy, ; + XfGTami,i;
20 for j =1 to i do Gramy ; < Gramy ; — X;Gram, ;;
21 for j=i+1to k—1do Gramy; < Gramy ; — X;Gram; ;;
22 for j =k +1 to d do Gram; < Gram;; — X;Gram,;;;
23 end
24 end
25 end

5.1.2. Internal precision in the exact-input case. For the classical L2 algorithm,
Section 2.4.1 states that the precision that is needed for the computations only
depends on the dimension of the lattice. It is natural to ask a similar question about
the algorithm LL: can the required internal accuracy be bounded independently of

CERTIFIED LATTICE REDUCTION 15

Algorithm 5: The TL Algorithm.

1

2

3
4
5
6
7

©

10

11
12
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36

Parameters: 6 € (1/4,1),n € (1/2,/9) admissible LLL parameters, £ € N
the internal precision used for floating-point representation.
Input: Exact representation (G, L) or approximate representation (G, L)
of a lattice given by p generating vectors in dimension d.
Result: A (d,7n) LLL-reduced basis L' (with dim(L) vectors).

k<« 2;
// Compute the Gram matrix of the basis represented by L
fori=1topfor j=1toido
if Ezact then GramL; j + LT GLj;
else GramL; ; + Interval of center LT G, L; and radius ||L;||1]|L; |1 ;
end
R;,1 < CONVERTTOFPINTERVAL(GramLi 1);
while £ < p do
// Size-reduce Lj with interval on the family (Lq,...,Lk_1)
n-ILAZYRED(k, Fzact);
if Ezact = false then for j =1 to k£ do
Update radius of GramLy, ; to || Lg|1]|L;|l1 (rounded up with ¢
significant bits)
end
kK <+ k;
while £ > 2 do
ret < (Mk',kq < 77) and (Q' Ry_1p—1> S;(ck,)l)

if ret = true then k + k — 1;
else if ret = false then break;
else return ErrorPrecision ;
end
if k # k' then
fori=1tok—1do My; < My ;; R i+ R ;
Ry Sf’;ﬁ/;
Ltmp — Lk/;

for : = k' downto k+1do L; + L;_1 ;
Lyj, <= Lymp; Move values in GramL accordingly;
else

k/
Rk,k < S](C);

if 0 € Ry and Li # 0 then return ErrorAccuracy ;

if Ry <0 then return ErrorNonPosDefinite ;
end
if L, =0 then

// Remove zero vector from L
fori=ktop—1do L;< L;;1;

p<+p—1; k< k—1; Move values in GramL accordingly;
end
k «+ max(k + 1,2);
end

return (L)

16 THOMAS ESPITAU AND ANTOINE JOUX

the entries appearing in the matrices G and L. When G is exact, i.e., integral, the
adaptation is straightforward and we obtain the following result.

Theorem 5.1. Let (6,7) be admissible LLL parameters. Let ¢ > log ((1;2;2 and let
(A, (-,-)) denote a rank-d lattice, exactly described by the pair (G, L). Let B denotes
the maximum entry in absolute value in LT GL. Then, the TT. of Figure 5 used with
{ = cd+o(d) outputs a (8,n)-LLL-reduced basis in time O(d*log B(d + log B)M(d)).
Furthermore, if T denotes the number of main loop iterations, the running time is
O(d(t + dlog dB)(d + log B)M(d)).

In fact, the bound on ¢ is made explicit in [NS09|. More precisely, it states that
for any arbitrary C' > 0 and an € €]0,1/2], it suffices to have:

(1+n)*+e

£ > 10+ 2log, d — log, min(e,n — 1/2) 4+ d(C + log, p) where p = -

For example, choosing C = ¢ =1 — 1/2 it suffices to have:
0>T(d,d,n) =10+ 2logyd —logy (n — 1/2) + (n — 1/2 + log, p) d.

When 4 is close to 1 and 7 to 1/2, the constant before d becomes smaller than 1.6.

5.1.3. Dealing with approrimate inputs. When dealing with lattices given in an
approximate form, i.e., by a representation (G,,,L) at accuracy n of (G,, L), the
analysis of the algorithms differs in three main places:

e When bounding the number of rounds 7, we can no longer assume that the
potential is an integer. As a consequence, in order to keep a polynomial
bound on 7, we need to provide a lower bound on the possible values of the
potential, rather than rely on the trivial lower bound of 1 for an integral-
valued potential.

e Since the notion of LLL-reduction is only well-defined for a positive definite
G, we need to make sure that G,, is positive-definite during the algorithm.
Otherwise, it should output an error; Algorithm 5 returns an error that G,,
is incorrect whenever it encounters a vector with a negative norm.

e When G,, is approximate, the scalar products between lattice vectors can
no longer be exactly computed. Thus, we need to able to make sure that
the errors are small enough to be compatible with the inner precision used
for Gram-Schmidt values. At first glance, this might seem easy. However,
when using update formulas to avoid recomputation of scalar products, the
estimates on errors provided by interval arithmetic can grow quite quickly.
In fact,it would prevent the update strategy from working. The key insight
is to remark that since the centers of the intervals are represented by in-
tegers, any computation on them is exact and we can use update formulas
to compute them. However, it is essential to recompute the radii of the
intervals, i.e., the errors, to prevent them from growing too quickly.

Number of rounds. Since interval arithmetic allows up to emulate exact compu-
tations as long as no failures are detected, we can analyze the number of rounds
by assuming that all computations on non-integral values are done using an exact
arithmetic oracle. In this context, the number of rounds can be studied by consid-
ering the potential as usual. Remember that the initial setting where LLL operates

CERTIFIED LATTICE REDUCTION 17

on a basis the potential is defined as

d
D(B) = H covol(B[lmi]).
i=1

The key argument is that it decreases by a multiplicative factor whenever an ex-
change is performed.

However, in our context, the starting upper bound and the ending lower bound
are different from the integer lattice setting. The initial upper bound needs to ac-
count from the presence of the positive definite matrix. So if the lattice is described
by a pair (G, L) the upper bound becomes:

D(B)? < (d?(|Gy llmaxlIL

d(d+1)/2
max) .
More importantly, it is no longer possible to claim that the potential is an integer.
Instead, we derive a lower bound by considering the smallest eigenvalue of G, and
find:

D(B)2 >)\d(g’y)d(dJrl)/Z'
As a consequence, if we let 7 denote the number of rounds of the algorithm, we

can conclude that:

T < O(d2(10g<”LHmaX) + IOg(HgWHmaX/)‘d<gv)) + log(d)).

When the lattice is given by a generating family L rather than a basis B, we
need a slightly different invariant. Following [NS09], we define d; to be the product
of the first i non-zero values ||b7||. Note that they are not necessarily consecutive,
since zeroes may occur anywhere. We then let:

dim L
D'(L) = (H dz-) A IT 2
i=1 i,b*=0
This generalized potential is needed for the proof of Theorem 5.2. Note that, for
lattices given by a basis, the two definitions coincide.

Necessary accuracy for the scalar products. In order to preserve the correctness of
the algorithm when computing with internal precision ¢, we need to check that all
conversions of scalar product values, using the calls to CONVERTTOFPINTERVAL
in Algorithms 4 and 5, have sufficient precision. For a pair of lattice elements,
described by vectors L; and L;, the relative precision on the value of their scalar
product is:

Ll [[Z412

LT GnL;|
When the vectors are close to orthogonal with respect to the scalar product given by
G, the error can be arbitrarily large. However, by carefully following the analysis
of Theorem 3 in [NS09, Section 4.1], we can show that this Theorem remains true
in our context. This suffices to ensure the correctness part of Theorem 5 of [NS09].
The first check is to verify that quantity called err; in the proof of the Theorem
remains upper bounded by 27¢. Since the value is defined as the error on the scalar
product of the vectors number ¢ and 1 divided by the norm of the first vector, we
have:
ILilla[[Lally _ mas || Lil|F _ dmaxi | L]|* _ dmax; |[bs]]*
|L?GnL1| o)\d(Gn) B Ad(Gn) B /\d(Gn)2

erry <

18 THOMAS ESPITAU AND ANTOINE JOUX

Thus:
d3 n||lmax || L 2 d3(2m max DIILIZ
erry < TGl IIQIImax < LG, e + V] QHW.
Ad(Gn) (2°Aa(G,) — 2d)

As a consequence, it suffices to have:

n > £+ O(log(|| Ll max) +10g([|G lmax/Aa(G)) + log(d)).

L? with approzimate inputs. To complete the above properties on the number of
rounds and necessary accuracy, it suffices to remark that the only additional line
of code in the approximate L? is the recomputation of interval radii on line 10.
Since it suffices to know the ¢ high-order bits of the values, this recomputation can
fully be done using arithmetic on ¢. Indeed, during the computations of ||L;||; no
cancellation occurs. As a consequence, we get the following adaptation of Theo-
rem 5.1. For completeness, we give here the case where the lattice is initially given
by a generating family of p vectors, has rank d and lives in an ambient space of
dimension D.

Theorem 5.2. Let (6,1) be such that 1/4 < § < 1 and 1/2 < n < /3. Let

¢ > log %. Assume that we are given as input (A, (-,-)) a rank-d lattice (G, L)

described by p > d generating vectors in a ambient space of dimension D > d. Fur-
ther assume that it is approximately represented at accurary N by the pair (Gn, L)
and let B denote the mazimum entry in absolute value in LTGL. Let £ = cd + o(d)
and

N > {+1og(B/Ap(G)) + log(d).
Then, the LL of Figure 5 outputs a (J,n)-LLL-reduced basis in time

O(DN (d°N + p(p — d)) M(d)).

Furthermore, if T denotes the number of main loop iterations, the running time is
O(DN(dN + 1)M(d)).

5.2. L? reduction with adaptive precision and accuracy.

5.2.1. Adaptive precision. Since by construction the TL Algorithm can detect that
the choice for internal precision £ is insufficient to correctly reduce the lattice A.
The procedure can be wrapped in a loop that geometrically increases precision /¢
after each unsuccessful iteration. This yields an adaptive precision reduction al-
gorithm ADAPTIVE-LLL. Since the complexity of floating-point multiplication is
superlinear, the use of a geometric precision growth guarantees that the total com-
plexity of this lattice reduction is asymptotically dominated by its final iteration.?

Moreover, the cost of operations in the floating-point realization of interval arith-
metic is at most four times the cost of floating-point arithmetic at the same pre-
cision. Depending on the internal representation used, this constant can even be
improved. As a consequence, for lattices that can be reduced with a low-enough
precision, it can be faster to use interval arithmetic than floating-point arithmetic
with the precision required by the bound from Section 2.4.1.

3In practice, for lattices of rank few hundreds it appears nonetheless that the computational
cost of the previous iterations lies between 20% and 40% of the total cost.

CERTIFIED LATTICE REDUCTION 19

5.2.2. Adaptive accuracy. We now turn to the setting of Section 4.3, where an al-
gorithm or oracle O, can output an integral representation of the Gram matrix
G, = (<’7ia’Yj>)(i,j)e[1---r]2 at arbitrary accuracy n. In that context, we need to
determine both the necessary accuracy and internal precision. When running Al-
gorithm 5 with some given accuracy and precision, three outcomes are possible:

e Either the reduction terminates in which case the lattice is LLL-reduced,
which implies that both accuracy and precision are sufficient.

e The Lovasz condition fails to be tested correctly, which indicates an insuffi-
cient precision. In that case, we need to test whether the precision is lower
than theoretical bound T'(d,d,n) given after Theorem 5.1 or not. In the
latter case, we know that the accuracy needs to be increased.

e The algorithm detects a non-zero vector whose norm is given by an interval
containing 0. This directly indicates insufficient accuracy.

Depending on the result of Algorithm 5, we increase the precision or the accu-
racy and restart. The corresponding pseudo-code is given in Algorithm 6. Since the
precision and accuracy both follow a geometric growth, the computation is domi-
nated by its final iteration. In particular, we may use the complexity bound given
by Theorem 5.2.

Note that when we increase the accuracy in Algorithm 6, we also reset the
precision to its minimal value. This is a matter of preference that doesn’t affect
the asymptotic complexity. In practice, it seems to be preferable.

It is important to note that we do need to precompute the eigenvalues of the
Gram matrix, since Algorithm 6 automatically detects the needed accuracy.

5.3. Possible generalizations. The adaptative strategy we describe for LLL can
be generalized to other lattice reduction algorithm. In particular, enumeration
algorithms are possible within our framework, which allows the implementation of
the BKZ algorithm of [Sch87].

It would be interesting to study a generalization to sieving techniques to adapt
them to approximate lattices.

6. APPLICATION TO ALGEBRAIC NUMBER THEORY

We now present a direct application of our lattice reduction strategy in algo-
rithmic number theory. Namely, we consider some interesting lattices sitting inside
number fields: ideal lattices.

6.1. Number fields, integers and ideal lattices.

Number fields. A number field K is a finite-dimensional algebraic extension of Q.
It can be described as:

K= Q[X]/(p) = Q(a),

where P is a monic irreducible polynomial of degree d in Z[X] and where o denotes
the image of X in the quotient.

Let (aq,...,aq) € C? denote the distinct complex roots of P. Then, there are
d distinct ring-embeddings of K in C. We define the i-th embedding o; : K — C
as the field homomorphism sending « to «;.

It is classical to distinguish embeddings induced by real roots, a.k.a., real em-
beddings from embeddings coming from (pairs of conjugate) complex roots, called
complex embeddings. Those arising from complex roots called complex embeddings.

20 THOMAS ESPITAU AND ANTOINE JOUX

Algorithm 6: The ADAPTIVE-LLL algorithm.

Parameters: 6 € (1/4,1),n € (1/2,v/3), £y € N initial precision of the
algorithm for floating-point representation, ng initial
accuracy for representing the scalar product, g > 1 geometric
growth factor.

Input: 7 a basis of a lattice (', (-,-)), and O,(n) an oracle that compute

the integral representation of the inner product (-,-) at accuracy n.

Input: A generating family represented by L in 7 of a sublattice A C I'.

Result: A (6,7) LLL-reduced basis of A represented as L' € ZK(M)xrk(A),

// Set initial values for accuracy and precision
// T(d,d,n) is the theoretical bound given after Theorem 5.1
10« fo;

2 N < Ng;

3 G O4(n);

4 succeed < false;

5 repeat

6 retcode < LL(G, L);

7 if retcode=FErrorNonPosDefinite then return ErrorNonPosDefinite;
8 if retcode=OK then succeed <« true;

9 else if retcode=FErrorPrecision then

10 0+t

11 £« min([g?],T(d,0,n),n);

12 if ¢/ =/ then retcode + ErrorAccuracy;
13 end
14 if retcode=FErrorAccuracy then

15 0« fo;

16 n < [gn];

17 G <+ Oy(n);
18 end

19 until succeed = true;
20 return L

Assume that P has r; real roots and r, pairs of conjugate complex roots, with
d = r1+2rs. Since the embeddings corresponding to conjugate roots are related by
conjugation on C, we can either keep a single complex root in each pair or replace
each pair by the real and imaginary part of the chosen root. This leads to the
Archimedean embedding o defined as:

c: K — RA

z — (01(2),..., 00 (2), V2R(0r 41(2)), V23(0p, 41 (2)), - . .)

This embedding allows us to define a real symmetric bilinear form on K:

T

d
(a,byy = o(a)-o(b) = Zai(a)ai(b).

CERTIFIED LATTICE REDUCTION 21

The second equality explains the presence of the normalization factors /2 in the
definition of 0. Note that the form is positive definite, thus endowing K with an
Euclidean structure.

Integers. Any element v of K has a minimal polynomial, defined as the unique
monic polynomial of least degree among all polynomials of Q[X] vanishing at ~.
The algebraic number « is said to be integral if its minimal polynomial lies in Z[X].
The set of all integers in K forms a ring, called the ring of integers of K and denoted
ok. It is also a free Z-module of rank d. A basis (wy, ..., w,) of ok (as a Z-module)
is called an integral basis of K.

As a consequence, using the bilinear form (-, -),, we can view ok as a lattice.

Ideals. An ideal of ok is defined as an ogx-submodule of ox. In particular, it
is a Z-submodule of rank d. Every ideal I can be described by a two-element
representation, i.e. expressed as I = aok + ok, with o and § in ok. Alternatively,
every ideal can also be described by a Z-basis formed of d elements.

6.2. Lattice reduction for ideals. With the above notations, we can directly use
our lattice reduction algorithm to reduce an ideal lattice. More precisely, given an
integral basis (w1, ..., wq) and a two-element representation of I by « and 3, we
proceed as follows:

(1) Define the Gram matrix G,, with entries (w;,w;),. It can be computed
to any desired precision from approximations of the roots of P. The roots
themselves can be computed, using, for example, the Gourdon-Schénhage
algorithm [Gou96].

(2) Let L be the matrix formed of the (integral) coordinates of (qws, ..., aw,)
and (Bws,...,Bwy) in the basis (w,...,wq).

(3) Directly apply Algorithm 6 to (G, L).

The same thing can be done, mutantis mudantis, for an ideal described by a
Z-basis.

A well-known special case. For some number fields, the Gram matrix is G,, is in-
tegral. In that case, the use of Algorithm 6 isn’t necessary and one can directly
work with an exact lattice. This is described for the special case of reducing the
full lattice corresponding to the ring of integers in [Bel04, Section 4.2] for totally
real fields. It can be generalized to CM-fields, since they satisfy the same essential
property of having an integral Gram matrix. The same application is also discussed
in [Coh93, Section 4.4.2].

Non integral case. For the general case where the Gram matrix is real, [Bel04] pro-
pose to multiply by 2¢ and round to the closest integer. It also gives a bound on the
necessary accuracy e as the logarithm of (the inverse of) the smallest diagonal entry
in the Cholesky decomposition of the Gram matrix. In some sense, this is similar
to our approach. However, without any auxiliary information on this coefficient, it
is proposed to continue increasing e as long as it is deemed unsatisfactory.

By contrast, termination of our algorithm guarantees that lattice reduction is
completed and that the output basis is LLL-reduced.

22

[Bel04]

[BF13|

[Buc94]

[Coh93|

[DW87]

[EIK00]

[GJ16]

[Gou96|

[HMMO8]

[J5g05]

[JKDWOL]

[Kal83)

[KV16|

[Len83|

[LLL82|

[LS92]

[LS17]

THOMAS ESPITAU AND ANTOINE JOUX

REFERENCES

Karim Belabas. Topics in computational algebraic number theory. J.
Théor. Nombres Bordeaux, 16:19-63, 2004.

Jean-Frangois Biasse and Claus Fieker. Improved techniques for com-
puting the ideal class group and a system of fundamental units in num-
ber fields. The Open Book Series, 1(1):113-133, 2013.

Johannes A. Buchmann. Reducing lattice bases by means of approxima-
tions. In Algorithmic Number Theory, First International Symposium,
ANTS-I, Ithaca, NY, USA, May 6-9, 199/, Proceedings, pages 160—-168,
1994.

Henri Cohen. A Course in Computational Algebraic Number Theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1993.

Benne M. M. De Weger. Solving exponential Diophantine equations
using lattice basis reduction algorithms. J. Number theory, 26:325-367,
1987.

Noam D. Elkies. Rational points near curves and small nonzero |z —1?|
via lattice reduction. Algorithmic Number Theory: 4th International
Symposium, ANTS-IV Leiden, The Netherlands, July 2-7, 2000. Pro-
ceedings, pages 33-63, 2000.

Alexandre Gélin and Antoine Joux. Reducing number field defining
polynomials: an application to class group computations. In Algorith-
mic Number Theory Symposium XII, volume 19 of LMS Journal of
Computation and Mathematics, pages 315-331, 2016.

Xavier Gourdon. Combinatoire, algorithmique et géométrie des poly-
nomes. PhD thesis, pages 27-49, 1996.

George Havas, Bohdan S. Majewski, and Keith R. Matthews. Extended
GCD and Hermite normal form algorithms via lattice basis reduction.
Ezperimental Mathematics, 7(2):125-136, 1998.

Gerold Jager. Reduction of Smith normal form transformation matrices.
Computing, 74(4):377-388, 2005.

Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Applied in-
terval analysis: with examples in parameter and state estimation, robust
control and robotics. Springer Verlag, 2001.

Erich Kaltofen. On the complexity of finding short vectors in integer
lattices. In J. A. van Hulzen, editor, Computer Algebra, EUROCAL ’83,
European Computer Algebra Conference, volume 162 of Lecture Notes
in Computer Science, pages 236-244. Springer, 1983.

Seungki Kim and Akshay Venkatesh. The behavior of random reduced
bases, 2016.

Hendrik W. Lenstra, Jr. Integer programming with a fixed number of
variables. Math. Oper. Res., 8:538-548, 1983.

Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and Laszlo Lovasz. Fac-
toring polynomials with rational coefficients. Math. Ann., 261:515-534,
1982.

Laszlo Lovasz and Herbert E. Scarf. The generalized basis reduction
algorithm. Math. Oper. Res., 17(3):751-764, 1992.

Hendrik W. Lenstra, Jr. and Alice Silverberg. Lattices with symmetry.
Journal of Cryptology, 30(3):760-804, Jul 2017.

CERTIFIED LATTICE REDUCTION 23

[Moo62] Ramon E. Moore. Interval arithmetic and automatic error analysis in
digital computing. PhD thesis, Stanford, 1962.

[Moo77] Ramon E. Moore. Methods and applications of interval analysis. 1977.

[Ngul0] Phong. Q. Nguyen. Hermite’s constant and lattice algorithms. In
Phong. Q. Nguyen and Brigitte Vallée, editors, The LLL algorithm,
chapter 2. Springer, 2010.

[NS09] Phong. Q. Nguyen and Damien Stehlé. An LLL algorithm with qua-
dratic complexity. SIAM J. of Computing, 39(3):874—-903, 2009.

[Poh87] Michael E. Pohst. A modification of the LLL reduction algorithm.
Journal of Symbolic Computation, 4(1):123-127, 1987.

[PT08] Gabor Pataki and Mustafa Tural. On sublattice determinants in re-
duced bases, 2008.

[RR88| Helmut Ratschek and Jon Rokne. New computer methods for global
optimization. Halsted Press, New York, NY, USA, 1988.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis re-
duction algorithms. Theor. Comput. Sci., 53:201-224, 1987.

[Sch88] Claus-Peter Schnorr. A more efficient algorithm for lattice basis reduc-
tion. J. Algorithms, 9(1):47-62, 1988.

[SE94| Claus-Peter Schnorr and Michael Euchner. Lattice basis reduction: Im-
proved practical algorithms and solving subset sum problems. Math.
Program., 66:181-199, 1994.

[Sun09] Teruo Sunaga. Theory of an interval algebra and its application to
numerical analysis. Japan J. Indust. Appl. Math., 26, 10 2009.

[Teal6] The FPLLL Development Team. fplll, a lattice reduction library. Avail-
able at https://github.com/fplll/fplll, 2016.

[Vil07] Gilles Villard. Certification of the qr factor r, and of lattice basis re-
ducedness, 2007.

[You31] Rosalind C. Young. The algebra of many-values quantities. PhD thesis,
Cambridge, 1931.

APPENDIX A. PROOF OF PROPOSITION 2.1

We now show the more general statement for a (0, 7)-LLL reduced basis (b, ..., bq)
of (A, (-,+)). Namely that for any 1 < k < d we have:

_ (d=k)k

k
covol(b,...,bg) < (6 —n%)" * covol(A).

Proof. Using the Lovasz condition at index 1 <14 < d, we write:
Sl (o) [I* < flmi (i) I* = llia (B)1 + 3 it s (02) |12
Thanks to the size-reduction condition, this implies:
. -1
(4) Vie{l,...,d—1}, [lm®))* < (6 —5°) mira (biva)|*

Let K denote ((5 — 772)_1/2 and ¢; be the norm of the vector m;(b;). Then,
Equation (4) becomes:

Vie{l,...,d—1}, £ <Kli.

24 THOMAS ESPITAU AND ANTOINE JOUX

Recall that covol(by, ..., bg) = Hle £;. This implies that for any j > k:

k
covol(by,...,bg) < HKj_iEj = KF@I—k-1)/2 Ef
i=1

Thus:
k d & kg |
covol(b1,...,bk)d: Hfi < ¢ H Kk(zj_k_l)/Q.gé?
=t =1 j=k+1
d k
< H&' KZ}Z:,C_H k(2j—k-1)/2
i=1
ko oo dld=R)k
< covol(A)" K™ 2

SorBONNE UNIVERSITE, LIP 6, CNRS UMR 7606, Paris, FRaNCE
Email address: t.espitau@gmail.com

Chaire de Cryptologie de la Fondation SU, SORBONNE UNIVERSITE, INSTITUT DE MATHE-
MATIQUES DE JUssiEU—PARIsS RivE GaucHE, CNRS, INRIA, Univ Paris DipEroT. CAMPUS
PierrE ET MARIE CURIE, F-75005 PaRris, FRANCE

Email address: antoine. joux@méx.org

