13,578 research outputs found

    Deflation for semismooth equations

    Full text link
    Variational inequalities can in general support distinct solutions. In this paper we study an algorithm for computing distinct solutions of a variational inequality, without varying the initial guess supplied to the solver. The central idea is the combination of a semismooth Newton method with a deflation operator that eliminates known solutions from consideration. Given one root of a semismooth residual, deflation constructs a new problem for which a semismooth Newton method will not converge to the known root, even from the same initial guess. This enables the discovery of other roots. We prove the effectiveness of the deflation technique under the same assumptions that guarantee locally superlinear convergence of a semismooth Newton method. We demonstrate its utility on various finite- and infinite-dimensional examples drawn from constrained optimization, game theory, economics and solid mechanics.Comment: 24 pages, 3 figure

    Solvability of the G_2 Integrable System

    Full text link
    It is shown that the 3-body trigonometric G_2 integrable system is exactly-solvable. If the configuration space is parametrized by certain symmetric functions of the coordinates then, for arbitrary values of the coupling constants, the Hamiltonian can be expressed as a quadratic polynomial in the generators of some Lie algebra of differential operators in a finite-dimensional representation. Four infinite families of eigenstates, represented by polynomials, and the corresponding eigenvalues are described explicitly.Comment: 18 pages, LaTeX, some minor typos correcte

    A Non-Probabilistic Model of Relativised Predictability in Physics

    Full text link
    Little effort has been devoted to studying generalised notions or models of (un)predictability, yet is an important concept throughout physics and plays a central role in quantum information theory, where key results rely on the supposed inherent unpredictability of measurement outcomes. In this paper we continue the programme started in [1] developing a general, non-probabilistic model of (un)predictability in physics. We present a more refined model that is capable of studying different degrees of "relativised" unpredictability. This model is based on the ability for an agent, acting via uniform, effective means, to predict correctly and reproducibly the outcome of an experiment using finite information extracted from the environment. We use this model to study further the degree of unpredictability certified by different quantum phenomena, showing that quantum complementarity guarantees a form of relativised unpredictability that is weaker than that guaranteed by Kochen-Specker-type value indefiniteness. We exemplify further the difference between certification by complementarity and value indefiniteness by showing that, unlike value indefiniteness, complementarity is compatible with the production of computable sequences of bits.Comment: 10 page

    On Interferometric Duality in Multibeam Experiments

    Full text link
    We critically analyze the problem of formulating duality between fringe visibility and which-way information, in multibeam interference experiments. We show that the traditional notion of visibility is incompatible with any intuitive idea of complementarity, but for the two-beam case. We derive a number of new inequalities, not present in the two-beam case, one of them coinciding with a recently proposed multibeam generalization of the inequality found by Greenberger and YaSin. We show, by an explicit procedure of optimization in a three-beam case, that suggested generalizations of Englert's inequality, do not convey, differently from the two-beam case, the idea of complementarity, according to which an increase of visibility is at the cost of a loss in path information, and viceversa.Comment: 26 pages, 1 figure, substantial changes in the text, new material has been added in Section 3. Version to appear in J.Phys.
    • …
    corecore