Little effort has been devoted to studying generalised notions or models of
(un)predictability, yet is an important concept throughout physics and plays a
central role in quantum information theory, where key results rely on the
supposed inherent unpredictability of measurement outcomes. In this paper we
continue the programme started in [1] developing a general, non-probabilistic
model of (un)predictability in physics. We present a more refined model that is
capable of studying different degrees of "relativised" unpredictability. This
model is based on the ability for an agent, acting via uniform, effective
means, to predict correctly and reproducibly the outcome of an experiment using
finite information extracted from the environment. We use this model to study
further the degree of unpredictability certified by different quantum
phenomena, showing that quantum complementarity guarantees a form of
relativised unpredictability that is weaker than that guaranteed by
Kochen-Specker-type value indefiniteness. We exemplify further the difference
between certification by complementarity and value indefiniteness by showing
that, unlike value indefiniteness, complementarity is compatible with the
production of computable sequences of bits.Comment: 10 page