319 research outputs found

    General Error-based Active Disturbance Rejection Control for Swift Industrial Implementations

    Get PDF
    In this article, a typical 2DOF active disturbance rejection control (ADRC) design is restructured into a 1DOF form, thus making it compatible with standard industrial control function blocks and enhancing its market competitiveness. This methodology integrates the previously separated components, such as the profile generator, state observer, feedback controller, feedforward terms, and disturbance rejection, into one unified structure. In doing so, certain ADRC components can be made simpler (or even obsolete) without sacrificing the nominal control performance, which further simplifies the control synthesis and tuning. A generalized version of the error-driven design is adopted and rigorously proved here using the singular perturbation theory. The experimental verification of the utilized approach is carried out using a disturbed DC–DC buck converter

    Active Disturbance Rejection Control of Thermal Power Unit Coordinated System based on Frequency Domain Analysis

    Get PDF
    For the multi-input and multi-output, strong-coupling nonlinear features of coordinated system for thermal power unit, it is difficult for traditional PID coordinated control scheme to meet the power grid demand which often participates in peak regulation and frequency modulation. In this paper, Inverse Nyquist array is employed to carry out frequency domain analysis of the plant model. Then Pseudo diagonalization is used to design the static decoupling compensation matrix of the system. Above on these, the linear active disturbance rejection controller of every channel in coordinated system can be designed repectively. Dynamic coupling and system unknown parts are observed by extended state observer of ADRC and is compensated to the system in time. The simulation tests show that the disturbance rejection results of the load and the main steam pressure for the coordinated control system under LADRC is better than that of PID control

    Nonlinear Extended State Observer based Active Disturbance Rejection Control of a Laser Seeker System

    Get PDF
    In this paper, the laser seeker control problem is solved in the framework of active disturbance rejection control (ADRC). The considered problem, which consists of laser seeker stabilisation and target tracking, is expressed here as a regulation problem. A nonlinear extended state observer (NESO) with varying gains is used to improve the performance of linear ESO (LESO), and thus enable better control performance in both transient period and steady-state, with lower control effort. Based on a detailed analysis of system disturbances, a special ADRC tuning method is proposed. The stability of the overall control structure is analysed with a description function method. Through comparative simulations LESO-based and the introduced NESO-based ADRC for the laser seeker system, the advantages of the proposed scheme are shown

    On Vibration Suppression and Trajectory Tracking in Largely Uncertain Torsional System: An Error-based ADRC Approach

    Get PDF
    In this work, a practically relevant control problem of compensating harmonic uncertainties is tackled. The problem is formulated and solved here using an active disturbance rejection control (ADRC) methodology. A novel, custom ADRC structure is proposed that utilizes an innovative resonant extended state observer (RESO), dedicated to systems subjected to harmonic interferences. In order to make the introduced solution more industry-friendly, the entire observer-centered control topology is additionally restructured into one degree-of-freedom, compact, feedback error-based form (similar to ubiquitous in practice PID controller). Such reorganization enables a straightforward implementation and commission of the proposed technique in wide range of industrial control platforms, thus potentially increasing its outreach. In order to verify the efficiency of the introduced method, a multi-criteria experimental case study using a torsional plant is conducted in a trajectory tracking task, showing satisfactory performance in vibration suppression, without the often problem of noise amplification due to high observer/controller gains. Finally, a frequency analysis and a rigorous stability proof of the proposed control structure are given
    • …
    corecore