87,655 research outputs found

    Computer Aided Aroma Design. I. Molecular knowledge framework

    Get PDF
    Computer Aided Aroma Design (CAAD) is likely to become a hot issue as the REACH EC document targets many aroma compounds to require substitution. The two crucial steps in CAMD are the generation of candidate molecules and the estimation of properties, which can be difficult when complex molecular structures like odours are sought and when their odour quality are definitely subjective whereas their odour intensity are partly subjective as stated in Rossitier’s review (1996). In part I, provided that classification rules like those presented in part II exist to assess the odour quality, the CAAD methodology presented proceeds with a multilevel approach matched by a versatile and novel molecular framework. It can distinguish the infinitesimal chemical structure differences, like in isomers, that are responsible for different odour quality and intensity. Besides, its chemical graph concepts are well suited for genetic algorithm sampling techniques used for an efficient screening of large molecules such as aroma. Finally, an input/output XML format based on the aggregation of CML and ThermoML enables to store the molecular classes but also any subjective or objective property values computed during the CAAD process

    Probing-Based Preprocessing Techniques for Propositional Satisfiability

    No full text
    Preprocessing is an often used approach for solving hard instances of propositional satisfiability (SAT). Preprocessing can be used for reducing the number of variables and for drastically modifying the set of clauses, either by eliminating irrelevant clauses or by inferring new clauses. Over the years, a large number of formula manipulation techniques has been proposed, that in some situations have allowed solving instances not otherwise solvable with stateof -the-art SAT solvers. This paper proposes probing-based preprocessing, an integrated approach for preprocessing propositional formulas, that for the first time integrates in a single algorithm most of the existing formula manipulation techniques. Moreover, the new unified framework can be used to develop new techniques. Preliminary experimental results illustrate that probing-based preprocessing can be effectively used as a preprocessing tool in state-of-theart SAT solvers

    Eligibility Propagation to Speed up Time Hopping for Reinforcement Learning

    Full text link
    A mechanism called Eligibility Propagation is proposed to speed up the Time Hopping technique used for faster Reinforcement Learning in simulations. Eligibility Propagation provides for Time Hopping similar abilities to what eligibility traces provide for conventional Reinforcement Learning. It propagates values from one state to all of its temporal predecessors using a state transitions graph. Experiments on a simulated biped crawling robot confirm that Eligibility Propagation accelerates the learning process more than 3 times.Comment: 7 page

    RUR53: an Unmanned Ground Vehicle for Navigation, Recognition and Manipulation

    Full text link
    This paper proposes RUR53: an Unmanned Ground Vehicle able to autonomously navigate through, identify, and reach areas of interest; and there recognize, localize, and manipulate work tools to perform complex manipulation tasks. The proposed contribution includes a modular software architecture where each module solves specific sub-tasks and that can be easily enlarged to satisfy new requirements. Included indoor and outdoor tests demonstrate the capability of the proposed system to autonomously detect a target object (a panel) and precisely dock in front of it while avoiding obstacles. They show it can autonomously recognize and manipulate target work tools (i.e., wrenches and valve stems) to accomplish complex tasks (i.e., use a wrench to rotate a valve stem). A specific case study is described where the proposed modular architecture lets easy switch to a semi-teleoperated mode. The paper exhaustively describes description of both the hardware and software setup of RUR53, its performance when tests at the 2017 Mohamed Bin Zayed International Robotics Challenge, and the lessons we learned when participating at this competition, where we ranked third in the Gran Challenge in collaboration with the Czech Technical University in Prague, the University of Pennsylvania, and the University of Lincoln (UK).Comment: This article has been accepted for publication in Advanced Robotics, published by Taylor & Franci

    Math Search for the Masses: Multimodal Search Interfaces and Appearance-Based Retrieval

    Full text link
    We summarize math search engines and search interfaces produced by the Document and Pattern Recognition Lab in recent years, and in particular the min math search interface and the Tangent search engine. Source code for both systems are publicly available. "The Masses" refers to our emphasis on creating systems for mathematical non-experts, who may be looking to define unfamiliar notation, or browse documents based on the visual appearance of formulae rather than their mathematical semantics.Comment: Paper for Invited Talk at 2015 Conference on Intelligent Computer Mathematics (July, Washington DC

    Towards a Holistic Integration of Spreadsheets with Databases: A Scalable Storage Engine for Presentational Data Management

    Full text link
    Spreadsheet software is the tool of choice for interactive ad-hoc data management, with adoption by billions of users. However, spreadsheets are not scalable, unlike database systems. On the other hand, database systems, while highly scalable, do not support interactivity as a first-class primitive. We are developing DataSpread, to holistically integrate spreadsheets as a front-end interface with databases as a back-end datastore, providing scalability to spreadsheets, and interactivity to databases, an integration we term presentational data management (PDM). In this paper, we make a first step towards this vision: developing a storage engine for PDM, studying how to flexibly represent spreadsheet data within a database and how to support and maintain access by position. We first conduct an extensive survey of spreadsheet use to motivate our functional requirements for a storage engine for PDM. We develop a natural set of mechanisms for flexibly representing spreadsheet data and demonstrate that identifying the optimal representation is NP-Hard; however, we develop an efficient approach to identify the optimal representation from an important and intuitive subclass of representations. We extend our mechanisms with positional access mechanisms that don't suffer from cascading update issues, leading to constant time access and modification performance. We evaluate these representations on a workload of typical spreadsheets and spreadsheet operations, providing up to 20% reduction in storage, and up to 50% reduction in formula evaluation time

    Can Computer Algebra be Liberated from its Algebraic Yoke ?

    Full text link
    So far, the scope of computer algebra has been needlessly restricted to exact algebraic methods. Its possible extension to approximate analytical methods is discussed. The entangled roles of functional analysis and symbolic programming, especially the functional and transformational paradigms, are put forward. In the future, algebraic algorithms could constitute the core of extended symbolic manipulation systems including primitives for symbolic approximations.Comment: 8 pages, 2-column presentation, 2 figure
    corecore