37 research outputs found

    Maximum Skew-Symmetric Flows and Matchings

    Full text link
    The maximum integer skew-symmetric flow problem (MSFP) generalizes both the maximum flow and maximum matching problems. It was introduced by Tutte in terms of self-conjugate flows in antisymmetrical digraphs. He showed that for these objects there are natural analogs of classical theoretical results on usual network flows, such as the flow decomposition, augmenting path, and max-flow min-cut theorems. We give unified and shorter proofs for those theoretical results. We then extend to MSFP the shortest augmenting path method of Edmonds and Karp and the blocking flow method of Dinits, obtaining algorithms with similar time bounds in general case. Moreover, in the cases of unit arc capacities and unit ``node capacities'' the blocking skew-symmetric flow algorithm has time bounds similar to those established in Even and Tarjan (1975) and Karzanov (1973) for Dinits' algorithm. In particular, this implies an algorithm for finding a maximum matching in a nonbipartite graph in O(nm)O(\sqrt{n}m) time, which matches the time bound for the algorithm of Micali and Vazirani. Finally, extending a clique compression technique of Feder and Motwani to particular skew-symmetric graphs, we speed up the implied maximum matching algorithm to run in O(nmlog(n2/m)/logn)O(\sqrt{n}m\log(n^2/m)/\log{n}) time, improving the best known bound for dense nonbipartite graphs. Also other theoretical and algorithmic results on skew-symmetric flows and their applications are presented.Comment: 35 pages, 3 figures, to appear in Mathematical Programming, minor stylistic corrections and shortenings to the original versio

    Packing Odd Walks and Trails in Multiterminal Networks

    Get PDF
    Let G be an undirected network with a distinguished set of terminals T ? V(G) and edge capacities cap: E(G) ? ?_+. By an odd T-walk we mean a walk in G (with possible vertex and edge self-intersections) connecting two distinct terminals and consisting of an odd number of edges. Inspired by the work of Schrijver and Seymour on odd path packing for two terminals, we consider packings of odd T-walks subject to capacities cap. First, we present a strongly polynomial time algorithm for constructing a maximum fractional packing of odd T-walks. For even integer capacities, our algorithm constructs a packing that is half-integer. Additionally, if cap(?(v)) is divisible by 4 for any v ? V(G)-T, our algorithm constructs an integer packing. Second, we establish and prove the corresponding min-max relation. Third, if G is inner Eulerian (i.e. degrees of all nodes in V(G)-T are even) and cap(e) = 2 for all e ? E, we show that there exists an integer packing of odd T-trails (i.e. odd T-walks with no repeated edges) of the same value as in case of odd T-walks, and this packing can be found in polynomial time. To achieve the above goals, we establish a connection between packings of odd T-walks and T-trails and certain multiflow problems in undirected and bidirected graphs

    A generalization of totally unimodular and network matrices.

    Get PDF
    In this thesis we discuss possible generalizations of totally unimodular and network matrices. Our purpose is to introduce new classes of matrices that preserve the advantageous properties of these well-known matrices. In particular, our focus is on the polyhedral consequences of totally unimodular matrices, namely we look for matrices that can ensure vertices that are scalable to an integral vector by an integer k. We argue that simply generalizing the determinantal structure of totally unimodular matrices does not suffice to achieve this goal and one has to extend the range of values the inverses of submatrices can contain. To this end, we define k-regular matrices. We show that k-regularity is a proper generalization of total unimodularity in polyhedral terms, as it guarantees the scalability of vertices. Moreover, we prove that the k-regularity of a matrix is necessary and sufficient for substituting mod-k cuts for rank-1 Chvatal-Gomory cuts. In the second part of the thesis we introduce binet matrices, an extension of network matrices to bidirected graphs. We provide an algorithm to calculate the columns of a binet matrix using the underlying graphical structure. Using this method, we prove some results about binet matrices and demonstrate that several interesting classes of matrices are binet. We show that binet matrices are 2-regular, therefore they provide half-integral vertices for a polyhedron with a binet constraint matrix and integral right hand side vector. We also prove that optimization on such a polyhedron can be carried out very efficiently, as there exists an extension of the network simplex method for binet matrices. Furthermore, the integer optimization with binet matrices is equivalent to solving a matching problem. We also describe the connection of k-regular and binet matrices to other parts of combinatorial optimization, notably to matroid theory and regular vectorspaces

    Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings

    Full text link
    Consider a directed or an undirected graph with integral edge weights from the set [-W, W], that does not contain negative weight cycles. In this paper, we introduce a general framework for solving problems on such graphs using matrix multiplication. The framework is based on the usage of Baur-Strassen's theorem and of Strojohann's determinant algorithm. It allows us to give new and simple solutions to the following problems: * Finding Shortest Cycles -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for finding shortest cycles in undirected and directed graphs. For directed graphs (and undirected graphs with non-negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-Williams. On the other hand, no algorithm working in \tilde{O}(Wn^{\omega}) time was previously known for undirected graphs with negative weights. Furthermore our algorithm for a given directed or undirected graph detects whether it contains a negative weight cycle within the same running time. * Computing Diameter and Radius -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for computing a diameter and radius of an undirected or directed graphs. To the best of our knowledge no algorithm with this running time was known for undirected graphs with negative weights. * Finding Minimum Weight Perfect Matchings -- We present an \tilde{O}(Wn^{\omega}) time algorithm for finding minimum weight perfect matchings in undirected graphs. This resolves an open problem posted by Sankowski in 2006, who presented such an algorithm but only in the case of bipartite graphs. In order to solve minimum weight perfect matching problem we develop a novel combinatorial interpretation of the dual solution which sheds new light on this problem. Such a combinatorial interpretation was not know previously, and is of independent interest.Comment: To appear in FOCS 201
    corecore