4,751 research outputs found

    Computing Periods of Hypersurfaces

    Full text link
    We give an algorithm to compute the periods of smooth projective hypersurfaces of any dimension. This is an improvement over existing algorithms which could only compute the periods of plane curves. Our algorithm reduces the evaluation of period integrals to an initial value problem for ordinary differential equations of Picard-Fuchs type. In this way, the periods can be computed to extreme-precision in order to study their arithmetic properties. The initial conditions are obtained by an exact determination of the cohomology pairing on Fermat hypersurfaces with respect to a natural basis.Comment: 33 pages; Final version. Fixed typos, minor expository changes. Changed code repository lin

    Ising n-fold integrals as diagonals of rational functions and integrality of series expansions

    Full text link
    We show that the n-fold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the "Ising class", or n-fold integrals from enumerative combinatorics, like lattice Green functions, correspond to a distinguished class of function generalising algebraic functions: they are actually diagonals of rational functions. As a consequence, the power series expansions of the, analytic at x=0, solutions of these linear differential equations "Derived From Geometry" are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. We also give several results showing that the unique analytical solution of Calabi-Yau ODEs, and, more generally, Picard-Fuchs linear ODEs, with solutions of maximal weights, are always diagonal of rational functions. Besides, in a more enumerative combinatorics context, generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity of ODEs.Comment: This paper is the short version of the larger (100 pages) version, available as arXiv:1211.6031 , where all the detailed proofs are given and where a much larger set of examples is displaye

    On elliptic solutions of the quintic complex one-dimensional Ginzburg-Landau equation

    Full text link
    The Conte-Musette method has been modified for the search of only elliptic solutions to systems of differential equations. A key idea of this a priory restriction is to simplify calculations by means of the use of a few Laurent series solutions instead of one and the use of the residue theorem. The application of our approach to the quintic complex one-dimensional Ginzburg-Landau equation (CGLE5) allows to find elliptic solutions in the wave form. We also find restrictions on coefficients, which are necessary conditions for the existence of elliptic solutions for the CGLE5. Using the investigation of the CGLE5 as an example, we demonstrate that to find elliptic solutions the analysis of a system of differential equations is more preferable than the analysis of the equivalent single differential equation.Comment: LaTeX, 21 page

    Darboux points and integrability of homogeneous Hamiltonian systems with three and more degrees of freedom

    Full text link
    We consider natural complex Hamiltonian systems with nn degrees of freedom given by a Hamiltonian function which is a sum of the standard kinetic energy and a homogeneous polynomial potential VV of degree k>2k>2. The well known Morales-Ramis theorem gives the strongest known necessary conditions for the Liouville integrability of such systems. It states that for each kk there exists an explicitly known infinite set \scM_k\subset\Q such that if the system is integrable, then all eigenvalues of the Hessian matrix V''(\vd) calculated at a non-zero \vd\in\C^n satisfying V'(\vd)=\vd, belong to \scM_k. The aim of this paper is, among others, to sharpen this result. Under certain genericity assumption concerning VV we prove the following fact. For each kk and nn there exists a finite set \scI_{n,k}\subset\scM_k such that if the system is integrable, then all eigenvalues of the Hessian matrix V''(\vd) belong to \scI_{n,k}. We give an algorithm which allows to find sets \scI_{n,k}. We applied this results for the case n=k=3n=k=3 and we found all integrable potentials satisfying the genericity assumption. Among them several are new and they are integrable in a highly non-trivial way. We found three potentials for which the additional first integrals are of degree 4 and 6 with respect to the momenta.Comment: 54 pages, 1 figur
    • …
    corecore